1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include "hw.h"
20#include "arm-misc.h"
21#include "omap.h"
22#include "sysemu.h"
23#include "qemu-timer.h"
24#include "qemu-char.h"
25#include "soc_dma.h"
26
27#include "pc.h"
28#include "blockdev.h"
29#include "range.h"
30
31
32uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33{
34 uint8_t ret;
35
36 OMAP_8B_REG(addr);
37 cpu_physical_memory_read(addr, (void *) &ret, 1);
38 return ret;
39}
40
41void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42 uint32_t value)
43{
44 uint8_t val8 = value;
45
46 OMAP_8B_REG(addr);
47 cpu_physical_memory_write(addr, (void *) &val8, 1);
48}
49
50uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51{
52 uint16_t ret;
53
54 OMAP_16B_REG(addr);
55 cpu_physical_memory_read(addr, (void *) &ret, 2);
56 return ret;
57}
58
59void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60 uint32_t value)
61{
62 uint16_t val16 = value;
63
64 OMAP_16B_REG(addr);
65 cpu_physical_memory_write(addr, (void *) &val16, 2);
66}
67
68uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69{
70 uint32_t ret;
71
72 OMAP_32B_REG(addr);
73 cpu_physical_memory_read(addr, (void *) &ret, 4);
74 return ret;
75}
76
77void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78 uint32_t value)
79{
80 OMAP_32B_REG(addr);
81 cpu_physical_memory_write(addr, (void *) &value, 4);
82}
83
84
85struct omap_mpu_timer_s {
86 qemu_irq irq;
87 omap_clk clk;
88 uint32_t val;
89 int64_t time;
90 QEMUTimer *timer;
91 QEMUBH *tick;
92 int64_t rate;
93 int it_ena;
94
95 int enable;
96 int ptv;
97 int ar;
98 int st;
99 uint32_t reset_val;
100};
101
102static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
103{
104 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
105
106 if (timer->st && timer->enable && timer->rate)
107 return timer->val - muldiv64(distance >> (timer->ptv + 1),
108 timer->rate, get_ticks_per_sec());
109 else
110 return timer->val;
111}
112
113static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
114{
115 timer->val = omap_timer_read(timer);
116 timer->time = qemu_get_clock(vm_clock);
117}
118
119static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
120{
121 int64_t expires;
122
123 if (timer->enable && timer->st && timer->rate) {
124 timer->val = timer->reset_val;
125 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
126 get_ticks_per_sec(), timer->rate);
127
128
129
130
131
132
133
134 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
135 qemu_mod_timer(timer->timer, timer->time + expires);
136 else
137 qemu_bh_schedule(timer->tick);
138 } else
139 qemu_del_timer(timer->timer);
140}
141
142static void omap_timer_fire(void *opaque)
143{
144 struct omap_mpu_timer_s *timer = opaque;
145
146 if (!timer->ar) {
147 timer->val = 0;
148 timer->st = 0;
149 }
150
151 if (timer->it_ena)
152
153 qemu_irq_pulse(timer->irq);
154}
155
156static void omap_timer_tick(void *opaque)
157{
158 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
159
160 omap_timer_sync(timer);
161 omap_timer_fire(timer);
162 omap_timer_update(timer);
163}
164
165static void omap_timer_clk_update(void *opaque, int line, int on)
166{
167 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
168
169 omap_timer_sync(timer);
170 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
171 omap_timer_update(timer);
172}
173
174static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
175{
176 omap_clk_adduser(timer->clk,
177 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
178 timer->rate = omap_clk_getrate(timer->clk);
179}
180
181static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
182{
183 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
184
185 switch (addr) {
186 case 0x00:
187 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
188
189 case 0x04:
190 break;
191
192 case 0x08:
193 return omap_timer_read(s);
194 }
195
196 OMAP_BAD_REG(addr);
197 return 0;
198}
199
200static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
201 uint32_t value)
202{
203 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
204
205 switch (addr) {
206 case 0x00:
207 omap_timer_sync(s);
208 s->enable = (value >> 5) & 1;
209 s->ptv = (value >> 2) & 7;
210 s->ar = (value >> 1) & 1;
211 s->st = value & 1;
212 omap_timer_update(s);
213 return;
214
215 case 0x04:
216 s->reset_val = value;
217 return;
218
219 case 0x08:
220 OMAP_RO_REG(addr);
221 break;
222
223 default:
224 OMAP_BAD_REG(addr);
225 }
226}
227
228static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = {
229 omap_badwidth_read32,
230 omap_badwidth_read32,
231 omap_mpu_timer_read,
232};
233
234static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = {
235 omap_badwidth_write32,
236 omap_badwidth_write32,
237 omap_mpu_timer_write,
238};
239
240static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
241{
242 qemu_del_timer(s->timer);
243 s->enable = 0;
244 s->reset_val = 31337;
245 s->val = 0;
246 s->ptv = 0;
247 s->ar = 0;
248 s->st = 0;
249 s->it_ena = 1;
250}
251
252static struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
253 qemu_irq irq, omap_clk clk)
254{
255 int iomemtype;
256 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
257 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
258
259 s->irq = irq;
260 s->clk = clk;
261 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
262 s->tick = qemu_bh_new(omap_timer_fire, s);
263 omap_mpu_timer_reset(s);
264 omap_timer_clk_setup(s);
265
266 iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn,
267 omap_mpu_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
268 cpu_register_physical_memory(base, 0x100, iomemtype);
269
270 return s;
271}
272
273
274struct omap_watchdog_timer_s {
275 struct omap_mpu_timer_s timer;
276 uint8_t last_wr;
277 int mode;
278 int free;
279 int reset;
280};
281
282static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
283{
284 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
285
286 switch (addr) {
287 case 0x00:
288 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
289 (s->timer.st << 7) | (s->free << 1);
290
291 case 0x04:
292 return omap_timer_read(&s->timer);
293
294 case 0x08:
295 return s->mode << 15;
296 }
297
298 OMAP_BAD_REG(addr);
299 return 0;
300}
301
302static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
303 uint32_t value)
304{
305 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
306
