qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "trace.h"
  16#include "qed.h"
  17#include "qerror.h"
  18
  19static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
  20{
  21    QEDAIOCB *acb = (QEDAIOCB *)blockacb;
  22    bool finished = false;
  23
  24    /* Wait for the request to finish */
  25    acb->finished = &finished;
  26    while (!finished) {
  27        qemu_aio_wait();
  28    }
  29}
  30
  31static AIOPool qed_aio_pool = {
  32    .aiocb_size         = sizeof(QEDAIOCB),
  33    .cancel             = qed_aio_cancel,
  34};
  35
  36static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  37                          const char *filename)
  38{
  39    const QEDHeader *header = (const QEDHeader *)buf;
  40
  41    if (buf_size < sizeof(*header)) {
  42        return 0;
  43    }
  44    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  45        return 0;
  46    }
  47    return 100;
  48}
  49
  50/**
  51 * Check whether an image format is raw
  52 *
  53 * @fmt:    Backing file format, may be NULL
  54 */
  55static bool qed_fmt_is_raw(const char *fmt)
  56{
  57    return fmt && strcmp(fmt, "raw") == 0;
  58}
  59
  60static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  61{
  62    cpu->magic = le32_to_cpu(le->magic);
  63    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  64    cpu->table_size = le32_to_cpu(le->table_size);
  65    cpu->header_size = le32_to_cpu(le->header_size);
  66    cpu->features = le64_to_cpu(le->features);
  67    cpu->compat_features = le64_to_cpu(le->compat_features);
  68    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  69    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  70    cpu->image_size = le64_to_cpu(le->image_size);
  71    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  72    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  73}
  74
  75static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  76{
  77    le->magic = cpu_to_le32(cpu->magic);
  78    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  79    le->table_size = cpu_to_le32(cpu->table_size);
  80    le->header_size = cpu_to_le32(cpu->header_size);
  81    le->features = cpu_to_le64(cpu->features);
  82    le->compat_features = cpu_to_le64(cpu->compat_features);
  83    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  84    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  85    le->image_size = cpu_to_le64(cpu->image_size);
  86    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  87    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  88}
  89
  90static int qed_write_header_sync(BDRVQEDState *s)
  91{
  92    QEDHeader le;
  93    int ret;
  94
  95    qed_header_cpu_to_le(&s->header, &le);
  96    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  97    if (ret != sizeof(le)) {
  98        return ret;
  99    }
 100    return 0;
 101}
 102
 103typedef struct {
 104    GenericCB gencb;
 105    BDRVQEDState *s;
 106    struct iovec iov;
 107    QEMUIOVector qiov;
 108    int nsectors;
 109    uint8_t *buf;
 110} QEDWriteHeaderCB;
 111
 112static void qed_write_header_cb(void *opaque, int ret)
 113{
 114    QEDWriteHeaderCB *write_header_cb = opaque;
 115
 116    qemu_vfree(write_header_cb->buf);
 117    gencb_complete(write_header_cb, ret);
 118}
 119
 120static void qed_write_header_read_cb(void *opaque, int ret)
 121{
 122    QEDWriteHeaderCB *write_header_cb = opaque;
 123    BDRVQEDState *s = write_header_cb->s;
 124    BlockDriverAIOCB *acb;
 125
 126    if (ret) {
 127        qed_write_header_cb(write_header_cb, ret);
 128        return;
 129    }
 130
 131    /* Update header */
 132    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
 133
 134    acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
 135                          write_header_cb->nsectors, qed_write_header_cb,
 136                          write_header_cb);
 137    if (!acb) {
 138        qed_write_header_cb(write_header_cb, -EIO);
 139    }
 140}
 141
 142/**
 143 * Update header in-place (does not rewrite backing filename or other strings)
 144 *
 145 * This function only updates known header fields in-place and does not affect
 146 * extra data after the QED header.
 147 */
 148static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
 149                             void *opaque)
 150{
 151    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 152     * the data following the header if an unrecognized compat feature is
 153     * active.  Therefore, first read the sectors containing the header, update
 154     * them, and write back.