307 switch (addr) {
308 case 0x00:
309 omap_timer_sync(&s->timer);
310 s->timer.ptv = (value >> 9) & 7;
311 s->timer.ar = (value >> 8) & 1;
312 s->timer.st = (value >> 7) & 1;
313 s->free = (value >> 1) & 1;
314 omap_timer_update(&s->timer);
315 break;
316
317 case 0x04:
318 s->timer.reset_val = value & 0xffff;
319 break;
320
321 case 0x08:
322 if (!s->mode && ((value >> 15) & 1))
323 omap_clk_get(s->timer.clk);
324 s->mode |= (value >> 15) & 1;
325 if (s->last_wr == 0xf5) {
326 if ((value & 0xff) == 0xa0) {
327 if (s->mode) {
328 s->mode = 0;
329 omap_clk_put(s->timer.clk);
330 }
331 } else {
332
333
334 s->reset = 1;
335 qemu_system_reset_request();
336 }
337 }
338 s->last_wr = value & 0xff;
339 break;
340
341 default:
342 OMAP_BAD_REG(addr);
343 }
344}
345
346static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = {
347 omap_badwidth_read16,
348 omap_wd_timer_read,
349 omap_badwidth_read16,
350};
351
352static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = {
353 omap_badwidth_write16,
354 omap_wd_timer_write,
355 omap_badwidth_write16,
356};
357
358static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
359{
360 qemu_del_timer(s->timer.timer);
361 if (!s->mode)
362 omap_clk_get(s->timer.clk);
363 s->mode = 1;
364 s->free = 1;
365 s->reset = 0;
366 s->timer.enable = 1;
367 s->timer.it_ena = 1;
368 s->timer.reset_val = 0xffff;
369 s->timer.val = 0;
370 s->timer.st = 0;
371 s->timer.ptv = 0;
372 s->timer.ar = 0;
373 omap_timer_update(&s->timer);
374}
375
376static struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
377 qemu_irq irq, omap_clk clk)
378{
379 int iomemtype;
380 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
381 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
382
383 s->timer.irq = irq;
384 s->timer.clk = clk;
385 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
386 omap_wd_timer_reset(s);
387 omap_timer_clk_setup(&s->timer);
388
389 iomemtype = cpu_register_io_memory(omap_wd_timer_readfn,
390 omap_wd_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
391 cpu_register_physical_memory(base, 0x100, iomemtype);
392
393 return s;
394}
395
396
397struct omap_32khz_timer_s {
398 struct omap_mpu_timer_s timer;
399};
400
401static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
402{
403 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
404 int offset = addr & OMAP_MPUI_REG_MASK;
405
406 switch (offset) {
407 case 0x00:
408 return s->timer.reset_val;
409
410 case 0x04:
411 return omap_timer_read(&s->timer);
412
413 case 0x08:
414 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
415
416 default:
417 break;
418 }
419 OMAP_BAD_REG(addr);
420 return 0;
421}
422
423static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
424 uint32_t value)
425{
426 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
427 int offset = addr & OMAP_MPUI_REG_MASK;
428
429 switch (offset) {
430 case 0x00:
431 s->timer.reset_val = value & 0x00ffffff;
432 break;
433
434 case 0x04:
435 OMAP_RO_REG(addr);
436 break;
437
438 case 0x08:
439 s->timer.ar = (value >> 3) & 1;
440 s->timer.it_ena = (value >> 2) & 1;
441 if (s->timer.st != (value & 1) || (value & 2)) {
442 omap_timer_sync(&s->timer);
443 s->timer.enable = value & 1;
444 s->timer.st = value & 1;
445 omap_timer_update(&s->timer);
446 }
447 break;
448
449 default:
450 OMAP_BAD_REG(addr);
451 }
452}
453
454static CPUReadMemoryFunc * const omap_os_timer_readfn[] = {
455 omap_badwidth_read32,
456 omap_badwidth_read32,
457 omap_os_timer_read,
458};
459
460static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = {
461 omap_badwidth_write32,
462 omap_badwidth_write32,
463 omap_os_timer_write,
464};
465
466static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
467{
468 qemu_del_timer(s->timer.timer);
469 s->timer.enable = 0;
470 s->timer.it_ena = 0;
471 s->timer.reset_val = 0x00ffffff;
472 s->timer.val = 0;
473 s->timer.st = 0;
474 s->timer.ptv = 0;
475 s->timer.ar = 1;
476}
477
478static struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
479 qemu_irq irq, omap_clk clk)
480{
481 int iomemtype;
482 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
483 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
484
485 s->timer.irq = irq;
486 s->timer.clk = clk;
487 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
488 omap_os_timer_reset(s);
489 omap_timer_clk_setup(&s->timer);
490
491 iomemtype = cpu_register_io_memory(omap_os_timer_readfn,
492 omap_os_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
493 cpu_register_physical_memory(base, 0x800, iomemtype);
494
495 return s;
496}
497
498
499static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
500{
501 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
502 uint16_t ret;
503
504 switch (addr) {
505 case 0x14:
506 ret = s->ulpd_pm_regs[addr >> 2];
507 s->ulpd_pm_regs[addr >> 2] = 0;
508 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
509 return ret;
510
511 case 0x18:
512 case 0x1c:
513 case 0x20:
514 case 0x28:
515 case 0x2c:
516 OMAP_BAD_REG(addr);
517 case 0x00:
518 case 0x04:
519 case 0x08:
520 case 0x0c:
521 case 0x10:
522 case 0x24:
523 case 0x30:
524 case 0x34:
525 case 0x38:
526 case 0x3c:
527 case 0x40:
528
529 case 0x48:
530 case 0x4c:
531 case 0x50:
532 return s->ulpd_pm_regs[addr >> 2];
533 }
534
535 OMAP_BAD_REG(addr);
536 return 0;
537}
538
539static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
540 uint16_t diff, uint16_t value)
541{
542 if (diff & (1 << 4))
543 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
544 if (diff & (1 << 5))
545 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
546}
547
548static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
549 uint16_t diff, uint16_t value)
550{
551 if (diff & (1 << 0))
552 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
553 if (diff & (1 << 1))
554 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
555 if (diff & (1 << 2))
556 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
557 if (diff & (1 << 3))
558 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
559}
560
561static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
562 uint32_t value)
563{
564 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
565 int64_t now, ticks;
566 int div, mult;
567 static const int bypass_div[4] = { 1, 2, 4, 4 };
568 uint16_t diff;
569
570 switch (addr) {
571 case 0x00:
572 case 0x04:
573 case 0x08:
574 case 0x0c:
575 case 0x14:
576 case 0x40:
577 OMAP_RO_REG(addr);
578 break;
579
580 case 0x10:
581
582 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
583 now = qemu_get_clock(vm_clock);
584
585 if (value & 1)
586 s->ulpd_gauge_start = now;
587 else {
588 now -= s->ulpd_gauge_start;
589
590
591 ticks = muldiv64(now, 32768, get_ticks_per_sec());
592 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
593 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
594 if (ticks >> 32)
595 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
596
597
598 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
599 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
600 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
601 if (ticks >> 32)
602 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
603
604 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;
605 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
606 }
607 }
608 s->ulpd_pm_regs[addr >> 2] = value;
609 break;
610
611 case 0x18:
612 case 0x1c:
613 case 0x20:
614 case 0x28:
615 case 0x2c:
616 OMAP_BAD_REG(addr);
617 case 0x24:
618 case 0x38:
619 case 0x48:
620 case 0x50:
621 s->ulpd_pm_regs[addr >> 2] = value;
622 break;
623
624 case 0x30:
625 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
626 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
627 omap_ulpd_clk_update(s, diff, value);
628 break;
629
630 case 0x34:
631 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
632 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
633 omap_ulpd_req_update(s, diff, value);
634 break;
635
636 case 0x3c:
637
638
639
640
641 diff = s->ulpd_pm_regs[addr >> 2] & value;
642 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
643 if (diff & (0x3ff << 2)) {
644 if (value & (1 << 4)) {
645 div = ((value >> 5) & 3) + 1;
646 mult = MIN((value >> 7) & 0x1f, 1);
647 } else {
648 div = bypass_div[((value >> 2) & 3)];
649 mult = 1;
650 }
651 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
652 }
653
654
655 s->ulpd_pm_regs[addr >> 2] =
656 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
657 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
658
659
660 s->ulpd_pm_regs[addr >> 2] |= 2;
661 break;
662
663 case 0x4c:
664 diff = s->ulpd_pm_regs[addr >> 2] & value;
665 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
666 if (diff & (1 << 0))
667 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
668 (value & (1 << 0)) ? "apll" : "dpll4"));
669 break;
670
671 default:
672 OMAP_BAD_REG(addr);
673 }
674}
675
676static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = {
677 omap_badwidth_read16,
678 omap_ulpd_pm_read,
679 omap_badwidth_read16,
680};
681
682static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = {
683 omap_badwidth_write16,
684 omap_ulpd_pm_write,
685 omap_badwidth_write16,
686};
687
688static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
689{
690 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
691 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
692 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
693 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
694 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
695 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
696 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
697 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
698 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
699 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
700 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
701 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
702 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
703 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
704 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
705 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
706 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
707 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000;
708 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
709 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
710 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
711 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
712 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
713}
714
715static void omap_ulpd_pm_init(target_phys_addr_t base,
716 struct omap_mpu_state_s *mpu)
717{
718 int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
719 omap_ulpd_pm_writefn, mpu, DEVICE_NATIVE_ENDIAN);
720
721 cpu_register_physical_memory(base, 0x800, iomemtype);
722 omap_ulpd_pm_reset(mpu);
723}
724
725
726static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
727{
728 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
729
730 switch (addr) {
731 case 0x00:
732 case 0x04:
733 case 0x08:
734 return s->func_mux_ctrl[addr >> 2];
735
736 case 0x0c:
737 return s->comp_mode_ctrl[0];
738
739 case 0x10:
740 case 0x14:
741 case 0x18:
742 case 0x1c:
743 case 0x20:
744 case 0x24:
745 case 0x28:
746 case 0x2c:
747 case 0x30:
748 case 0x34:
749 case 0x38:
750 return s->func_mux_ctrl[(addr >> 2) - 1];
751
752 case 0x40:
753 case 0x44:
754 case 0x48:
755 case 0x4c:
756 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
757
758 case 0x50:
759 return s->gate_inh_ctrl[0];
760
761 case 0x60:
762 return s->voltage_ctrl[0];
763
764 case 0x70:
765 return s->test_dbg_ctrl[0];
766
767 case 0x80:
768 return s->mod_conf_ctrl[0];
769 }
770
771 OMAP_BAD_REG(addr);
772 return 0;
773}
774
775static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
776 uint32_t diff, uint32_t value)
777{
778 if (s->compat1509) {
779 if (diff & (1 << 9))
780 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
781 (~value >> 9) & 1);
782 if (diff & (1 << 7))
783 omap_clk_onoff(omap_findclk(s, "usb.clko"),
784 (value >> 7) & 1);
785 }
786}
787
788static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
789 uint32_t diff, uint32_t value)
790{
791 if (s->compat1509) {
792 if (diff & (1 << 31))
793 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
794 (value >> 31) & 1);
795 if (diff & (1 << 1))
796 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
797 (~value >> 1) & 1);
798 }
799}
800
801static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
802 uint32_t diff, uint32_t value)
803{
804 if (diff & (1 << 31))
805 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
806 omap_findclk(s, ((value >> 31) & 1) ?