 155     */
 156
 157    BlockDriverAIOCB *acb;
 158    int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
 159                   BDRV_SECTOR_SIZE;
 160    size_t len = nsectors * BDRV_SECTOR_SIZE;
 161    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
 162                                                    cb, opaque);
 163
 164    write_header_cb->s = s;
 165    write_header_cb->nsectors = nsectors;
 166    write_header_cb->buf = qemu_blockalign(s->bs, len);
 167    write_header_cb->iov.iov_base = write_header_cb->buf;
 168    write_header_cb->iov.iov_len = len;
 169    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
 170
 171    acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
 172                         qed_write_header_read_cb, write_header_cb);
 173    if (!acb) {
 174        qed_write_header_cb(write_header_cb, -EIO);
 175    }
 176}
 177
 178static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 179{
 180    uint64_t table_entries;
 181    uint64_t l2_size;
 182
 183    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 184    l2_size = table_entries * cluster_size;
 185
 186    return l2_size * table_entries;
 187}
 188
 189static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 190{
 191    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 192        cluster_size > QED_MAX_CLUSTER_SIZE) {
 193        return false;
 194    }
 195    if (cluster_size & (cluster_size - 1)) {
 196        return false; /* not power of 2 */
 197    }
 198    return true;
 199}
 200
 201static bool qed_is_table_size_valid(uint32_t table_size)
 202{
 203    if (table_size < QED_MIN_TABLE_SIZE ||
 204        table_size > QED_MAX_TABLE_SIZE) {
 205        return false;
 206    }
 207    if (table_size & (table_size - 1)) {
 208        return false; /* not power of 2 */
 209    }
 210    return true;
 211}
 212
 213static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 214                                    uint32_t table_size)
 215{
 216    if (image_size % BDRV_SECTOR_SIZE != 0) {
 217        return false; /* not multiple of sector size */
 218    }
 219    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 220        return false; /* image is too large */
 221    }
 222    return true;
 223}
 224
 225/**
 226 * Read a string of known length from the image file
 227 *
 228 * @file:       Image file
 229 * @offset:     File offset to start of string, in bytes
 230 * @n:          String length in bytes
 231 * @buf:        Destination buffer
 232 * @buflen:     Destination buffer length in bytes
 233 * @ret:        0 on success, -errno on failure
 234 *
 235 * The string is NUL-terminated.
 236 */
 237static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
 238                           char *buf, size_t buflen)
 239{
 240    int ret;
 241    if (n >= buflen) {
 242        return -EINVAL;
 243    }
 244    ret = bdrv_pread(file, offset, buf, n);
 245    if (ret < 0) {
 246        return ret;
 247    }
 248    buf[n] = '\0';
 249    return 0;
 250}
 251
 252/**
 253 * Allocate new clusters
 254 *
 255 * @s:          QED state
 256 * @n:          Number of contiguous clusters to allocate
 257 * @ret:        Offset of first allocated cluster
 258 *
 259 * This function only produces the offset where the new clusters should be
 260 * written.  It updates BDRVQEDState but does not make any changes to the image
 261 * file.
 262 */
 263static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 264{
 265    uint64_t offset = s->file_size;
 266    s->file_size += n * s->header.cluster_size;
 267    return offset;
 268}
 269
 270QEDTable *qed_alloc_table(BDRVQEDState *s)
 271{
 272    /* Honor O_DIRECT memory alignment requirements */
 273    return qemu_blockalign(s->bs,
 274                           s->header.cluster_size * s->header.table_size);
 275}
 276
 277/**
 278 * Allocate a new zeroed L2 table
 279 */
 280static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 281{
 282    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 283
 284    l2_table->table = qed_alloc_table(s);
 285    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 286
 287    memset(l2_table->table->offsets, 0,
 288           s->header.cluster_size * s->header.table_size);
 289    return l2_table;
 290}
 291
 292static void qed_aio_next_io(void *opaque, int ret);
 293
 294static int bdrv_qed_open(BlockDriverState *bs, int flags)
 295{
 296    BDRVQEDState *s = bs->opaque;
 297    QEDHeader le_header;
 298    int64_t file_size;
 299    int ret;
 300
 301    s->bs = bs;
 302    QSIMPLEQ_INIT(&s->allocating_write_reqs);
 303
 304    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 305    if (ret < 0) {
 306        return ret;
 307    }
 308    ret = 0; /* ret should always be 0 or -errno */
 309    qed_header_le_to_cpu(&le_header, &s->header);
 310
 311    if (s->header.magic != QED_MAGIC) {
 312        return -EINVAL;
 313    }
 314    if (s->header.features & ~QED_FEATURE_MASK) {
 315        /* image uses unsupported feature bits */
 316        char buf[64];
 317        snprintf(buf, sizeof(buf), "%" PRIx64,
 318            s->header.features & ~QED_FEATURE_MASK);
 319        qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
 320            bs->device_name, "QED", buf);
 321        return -ENOTSUP;
 322    }
 323    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 324        return -EINVAL;
 325    }
 326
 327    /* Round down file size to the last cluster */
 328    file_size = bdrv_getlength(bs->file);
 329    if (file_size < 0) {
 330        return file_size;
 331    }
 332    s->file_size = qed_start_of_cluster(s, file_size);
 333
 334    if (!qed_is_table_size_valid(s->header.table_size)) {
 335        return -EINVAL;
 336    }
 337    if (!qed_is_image_size_valid(s->header.image_size,
 338                                 s->header.cluster_size,
 339                                 s->header.table_size)) {
 340        return -EINVAL;
 341    }
 342    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 343        return -EINVAL;
 344    }
 345
 346    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 347                      sizeof(uint64_t);
 348    s->l2_shift = ffs(s->header.cluster_size) - 1;
 349    s->l2_mask = s->table_nelems - 1;
 350    s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
 351
 352    if ((s->header.features & QED_F_BACKING_FILE)) {
 353        if ((uint64_t)s->header.backing_filename_offset +
 354            s->header.backing_filename_size >
 355            s->header.cluster_size * s->header.header_size) {
 356            return -EINVAL;
 357        }
 358
 359        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 360                              s->header.backing_filename_size, bs->backing_file,
 361                              sizeof(bs->backing_file));
 362        if (ret < 0) {
 363            return ret;
 364        }
 365
 366        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 367            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 368        }
 369    }
 370
 371    /* Reset unknown autoclear feature bits.  This is a backwards
 372     * compatibility mechanism that allows images to be opened by older
 373     * programs, which "knock out" unknown feature bits.  When an image is
 374     * opened by a newer program again it can detect that the autoclear
 375     * feature is no longer valid.
 376     */
 377    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 378        !bdrv_is_read_only(bs->file)) {
 379        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 380
 381        ret = qed_write_header_sync(s);
 382        if (ret) {
 383            return ret;
 384        }
 385
 386        /* From here on only known autoclear feature bits are valid */
 387        bdrv_flush(bs->file);
 388    }
 389
 390    s->l1_table = qed_alloc_table(s);
 391    qed_init_l2_cache(&s->l2_cache);
 392
 393    ret = qed_read_l1_table_sync(s);
 394    if (ret) {
 395        goto out;
 396    }
 397
 398    /* If image was not closed cleanly, check consistency */
 399    if (s->header.features & QED_F_NEED_CHECK) {
 400        /* Read-only images cannot be fixed.  There is no risk of corruption
 401         * since write operations are not possible.  Therefore, allow
 402         * potentially inconsistent images to be opened read-only.  This can
 403         * aid data recovery from an otherwise inconsistent image.
 404         */
 405        if (!bdrv_is_read_only(bs->file)) {
 406            BdrvCheckResult result = {0};
 407
 408            ret = qed_check(s, &result, true);
 409            if (!ret && !result.corruptions && !result.check_errors) {
 410                /* Ensure fixes reach storage before clearing check bit */
 411                bdrv_flush(s->bs);
 412
 413                s->header.features &= ~QED_F_NEED_CHECK;
 414                qed_write_header_sync(s);
 415            }
 416        }
 417    }
 418
 419out:
 420    if (ret) {
 421        qed_free_l2_cache(&s->l2_cache);
 422        qemu_vfree(s->l1_table);
 423    }
 424    return ret;
 425}
 426
 427static void bdrv_qed_close(BlockDriverState *bs)
 428{
 429    BDRVQEDState *s = bs->opaque;
 430
 431    /* Ensure writes reach stable storage */
 432    bdrv_flush(bs->file);
 433
 434    /* Clean shutdown, no check required on next open */
 435    if (s->header.features & QED_F_NEED_CHECK) {
 436        s->header.features &= ~QED_F_NEED_CHECK;
 437        qed_write_header_sync(s);
 438    }
 439
 440    qed_free_l2_cache(&s->l2_cache);
 441    qemu_vfree(s->l1_table);
 442}
 443
 444static int bdrv_qed_flush(BlockDriverState *bs)
 445{
 446    return bdrv_flush(bs->file);
 447}
 448
 449static int qed_create(const char *filename, uint32_t cluster_size,
 450                      uint64_t image_size, uint32_t table_size,
 451                      const char *backing_file, const char *backing_fmt)
 452{
 453    QEDHeader header = {
 454        .magic = QED_MAGIC,
 455        .cluster_size = cluster_size,
 456        .table_size = table_size,
 457        .header_size = 1,
 458        .features = 0,
 459        .compat_features = 0,
 460        .l1_table_offset = cluster_size,
 461        .image_size = image_size,
 462    };
 463    QEDHeader le_header;
 464    uint8_t *l1_table = NULL;
 465    size_t l1_size = header.cluster_size * header.table_size;
 466    int ret = 0;
 467    BlockDriverState *bs = NULL;
 468
 469    ret = bdrv_create_file(filename, NULL);
 470    if (ret < 0) {
 471        return ret;
 472    }
 473
 474    ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
 475    if (ret < 0) {
 476        return ret;
 477    }
 478
 479    /* File must start empty and grow, check truncate is supported */
 480    ret = bdrv_truncate(bs, 0);
 481    if (ret < 0) {
 482        goto out;
 483    }
 484
 485    if (backing_file) {
 486        header.features |= QED_F_BACKING_FILE;
 487        header.backing_filename_offset = sizeof(le_header);
 488        header.backing_filename_size = strlen(backing_file);
 489
 490        if (qed_fmt_is_raw(backing_fmt)) {
 491            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 492        }
 493    }
 494
 495    qed_header_cpu_to_le(&header, &le_header);
 496    ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
 497    if (ret < 0) {
 498        goto out;
 499    }
 500    ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
 501                      header.backing_filename_size);
 502    if (ret < 0) {
 503        goto out;
 504    }
 505
 506    l1_table = qemu_mallocz(l1_size);
 507    ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
 508    if (ret < 0) {
 509        goto out;
 510    }
 511
 512    ret = 0; /* success */
 513out:
 514    qemu_free(l1_table);
 515    bdrv_delete(bs);
 516    return ret;
 517}
 518
 519static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
 520{
 521    uint64_t image_size = 0;
 522    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 523    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
 524    const char *backing_file = NULL;
 525    const char *backing_fmt = NULL;
 526
 527    while (options && options->name) {
 528        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
 529            image_size = options->value.n;
 530        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
 531            backing_file = options->value.s;
 532        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
 533            backing_fmt = options->value.s;
 534        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
 535            if (options->value.n) {
 536                cluster_size = options->value.n;
 537            }
 538        } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
 539            if (options->value.n) {
 540                table_size = options->value.n;
 541            }
 542        }
 543        options++;
 544    }
 545
 546    if (!qed_is_cluster_size_valid(cluster_size)) {
 547        fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
 548                QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 549        return -EINVAL;