807 "ck_48m" : "armper_ck"));
808 if (diff & (1 << 30))
809 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
810 omap_findclk(s, ((value >> 30) & 1) ?
811 "ck_48m" : "armper_ck"));
812 if (diff & (1 << 29))
813 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
814 omap_findclk(s, ((value >> 29) & 1) ?
815 "ck_48m" : "armper_ck"));
816 if (diff & (1 << 23))
817 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
818 omap_findclk(s, ((value >> 23) & 1) ?
819 "ck_48m" : "armper_ck"));
820 if (diff & (1 << 12))
821 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
822 omap_findclk(s, ((value >> 12) & 1) ?
823 "ck_48m" : "armper_ck"));
824 if (diff & (1 << 9))
825 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
826}
827
828static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
829 uint32_t value)
830{
831 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
832 uint32_t diff;
833
834 switch (addr) {
835 case 0x00:
836 diff = s->func_mux_ctrl[addr >> 2] ^ value;
837 s->func_mux_ctrl[addr >> 2] = value;
838 omap_pin_funcmux0_update(s, diff, value);
839 return;
840
841 case 0x04:
842 diff = s->func_mux_ctrl[addr >> 2] ^ value;
843 s->func_mux_ctrl[addr >> 2] = value;
844 omap_pin_funcmux1_update(s, diff, value);
845 return;
846
847 case 0x08:
848 s->func_mux_ctrl[addr >> 2] = value;
849 return;
850
851 case 0x0c:
852 s->comp_mode_ctrl[0] = value;
853 s->compat1509 = (value != 0x0000eaef);
854 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
855 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
856 return;
857
858 case 0x10:
859 case 0x14:
860 case 0x18:
861 case 0x1c:
862 case 0x20:
863 case 0x24:
864 case 0x28:
865 case 0x2c:
866 case 0x30:
867 case 0x34:
868 case 0x38:
869 s->func_mux_ctrl[(addr >> 2) - 1] = value;
870 return;
871
872 case 0x40:
873 case 0x44:
874 case 0x48:
875 case 0x4c:
876 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
877 return;
878
879 case 0x50:
880 s->gate_inh_ctrl[0] = value;
881 return;
882
883 case 0x60:
884 s->voltage_ctrl[0] = value;
885 return;
886
887 case 0x70:
888 s->test_dbg_ctrl[0] = value;
889 return;
890
891 case 0x80:
892 diff = s->mod_conf_ctrl[0] ^ value;
893 s->mod_conf_ctrl[0] = value;
894 omap_pin_modconf1_update(s, diff, value);
895 return;
896
897 default:
898 OMAP_BAD_REG(addr);
899 }
900}
901
902static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = {
903 omap_badwidth_read32,
904 omap_badwidth_read32,
905 omap_pin_cfg_read,
906};
907
908static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = {
909 omap_badwidth_write32,
910 omap_badwidth_write32,
911 omap_pin_cfg_write,
912};
913
914static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
915{
916
917 mpu->compat1509 = 1;
918 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
919 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
920 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
921 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
922 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
923 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
924 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
925 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
926 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
927 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
928}
929
930static void omap_pin_cfg_init(target_phys_addr_t base,
931 struct omap_mpu_state_s *mpu)
932{
933 int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
934 omap_pin_cfg_writefn, mpu, DEVICE_NATIVE_ENDIAN);
935
936 cpu_register_physical_memory(base, 0x800, iomemtype);
937 omap_pin_cfg_reset(mpu);
938}
939
940
941static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
942{
943 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
944
945 switch (addr) {
946 case 0xfffe1800:
947 return 0xc9581f0e;
948 case 0xfffe1804:
949 return 0xa8858bfa;
950
951 case 0xfffe2000:
952 return 0x00aaaafc;
953 case 0xfffe2004:
954 return 0xcafeb574;
955
956 case 0xfffed400:
957 switch (s->mpu_model) {
958 case omap310:
959 return 0x03310315;
960 case omap1510:
961 return 0x03310115;
962 default:
963 hw_error("%s: bad mpu model\n", __FUNCTION__);
964 }
965 break;
966
967 case 0xfffed404:
968 switch (s->mpu_model) {
969 case omap310:
970 return 0xfb57402f;
971 case omap1510:
972 return 0xfb47002f;
973 default:
974 hw_error("%s: bad mpu model\n", __FUNCTION__);
975 }
976 break;
977 }
978
979 OMAP_BAD_REG(addr);
980 return 0;
981}
982
983static void omap_id_write(void *opaque, target_phys_addr_t addr,
984 uint32_t value)
985{
986 OMAP_BAD_REG(addr);
987}
988
989static CPUReadMemoryFunc * const omap_id_readfn[] = {
990 omap_badwidth_read32,
991 omap_badwidth_read32,
992 omap_id_read,
993};
994
995static CPUWriteMemoryFunc * const omap_id_writefn[] = {
996 omap_badwidth_write32,
997 omap_badwidth_write32,