 550    }
 551    if (!qed_is_table_size_valid(table_size)) {
 552        fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
 553                QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 554        return -EINVAL;
 555    }
 556    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
 557        fprintf(stderr, "QED image size must be a non-zero multiple of "
 558                        "cluster size and less than %" PRIu64 " bytes\n",
 559                qed_max_image_size(cluster_size, table_size));
 560        return -EINVAL;
 561    }
 562
 563    return qed_create(filename, cluster_size, image_size, table_size,
 564                      backing_file, backing_fmt);
 565}
 566
 567typedef struct {
 568    int is_allocated;
 569    int *pnum;
 570} QEDIsAllocatedCB;
 571
 572static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
 573{
 574    QEDIsAllocatedCB *cb = opaque;
 575    *cb->pnum = len / BDRV_SECTOR_SIZE;
 576    cb->is_allocated = ret == QED_CLUSTER_FOUND;
 577}
 578
 579static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
 580                                  int nb_sectors, int *pnum)
 581{
 582    BDRVQEDState *s = bs->opaque;
 583    uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
 584    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
 585    QEDIsAllocatedCB cb = {
 586        .is_allocated = -1,
 587        .pnum = pnum,
 588    };
 589    QEDRequest request = { .l2_table = NULL };
 590
 591    async_context_push();
 592
 593    qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
 594
 595    while (cb.is_allocated == -1) {
 596        qemu_aio_wait();
 597    }
 598
 599    async_context_pop();
 600
 601    qed_unref_l2_cache_entry(request.l2_table);
 602
 603    return cb.is_allocated;
 604}
 605
 606static int bdrv_qed_make_empty(BlockDriverState *bs)
 607{
 608    return -ENOTSUP;
 609}
 610
 611static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 612{
 613    return acb->common.bs->opaque;
 614}
 615
 616/**
 617 * Read from the backing file or zero-fill if no backing file
 618 *
 619 * @s:          QED state
 620 * @pos:        Byte position in device
 621 * @qiov:       Destination I/O vector
 622 * @cb:         Completion function
 623 * @opaque:     User data for completion function
 624 *
 625 * This function reads qiov->size bytes starting at pos from the backing file.
 626 * If there is no backing file then zeroes are read.
 627 */
 628static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 629                                  QEMUIOVector *qiov,
 630                                  BlockDriverCompletionFunc *cb, void *opaque)
 631{
 632    BlockDriverAIOCB *aiocb;
 633    uint64_t backing_length = 0;
 634    size_t size;
 635
 636    /* If there is a backing file, get its length.  Treat the absence of a
 637     * backing file like a zero length backing file.
 638     */
 639    if (s->bs->backing_hd) {
 640        int64_t l = bdrv_getlength(s->bs->backing_hd);
 641        if (l < 0) {
 642            cb(opaque, l);
 643            return;
 644        }
 645        backing_length = l;
 646    }
 647
 648    /* Zero all sectors if reading beyond the end of the backing file */
 649    if (pos >= backing_length ||
 650        pos + qiov->size > backing_length) {
 651        qemu_iovec_memset(qiov, 0, qiov->size);
 652    }
 653
 654    /* Complete now if there are no backing file sectors to read */
 655    if (pos >= backing_length) {
 656        cb(opaque, 0);
 657        return;
 658    }
 659
 660    /* If the read straddles the end of the backing file, shorten it */
 661    size = MIN((uint64_t)backing_length - pos, qiov->size);
 662
 663    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
 664    aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
 665                           qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
 666    if (!aiocb) {
 667        cb(opaque, -EIO);
 668    }
 669}
 670
 671typedef struct {
 672    GenericCB gencb;
 673    BDRVQEDState *s;
 674    QEMUIOVector qiov;
 675    struct iovec iov;
 676    uint64_t offset;
 677} CopyFromBackingFileCB;
 678
 679static void qed_copy_from_backing_file_cb(void *opaque, int ret)
 680{
 681    CopyFromBackingFileCB *copy_cb = opaque;
 682    qemu_vfree(copy_cb->iov.iov_base);
 683    gencb_complete(&copy_cb->gencb, ret);
 684}
 685
 686static void qed_copy_from_backing_file_write(void *opaque, int ret)
 687{
 688    CopyFromBackingFileCB *copy_cb = opaque;
 689    BDRVQEDState *s = copy_cb->s;
 690    BlockDriverAIOCB *aiocb;
 691
 692    if (ret) {
 693        qed_copy_from_backing_file_cb(copy_cb, ret);
 694        return;
 695    }
 696
 697    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 698    aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
 699                            &copy_cb->qiov,
 700                            copy_cb->qiov.size / BDRV_SECTOR_SIZE,
 701                            qed_copy_from_backing_file_cb, copy_cb);
 702    if (!aiocb) {
 703        qed_copy_from_backing_file_cb(copy_cb, -EIO);
 704    }
 705}
 706
 707/**
 708 * Copy data from backing file into the image
 709 *
 710 * @s:          QED state
 711 * @pos:        Byte position in device
 712 * @len:        Number of bytes
 713 * @offset:     Byte offset in image file
 714 * @cb:         Completion function
 715 * @opaque:     User data for completion function
 716 */
 717static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
 718                                       uint64_t len, uint64_t offset,
 719                                       BlockDriverCompletionFunc *cb,
 720                                       void *opaque)
 721{
 722    CopyFromBackingFileCB *copy_cb;
 723
 724    /* Skip copy entirely if there is no work to do */
 725    if (len == 0) {
 726        cb(opaque, 0);
 727        return;
 728    }
 729
 730    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
 731    copy_cb->s = s;
 732    copy_cb->offset = offset;
 733    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
 734    copy_cb->iov.iov_len = len;
 735    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
 736
 737    qed_read_backing_file(s, pos, &copy_cb->qiov,
 738                          qed_copy_from_backing_file_write, copy_cb);
 739}
 740
 741/**
 742 * Link one or more contiguous clusters into a table
 743 *
 744 * @s:              QED state
 745 * @table:          L2 table
 746 * @index:          First cluster index
 747 * @n:              Number of contiguous clusters
 748 * @cluster:        First cluster byte offset in image file
 749 */
 750static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
 751                                unsigned int n, uint64_t cluster)
 752{
 753    int i;
 754    for (i = index; i < index + n; i++) {
 755        table->offsets[i] = cluster;
 756        cluster += s->header.cluster_size;
 757    }
 758}
 759
 760static void qed_aio_complete_bh(void *opaque)
 761{
 762    QEDAIOCB *acb = opaque;
 763    BlockDriverCompletionFunc *cb = acb->common.cb;
 764    void *user_opaque = acb->common.opaque;
 765    int ret = acb->bh_ret;
 766    bool *finished = acb->finished;
 767
 768    qemu_bh_delete(acb->bh);
 769    qemu_aio_release(acb);
 770
 771    /* Invoke callback */
 772    cb(user_opaque, ret);
 773
 774    /* Signal cancel completion */
 775    if (finished) {
 776        *finished = true;
 777    }
 778}
 779
 780static void qed_aio_complete(QEDAIOCB *acb, int ret)
 781{
 782    BDRVQEDState *s = acb_to_s(acb);
 783
 784    trace_qed_aio_complete(s, acb, ret);
 785
 786    /* Free resources */
 787    qemu_iovec_destroy(&acb->cur_qiov);
 788    qed_unref_l2_cache_entry(acb->request.l2_table);
 789
 790    /* Arrange for a bh to invoke the completion function */
 791    acb->bh_ret = ret;
 792    acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
 793    qemu_bh_schedule(acb->bh);
 794
 795    /* Start next allocating write request waiting behind this one.  Note that
 796     * requests enqueue themselves when they first hit an unallocated cluster
 797     * but they wait until the entire request is finished before waking up the
 798     * next request in the queue.  This ensures that we don't cycle through
 799     * requests multiple times but rather finish one at a time completely.
 800     */
 801    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
 802        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
 803        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
 804        if (acb) {
 805            qed_aio_next_io(acb, 0);
 806        }
 807    }
 808}
 809
 810/**
 811 * Commit the current L2 table to the cache
 812 */
 813static void qed_commit_l2_update(void *opaque, int ret)
 814{
 815    QEDAIOCB *acb = opaque;
 816    BDRVQEDState *s = acb_to_s(acb);
 817    CachedL2Table *l2_table = acb->request.l2_table;
 818
 819    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
 820
 821    /* This is guaranteed to succeed because we just committed the entry to the
 822     * cache.
 823     */
 824    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache,
 825                                                    l2_table->offset);
 826    assert(acb->request.l2_table != NULL);
 827
 828    qed_aio_next_io(opaque, ret);
 829}
 830
 831/**
 832 * Update L1 table with new L2 table offset and write it out
 833 */
 834static void qed_aio_write_l1_update(void *opaque, int ret)
 835{
 836    QEDAIOCB *acb = opaque;
 837    BDRVQEDState *s = acb_to_s(acb);
 838    int index;
 839
 840    if (ret) {
 841        qed_aio_complete(acb, ret);
 842        return;
 843    }
 844
 845    index = qed_l1_index(s, acb->cur_pos);
 846    s->l1_table->offsets[index] = acb->request.l2_table->offset;
 847
 848    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
 849}
 850
 851/**
 852 * Update L2 table with new cluster offsets and write them out
 853 */
 854static void qed_aio_write_l2_update(void *opaque, int ret)
 855{
 856    QEDAIOCB *acb = opaque;
 857    BDRVQEDState *s = acb_to_s(acb);
 858    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
 859    int index;
 860
 861    if (ret) {
 862        goto err;
 863    }
 864
 865    if (need_alloc) {
 866        qed_unref_l2_cache_entry(acb->request.l2_table);
 867        acb->request.l2_table = qed_new_l2_table(s);
 868    }
 869
 870    index = qed_l2_index(s, acb->cur_pos);
 871    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
 872                         acb->cur_cluster);
 873
 874    if (need_alloc) {
 875        /* Write out the whole new L2 table */
 876        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
 877                            qed_aio_write_l1_update, acb);
 878    } else {
 879        /* Write out only the updated part of the L2 table */
 880        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
 881                            qed_aio_next_io, acb);
 882    }
 883    return;
 884
 885err:
 886    qed_aio_complete(acb, ret);
 887}
 888
 889/**
 890 * Flush new data clusters before updating the L2 table
 891 *
 892 * This flush is necessary when a backing file is in use.  A crash during an
 893 * allocating write could result in empty clusters in the image.  If the write
 894 * only touched a subregion of the cluster, then backing image sectors have
 895 * been lost in the untouched region.  The solution is to flush after writing a
 896 * new data cluster and before updating the L2 table.