998 omap_id_write,
999};
1000
1001static void omap_id_init(struct omap_mpu_state_s *mpu)
1002{
1003 int iomemtype = cpu_register_io_memory(omap_id_readfn,
1004 omap_id_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1005 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1006 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1007 if (!cpu_is_omap15xx(mpu))
1008 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1009}
1010
1011
1012static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1013{
1014 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1015
1016 switch (addr) {
1017 case 0x00:
1018 return s->mpui_ctrl;
1019 case 0x04:
1020 return 0x01ffffff;
1021 case 0x08:
1022 return 0xffffffff;
1023 case 0x0c:
1024 return 0x00000800;
1025 case 0x10:
1026 return 0x00000000;
1027
1028
1029 case 0x14:
1030 case 0x18:
1031 return 0x00000000;
1032 case 0x1c:
1033 return 0x0000ffff;
1034 }
1035
1036 OMAP_BAD_REG(addr);
1037 return 0;
1038}
1039
1040static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1041 uint32_t value)
1042{
1043 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1044
1045 switch (addr) {
1046 case 0x00:
1047 s->mpui_ctrl = value & 0x007fffff;
1048 break;
1049
1050 case 0x04:
1051 case 0x08:
1052 case 0x0c:
1053 case 0x10:
1054
1055 case 0x14:
1056 OMAP_RO_REG(addr);
1057 case 0x18:
1058 case 0x1c:
1059 break;
1060
1061 default:
1062 OMAP_BAD_REG(addr);
1063 }
1064}
1065
1066static CPUReadMemoryFunc * const omap_mpui_readfn[] = {
1067 omap_badwidth_read32,
1068 omap_badwidth_read32,
1069 omap_mpui_read,
1070};
1071
1072static CPUWriteMemoryFunc * const omap_mpui_writefn[] = {
1073 omap_badwidth_write32,
1074 omap_badwidth_write32,
1075 omap_mpui_write,
1076};
1077
1078static void omap_mpui_reset(struct omap_mpu_state_s *s)
1079{
1080 s->mpui_ctrl = 0x0003ff1b;
1081}
1082
1083static void omap_mpui_init(target_phys_addr_t base,
1084 struct omap_mpu_state_s *mpu)
1085{
1086 int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
1087 omap_mpui_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1088
1089 cpu_register_physical_memory(base, 0x100, iomemtype);
1090
1091 omap_mpui_reset(mpu);
1092}
1093
1094
1095struct omap_tipb_bridge_s {
1096 qemu_irq abort;
1097
1098 int width_intr;
1099 uint16_t control;
1100 uint16_t alloc;
1101 uint16_t buffer;
1102 uint16_t enh_control;
1103};
1104
1105static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1106{
1107 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1108
1109 switch (addr) {
1110 case 0x00:
1111 return s->control;
1112 case 0x04:
1113 return s->alloc;
1114 case 0x08:
1115 return s->buffer;
1116 case 0x0c:
1117 return s->enh_control;
1118 case 0x10:
1119 case 0x14:
1120 case 0x18:
1121 return 0xffff;
1122 case 0x1c:
1123 return 0x00f8;
1124 }
1125
1126 OMAP_BAD_REG(addr);
1127 return 0;
1128}
1129
1130static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1131 uint32_t value)
1132{
1133 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1134
1135 switch (addr) {
1136 case 0x00:
1137 s->control = value & 0xffff;
1138 break;
1139
1140 case 0x04:
1141 s->alloc = value & 0x003f;
1142 break;
1143
1144 case 0x08:
1145 s->buffer = value & 0x0003;
1146 break;
1147
1148 case 0x0c:
1149 s->width_intr = !(value & 2);
1150 s->enh_control = value & 0x000f;
1151 break;
1152
1153 case 0x10:
1154 case 0x14:
1155 case 0x18:
1156 case 0x1c:
1157 OMAP_RO_REG(addr);
1158 break;
1159
1160 default:
1161 OMAP_BAD_REG(addr);
1162 }
1163}
1164
1165static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = {
1166 omap_badwidth_read16,
1167 omap_tipb_bridge_read,
1168 omap_tipb_bridge_read,
1169};
1170
1171static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = {
1172 omap_badwidth_write16,
1173 omap_tipb_bridge_write,
1174 omap_tipb_bridge_write,
1175};
1176
1177static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1178{
1179 s->control = 0xffff;
1180 s->alloc = 0x0009;
1181 s->buffer = 0x0000;
1182 s->enh_control = 0x000f;
1183}
1184
1185static struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1186 qemu_irq abort_irq, omap_clk clk)
1187{
1188 int iomemtype;
1189 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1190 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1191
1192 s->abort = abort_irq;
1193 omap_tipb_bridge_reset(s);
1194
1195 iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn,
1196 omap_tipb_bridge_writefn, s, DEVICE_NATIVE_ENDIAN);
1197 cpu_register_physical_memory(base, 0x100, iomemtype);
1198
1199 return s;
1200}
1201
1202
1203static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1204{
1205 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1206 uint32_t ret;
1207
1208 switch (addr) {
1209 case 0x00:
1210 case 0x04:
1211 case 0x08:
1212 case 0x0c:
1213 case 0x10:
1214 case 0x14:
1215 case 0x18:
1216 case 0x1c:
1217 case 0x24:
1218 case 0x28:
1219 case 0x2c:
1220 case 0x30:
1221 case 0x3c:
1222 case 0x40:
1223 return s->tcmi_regs[addr >> 2];
1224
1225 case 0x20:
1226 ret = s->tcmi_regs[addr >> 2];
1227 s->tcmi_regs[addr >> 2] &= ~1;
1228
1229 return ret;
1230 }
1231
1232 OMAP_BAD_REG(addr);
1233 return 0;
1234}
1235
1236static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1237 uint32_t value)
1238{
1239 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1240
1241 switch (addr) {
1242 case 0x00:
1243 case 0x04:
1244 case 0x08:
1245 case 0x10:
1246 case 0x14:
1247 case 0x18:
1248 case 0x1c:
1249 case 0x20:
1250 case 0x24:
1251 case 0x28:
1252 case 0x2c:
1253 case 0x30:
1254 case 0x3c:
1255 case 0x40:
1256 s->tcmi_regs[addr >> 2] = value;
1257 break;
1258 case 0x0c:
1259 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1260 break;
1261
1262 default:
1263 OMAP_BAD_REG(addr);
1264 }
1265}
1266
1267static CPUReadMemoryFunc * const omap_tcmi_readfn[] = {
1268 omap_badwidth_read32,
1269 omap_badwidth_read32,
1270 omap_tcmi_read,
1271};
1272
1273static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = {
1274 omap_badwidth_write32,
1275 omap_badwidth_write32,
1276 omap_tcmi_write,
1277};
1278
1279static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1280{
1281 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1282 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1283 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1284 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1285 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1286 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1287 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1288 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1289 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1290 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1291 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1292 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1293 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1294 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1295 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1296}
1297
1298static void omap_tcmi_init(target_phys_addr_t base,
1299 struct omap_mpu_state_s *mpu)
1300{
1301 int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
1302 omap_tcmi_writefn, mpu, DEVICE_NATIVE_ENDIAN);
1303
1304 cpu_register_physical_memory(base, 0x100, iomemtype);
1305 omap_tcmi_reset(mpu);
1306}
1307
1308
1309static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1310{
1311 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1312
1313 if (addr == 0x00)
1314 return s->mode;
1315
1316 OMAP_BAD_REG(addr);
1317 return 0;
1318}
1319
1320static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1321 uint32_t value)
1322{
1323 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1324 uint16_t diff;
1325 static const int bypass_div[4] = { 1, 2, 4, 4 };
1326 int div, mult;
1327
1328 if (addr == 0x00) {
1329
1330 diff = s->mode & value;
1331 s->mode = value & 0x2fff;
1332 if (diff & (0x3ff << 2)) {
1333 if (value & (1 << 4)) {
1334 div = ((value >> 5) & 3) + 1;
1335 mult = MIN((value >> 7) & 0x1f, 1);
1336 } else {
1337 div = bypass_div[((value >> 2) & 3)];
1338 mult = 1;
1339 }
1340 omap_clk_setrate(s->dpll, div, mult);
1341 }
1342
1343
1344 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1345
1346
1347 s->mode |= 2;
1348 } else {
1349 OMAP_BAD_REG(addr);
1350 }
1351}
1352
1353static CPUReadMemoryFunc * const omap_dpll_readfn[] = {
1354 omap_badwidth_read16,
1355 omap_dpll_read,
1356 omap_badwidth_read16,
1357};
1358
1359static CPUWriteMemoryFunc * const omap_dpll_writefn[] = {
1360 omap_badwidth_write16,
1361 omap_dpll_write,
1362 omap_badwidth_write16,
1363};
1364
1365static void omap_dpll_reset(struct dpll_ctl_s *s)
1366{
1367 s->mode = 0x2002;
1368 omap_clk_setrate(s->dpll, 1, 1);
1369}
1370
1371static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1372 omap_clk clk)
1373{
1374 int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
1375 omap_dpll_writefn, s, DEVICE_NATIVE_ENDIAN);
1376
1377 s->dpll = clk;
1378 omap_dpll_reset(s);
1379
1380 cpu_register_physical_memory(base, 0x100, iomemtype);
1381}
1382
1383
1384static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
1385{
1386 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1387
1388 switch (addr) {
1389 case 0x00:
1390 return s->clkm.arm_ckctl;
1391
1392 case 0x04:
1393 return s->clkm.arm_idlect1;
1394
1395 case 0x08:
1396 return s->clkm.arm_idlect2;
1397
1398 case 0x0c:
1399 return s->clkm.arm_ewupct;
1400
1401 case 0x10:
1402 return s->clkm.arm_rstct1;
1403
1404 case 0x14:
1405 return s->clkm.arm_rstct2;
1406
1407 case 0x18:
1408 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1409
1410 case 0x1c:
1411 return s->clkm.arm_ckout1;
1412
1413 case 0x20:
1414 break;
1415 }
1416
1417 OMAP_BAD_REG(addr);
1418 return 0;
1419}
1420
1421static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1422 uint16_t diff, uint16_t value)
1423{
1424 omap_clk clk;
1425
1426 if (diff & (1 << 14)) {
1427 if (value & (1 << 14))
1428 ;
1429 else {
1430 clk = omap_findclk(s, "arminth_ck");
1431 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1432 }
1433 }
1434 if (diff & (1 << 12)) {
1435 clk = omap_findclk(s, "armtim_ck");
1436 if (value & (1 << 12))
1437 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1438 else
1439 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1440 }
1441
1442 if (diff & (3 << 10)) {
1443 clk = omap_findclk(s, "dspmmu_ck");
1444 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1445 }
1446 if (diff & (3 << 8)) {
1447 clk = omap_findclk(s, "tc_ck");
1448 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1449 }
1450 if (diff & (3 << 6)) {
1451 clk = omap_findclk(s, "dsp_ck");
1452 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1453 }
1454 if (diff & (3 << 4)) {
1455 clk = omap_findclk(s, "arm_ck");
1456 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1457 }
1458 if (diff & (3 << 2)) {
1459 clk = omap_findclk(s, "lcd_ck");
1460 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1461 }
1462 if (diff & (3 << 0)) {
1463 clk = omap_findclk(s, "armper_ck");
1464 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1465 }
1466}
1467
1468static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1469 uint16_t diff, uint16_t value)
1470{
1471 omap_clk clk;
1472
1473 if (value & (1 << 11))
1474 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
1475 if (!(value & (1 << 10)))
1476 qemu_system_shutdown_request();
1477
1478#define SET_CANIDLE(clock, bit) \
1479 if (diff & (1 << bit)) { \
1480 clk = omap_findclk(s, clock); \
1481 omap_clk_canidle(clk, (value >> bit) & 1); \
1482 }
1483 SET_CANIDLE("mpuwd_ck", 0)
1484 SET_CANIDLE("armxor_ck", 1)
1485 SET_CANIDLE("mpuper_ck", 2)
1486 SET_CANIDLE("lcd_ck", 3)
1487 SET_CANIDLE("lb_ck", 4)
1488 SET_CANIDLE("hsab_ck", 5)
1489 SET_CANIDLE("tipb_ck", 6)
1490 SET_CANIDLE("dma_ck", 6)
1491 SET_CANIDLE("tc_ck", 6)
1492 SET_CANIDLE("dpll1", 7)
1493 SET_CANIDLE("dpll2", 7)
1494 SET_CANIDLE("dpll3", 7)
1495 SET_CANIDLE("mpui_ck", 8)
1496 SET_CANIDLE("armtim_ck", 9)
1497}
1498
1499static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1500 uint16_t diff, uint16_t value)
1501{
1502 omap_clk clk;
1503
1504#define SET_ONOFF(clock, bit) \
1505 if (diff & (1 << bit)) { \
1506 clk = omap_findclk(s, clock); \
1507 omap_clk_onoff(clk, (value >> bit) & 1); \
1508 }
1509 SET_ONOFF("mpuwd_ck", 0)
1510 SET_ONOFF("armxor_ck", 1)
1511 SET_ONOFF("mpuper_ck", 2)
1512 SET_ONOFF("lcd_ck", 3)
1513 SET_ONOFF("lb_ck", 4)
1514 SET_ONOFF("hsab_ck", 5)
1515 SET_ONOFF("mpui_ck", 6)
1516 SET_ONOFF("armtim_ck", 7)
1517 SET_CANIDLE("dma_ck", 8)
1518 SET_ONOFF("arm_gpio_ck", 9)
1519 SET_ONOFF("lbfree_ck", 10)
1520}
1521
1522static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1523 uint16_t diff, uint16_t value)
1524{
1525 omap_clk clk;
1526
1527 if (diff & (3 << 4)) {
1528 clk = omap_findclk(s, "tclk_out");
1529 switch ((value >> 4) & 3) {
1530 case 1:
1531 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1532 omap_clk_onoff(clk, 1);
1533 break;
1534 case 2:
1535 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1536 omap_clk_onoff(clk, 1);
1537 break;
1538 default:
1539 omap_clk_onoff(clk, 0);
1540 }
1541 }
1542 if (diff & (3 << 2)) {
1543 clk = omap_findclk(s, "dclk_out");
1544 switch ((value >> 2) & 3) {
1545 case 0:
1546 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1547 break;
1548 case 1:
1549 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1550 break;
1551 case 2:
1552 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1553 break;
1554 case 3:
1555 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1556 break;
1557 }
1558 }
1559 if (diff & (3 << 0)) {
1560 clk = omap_findclk(s, "aclk_out");
1561 switch ((value >> 0) & 3) {
1562 case 1:
1563 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1564 omap_clk_onoff(clk, 1);
1565 break;
1566 case 2:
1567 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1568 omap_clk_onoff(clk, 1);
1569 break;
1570 case 3:
1571 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1572 omap_clk_onoff(clk, 1);
1573 break;
1574 default:
1575 omap_clk_onoff(clk, 0);
1576 }
1577 }
1578}
1579
1580static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
1581 uint32_t value)
1582{
1583 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1584 uint16_t diff;
1585 omap_clk clk;
1586 static const char *clkschemename[8] = {
1587 "fully synchronous", "fully asynchronous", "synchronous scalable",
1588 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1589 };