 897 */
 898static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
 899{
 900    QEDAIOCB *acb = opaque;
 901    BDRVQEDState *s = acb_to_s(acb);
 902
 903    if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
 904        qed_aio_complete(acb, -EIO);
 905    }
 906}
 907
 908/**
 909 * Write data to the image file
 910 */
 911static void qed_aio_write_main(void *opaque, int ret)
 912{
 913    QEDAIOCB *acb = opaque;
 914    BDRVQEDState *s = acb_to_s(acb);
 915    uint64_t offset = acb->cur_cluster +
 916                      qed_offset_into_cluster(s, acb->cur_pos);
 917    BlockDriverCompletionFunc *next_fn;
 918    BlockDriverAIOCB *file_acb;
 919
 920    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
 921
 922    if (ret) {
 923        qed_aio_complete(acb, ret);
 924        return;
 925    }
 926
 927    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
 928        next_fn = qed_aio_next_io;
 929    } else {
 930        if (s->bs->backing_hd) {
 931            next_fn = qed_aio_write_flush_before_l2_update;
 932        } else {
 933            next_fn = qed_aio_write_l2_update;
 934        }
 935    }
 936
 937    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
 938    file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
 939                               &acb->cur_qiov,
 940                               acb->cur_qiov.size / BDRV_SECTOR_SIZE,
 941                               next_fn, acb);
 942    if (!file_acb) {
 943        qed_aio_complete(acb, -EIO);
 944    }
 945}
 946
 947/**
 948 * Populate back untouched region of new data cluster
 949 */
 950static void qed_aio_write_postfill(void *opaque, int ret)
 951{
 952    QEDAIOCB *acb = opaque;
 953    BDRVQEDState *s = acb_to_s(acb);
 954    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
 955    uint64_t len =
 956        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
 957    uint64_t offset = acb->cur_cluster +
 958                      qed_offset_into_cluster(s, acb->cur_pos) +
 959                      acb->cur_qiov.size;
 960
 961    if (ret) {
 962        qed_aio_complete(acb, ret);
 963        return;
 964    }
 965
 966    trace_qed_aio_write_postfill(s, acb, start, len, offset);
 967    qed_copy_from_backing_file(s, start, len, offset,
 968                                qed_aio_write_main, acb);
 969}
 970
 971/**
 972 * Populate front untouched region of new data cluster
 973 */
 974static void qed_aio_write_prefill(void *opaque, int ret)
 975{
 976    QEDAIOCB *acb = opaque;
 977    BDRVQEDState *s = acb_to_s(acb);
 978    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
 979    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
 980
 981    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
 982    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
 983                                qed_aio_write_postfill, acb);
 984}
 985
 986/**
 987 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
 988 */
 989static bool qed_should_set_need_check(BDRVQEDState *s)
 990{
 991    /* The flush before L2 update path ensures consistency */
 992    if (s->bs->backing_hd) {
 993        return false;
 994    }
 995
 996    return !(s->header.features & QED_F_NEED_CHECK);
 997}
 998
 999/**
1000 * Write new data cluster
1001 *
1002 * @acb:        Write request
1003 * @len:        Length in bytes
1004 *
1005 * This path is taken when writing to previously unallocated clusters.
1006 */
1007static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1008{
1009    BDRVQEDState *s = acb_to_s(acb);
1010
1011    /* Freeze this request if another allocating write is in progress */
1012    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1013        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1014    }
1015    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1016        return; /* wait for existing request to finish */
1017    }
1018
1019    acb->cur_nclusters = qed_bytes_to_clusters(s,
1020            qed_offset_into_cluster(s, acb->cur_pos) + len);
1021    acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1022    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1023
1024    if (qed_should_set_need_check(s)) {
1025        s->header.features |= QED_F_NEED_CHECK;
1026        qed_write_header(s, qed_aio_write_prefill, acb);
1027    } else {
1028        qed_aio_write_prefill(acb, 0);
1029    }
1030}
1031
1032/**
1033 * Write data cluster in place
1034 *
1035 * @acb:        Write request
1036 * @offset:     Cluster offset in bytes
1037 * @len:        Length in bytes
1038 *
1039 * This path is taken when writing to already allocated clusters.
1040 */
1041static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1042{
1043    /* Calculate the I/O vector */
1044    acb->cur_cluster = offset;
1045    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1046
1047    /* Do the actual write */
1048    qed_aio_write_main(acb, 0);
1049}
1050
1051/**
1052 * Write data cluster
1053 *
1054 * @opaque:     Write request
1055 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1056 *              or -errno
1057 * @offset:     Cluster offset in bytes
1058 * @len:        Length in bytes
1059 *
1060 * Callback from qed_find_cluster().
1061 */
1062static void qed_aio_write_data(void *opaque, int ret,
1063                               uint64_t offset, size_t len)
1064{
1065    QEDAIOCB *acb = opaque;
1066
1067    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1068
1069    acb->find_cluster_ret = ret;
1070
1071    switch (ret) {
1072    case QED_CLUSTER_FOUND:
1073        qed_aio_write_inplace(acb, offset, len);
1074        break;
1075
1076    case QED_CLUSTER_L2:
1077    case QED_CLUSTER_L1:
1078        qed_aio_write_alloc(acb, len);
1079        break;
1080
1081    default:
1082        qed_aio_complete(acb, ret);
1083        break;
1084    }
1085}
1086
1087/**
1088 * Read data cluster
1089 *
1090 * @opaque:     Read request
1091 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1092 *              or -errno
1093 * @offset:     Cluster offset in bytes
1094 * @len:        Length in bytes
1095 *
1096 * Callback from qed_find_cluster().
1097 */
1098static void qed_aio_read_data(void *opaque, int ret,
1099                              uint64_t offset, size_t len)
1100{
1101    QEDAIOCB *acb = opaque;
1102    BDRVQEDState *s = acb_to_s(acb);
1103    BlockDriverState *bs = acb->common.bs;
1104    BlockDriverAIOCB *file_acb;
1105
1106    /* Adjust offset into cluster */
1107    offset += qed_offset_into_cluster(s, acb->cur_pos);
1108
1109    trace_qed_aio_read_data(s, acb, ret, offset, len);
1110
1111    if (ret < 0) {
1112        goto err;
1113    }
1114
1115    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1116
1117    /* Handle backing file and unallocated sparse hole reads */
1118    if (ret != QED_CLUSTER_FOUND) {
1119        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1120                              qed_aio_next_io, acb);
1121        return;
1122    }
1123
1124    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1125    file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1126                              &acb->cur_qiov,
1127                              acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1128                              qed_aio_next_io, acb);
1129    if (!file_acb) {
1130        ret = -EIO;
1131        goto err;
1132    }
1133    return;
1134
1135err:
1136    qed_aio_complete(acb, ret);
1137}
1138
1139/**
1140 * Begin next I/O or complete the request
1141 */
1142static void qed_aio_next_io(void *opaque, int ret)
1143{
1144    QEDAIOCB *acb = opaque;
1145    BDRVQEDState *s = acb_to_s(acb);
1146    QEDFindClusterFunc *io_fn =
1147        acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1148
1149    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1150
1151    /* Handle I/O error */
1152    if (ret) {
1153        qed_aio_complete(acb, ret);
1154        return;
1155    }
1156
1157    acb->qiov_offset += acb->cur_qiov.size;
1158    acb->cur_pos += acb->cur_qiov.size;
1159    qemu_iovec_reset(&acb->cur_qiov);
1160
1161    /* Complete request */
1162    if (acb->cur_pos >= acb->end_pos) {
1163        qed_aio_complete(acb, 0);
1164        return;
1165    }
1166
1167    /* Find next cluster and start I/O */
1168    qed_find_cluster(s, &acb->request,
1169                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1170                      io_fn, acb);
1171}
1172
1173static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1174                                       int64_t sector_num,
1175                                       QEMUIOVector *qiov, int nb_sectors,
1176                                       BlockDriverCompletionFunc *cb,
1177                                       void *opaque, bool is_write)
1178{
1179    QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1180
1181    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1182                         opaque, is_write);
1183
1184    acb->is_write = is_write;
1185    acb->finished = NULL;
1186    acb->qiov = qiov;
1187    acb->qiov_offset = 0;
1188    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1189    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1190    acb->request.l2_table = NULL;
1191    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1192
1193    /* Start request */
1194    qed_aio_next_io(acb, 0);
1195    return &acb->common;
1196}
1197
1198static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1199                                            int64_t sector_num,
1200                                            QEMUIOVector *qiov, int nb_sectors,
1201                                            BlockDriverCompletionFunc *cb,
1202                                            void *opaque)
1203{
1204    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1205}
1206
1207static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1208                                             int64_t sector_num,
1209                                             QEMUIOVector *qiov, int nb_sectors,
1210                                             BlockDriverCompletionFunc *cb,
1211                                             void *opaque)
1212{
1213    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1214}
1215
1216static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1217                                            BlockDriverCompletionFunc *cb,
1218                                            void *opaque)
1219{
1220    return bdrv_aio_flush(bs->file, cb, opaque);
1221}
1222
1223static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1224{
1225    return -ENOTSUP;
1226}
1227
1228static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1229{
1230    BDRVQEDState *s = bs->opaque;
1231    return s->header.image_size;
1232}
1233
1234static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1235{
1236    BDRVQEDState *s = bs->opaque;
1237
1238    memset(bdi, 0, sizeof(*bdi));
1239    bdi->cluster_size = s->header.cluster_size;
1240    return 0;
1241}
1242
1243static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1244                                        const char *backing_file,
1245                                        const char *backing_fmt)
1246{
1247    BDRVQEDState *s = bs->opaque;
1248    QEDHeader new_header, le_header;
1249    void *buffer;
1250    size_t buffer_len, backing_file_len;
1251    int ret;
1252
1253    /* Refuse to set backing filename if unknown compat feature bits are
1254     * active.  If the image uses an unknown compat feature then we may not
1255     * know the layout of data following the header structure and cannot safely
1256     * add a new string.
1257     */
1258    if (backing_file && (s->header.compat_features &
1259                         ~QED_COMPAT_FEATURE_MASK)) {
1260        return -ENOTSUP;
1261    }
1262
1263    memcpy(&new_header, &s->header, sizeof(new_header));
1264
1265    new_header.features &= ~(QED_F_BACKING_FILE |
1266                             QED_F_BACKING_FORMAT_NO_PROBE);
1267
1268    /* Adjust feature flags */
1269    if (backing_file) {
1270        new_header.features |= QED_F_BACKING_FILE;
1271
1272        if (qed_fmt_is_raw(backing_fmt)) {
1273            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1274        }
1275    }
1276
1277    /* Calculate new header size */
1278    backing_file_len = 0;
1279
1280    if (backing_file) {
1281        backing_file_len = strlen(backing_file);
1282    }
1283
1284    buffer_len = sizeof(new_header);
1285    new_header.backing_filename_offset = buffer_len;
1286    new_header.backing_filename_size = backing_file_len;
1287    buffer_len += backing_file_len;
1288
1289    /* Make sure we can rewrite header without failing */
1290    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1291        return -ENOSPC;
1292    }
1293
1294    /* Prepare new header */
1295    buffer = qemu_malloc(buffer_len);
1296
1297    qed_header_cpu_to_le(&new_header, &le_header);
1298    memcpy(buffer, &le_header, sizeof(le_header));
1299    buffer_len = sizeof(le_header);
1300
1301    memcpy(buffer + buffer_len, backing_file, backing_file_len);
1302    buffer_len += backing_file_len;
1303
1304    /* Write new header */
1305    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1306    qemu_free(buffer);
1307    if (ret == 0) {
1308        memcpy(&s->header, &new_header, sizeof(new_header));
1309    }
1310    return ret;
1311}
1312
1313static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1314{
1315    BDRVQEDState *s = bs->opaque;
1316
1317    return qed_check(s, result, false);
1318}
1319
1320static QEMUOptionParameter qed_create_options[] = {
1321    {
1322        .name = BLOCK_OPT_SIZE,
1323        .type = OPT_SIZE,
1324        .help = "Virtual disk size (in bytes)"
1325    }, {
1326        .name = BLOCK_OPT_BACKING_FILE,
1327        .type = OPT_STRING,
1328        .help = "File name of a base image"
1329    }, {
1330        .name = BLOCK_OPT_BACKING_FMT,
1331        .type = OPT_STRING,
1332        .help = "Image format of the base image"
1333    }, {
1334        .name = BLOCK_OPT_CLUSTER_SIZE,
1335        .type = OPT_SIZE,
1336        .help = "Cluster size (in bytes)"
1337    }, {
1338        .name = BLOCK_OPT_TABLE_SIZE,
1339        .type = OPT_SIZE,
1340        .help = "L1/L2 table size (in clusters)"
1341    },
1342    { /* end of list */ }
1343};
1344
1345static BlockDriver bdrv_qed = {
1346    .format_name              = "qed",
1347    .instance_size            = sizeof(BDRVQEDState),
1348    .create_options           = qed_create_options,
1349
1350    .bdrv_probe               = bdrv_qed_probe,
1351    .bdrv_open                = bdrv_qed_open,
1352    .bdrv_close               = bdrv_qed_close,
1353    .bdrv_create              = bdrv_qed_create,
1354    .bdrv_flush               = bdrv_qed_flush,
1355    .bdrv_is_allocated        = bdrv_qed_is_allocated,
1356    .bdrv_make_empty          = bdrv_qed_make_empty,
1357    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1358    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1359    .bdrv_aio_flush           = bdrv_qed_aio_flush,
1360    .bdrv_truncate            = bdrv_qed_truncate,
1361    .bdrv_getlength           = bdrv_qed_getlength,
1362    .bdrv_get_info            = bdrv_qed_get_info,
1363    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1364    .bdrv_check               = bdrv_qed_check,
1365};
1366
1367static void bdrv_qed_init(void)
1368{
1369    bdrv_register(&bdrv_qed);
1370}
1371
1372block_init(bdrv_qed_init);
1373