1590
1591 switch (addr) {
1592 case 0x00:
1593 diff = s->clkm.arm_ckctl ^ value;
1594 s->clkm.arm_ckctl = value & 0x7fff;
1595 omap_clkm_ckctl_update(s, diff, value);
1596 return;
1597
1598 case 0x04:
1599 diff = s->clkm.arm_idlect1 ^ value;
1600 s->clkm.arm_idlect1 = value & 0x0fff;
1601 omap_clkm_idlect1_update(s, diff, value);
1602 return;
1603
1604 case 0x08:
1605 diff = s->clkm.arm_idlect2 ^ value;
1606 s->clkm.arm_idlect2 = value & 0x07ff;
1607 omap_clkm_idlect2_update(s, diff, value);
1608 return;
1609
1610 case 0x0c:
1611 s->clkm.arm_ewupct = value & 0x003f;
1612 return;
1613
1614 case 0x10:
1615 diff = s->clkm.arm_rstct1 ^ value;
1616 s->clkm.arm_rstct1 = value & 0x0007;
1617 if (value & 9) {
1618 qemu_system_reset_request();
1619 s->clkm.cold_start = 0xa;
1620 }
1621 if (diff & ~value & 4) {
1622 omap_mpui_reset(s);
1623 omap_tipb_bridge_reset(s->private_tipb);
1624 omap_tipb_bridge_reset(s->public_tipb);
1625 }
1626 if (diff & 2) {
1627 clk = omap_findclk(s, "dsp_ck");
1628 omap_clk_canidle(clk, (~value >> 1) & 1);
1629 }
1630 return;
1631
1632 case 0x14:
1633 s->clkm.arm_rstct2 = value & 0x0001;
1634 return;
1635
1636 case 0x18:
1637 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1638 s->clkm.clocking_scheme = (value >> 11) & 7;
1639 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1640 clkschemename[s->clkm.clocking_scheme]);
1641 }
1642 s->clkm.cold_start &= value & 0x3f;
1643 return;
1644
1645 case 0x1c:
1646 diff = s->clkm.arm_ckout1 ^ value;
1647 s->clkm.arm_ckout1 = value & 0x003f;
1648 omap_clkm_ckout1_update(s, diff, value);
1649 return;
1650
1651 case 0x20:
1652 default:
1653 OMAP_BAD_REG(addr);
1654 }
1655}
1656
1657static CPUReadMemoryFunc * const omap_clkm_readfn[] = {
1658 omap_badwidth_read16,
1659 omap_clkm_read,
1660 omap_badwidth_read16,
1661};
1662
1663static CPUWriteMemoryFunc * const omap_clkm_writefn[] = {
1664 omap_badwidth_write16,
1665 omap_clkm_write,
1666 omap_badwidth_write16,
1667};
1668
1669static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
1670{
1671 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1672
1673 switch (addr) {
1674 case 0x04:
1675 return s->clkm.dsp_idlect1;
1676
1677 case 0x08:
1678 return s->clkm.dsp_idlect2;
1679
1680 case 0x14:
1681 return s->clkm.dsp_rstct2;
1682
1683 case 0x18:
1684 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1685 (s->env->halted << 6);
1686 }
1687
1688 OMAP_BAD_REG(addr);
1689 return 0;
1690}
1691
1692static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1693 uint16_t diff, uint16_t value)
1694{
1695 omap_clk clk;
1696
1697 SET_CANIDLE("dspxor_ck", 1);
1698}
1699
1700static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1701 uint16_t diff, uint16_t value)
1702{
1703 omap_clk clk;
1704
1705 SET_ONOFF("dspxor_ck", 1);
1706}
1707
1708static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
1709 uint32_t value)
1710{
1711 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1712 uint16_t diff;
1713
1714 switch (addr) {
1715 case 0x04:
1716 diff = s->clkm.dsp_idlect1 ^ value;
1717 s->clkm.dsp_idlect1 = value & 0x01f7;
1718 omap_clkdsp_idlect1_update(s, diff, value);
1719 break;
1720
1721 case 0x08:
1722 s->clkm.dsp_idlect2 = value & 0x0037;
1723 diff = s->clkm.dsp_idlect1 ^ value;
1724 omap_clkdsp_idlect2_update(s, diff, value);
1725 break;
1726
1727 case 0x14:
1728 s->clkm.dsp_rstct2 = value & 0x0001;
1729 break;
1730
1731 case 0x18:
1732 s->clkm.cold_start &= value & 0x3f;
1733 break;
1734
1735 default:
1736 OMAP_BAD_REG(addr);
1737 }
1738}
1739
1740static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = {
1741 omap_badwidth_read16,
1742 omap_clkdsp_read,
1743 omap_badwidth_read16,
1744};
1745
1746static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = {
1747 omap_badwidth_write16,
1748 omap_clkdsp_write,
1749 omap_badwidth_write16,
1750};
1751
1752static void omap_clkm_reset(struct omap_mpu_state_s *s)
1753{
1754 if (s->wdt && s->wdt->reset)
1755 s->clkm.cold_start = 0x6;
1756 s->clkm.clocking_scheme = 0;
1757 omap_clkm_ckctl_update(s, ~0, 0x3000);
1758 s->clkm.arm_ckctl = 0x3000;
1759 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1760 s->clkm.arm_idlect1 = 0x0400;
1761 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1762 s->clkm.arm_idlect2 = 0x0100;
1763 s->clkm.arm_ewupct = 0x003f;
1764 s->clkm.arm_rstct1 = 0x0000;
1765 s->clkm.arm_rstct2 = 0x0000;
1766 s->clkm.arm_ckout1 = 0x0015;
1767 s->clkm.dpll1_mode = 0x2002;
1768 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1769 s->clkm.dsp_idlect1 = 0x0040;
1770 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1771 s->clkm.dsp_idlect2 = 0x0000;
1772 s->clkm.dsp_rstct2 = 0x0000;
1773}
1774
1775static void omap_clkm_init(target_phys_addr_t mpu_base,
1776 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
1777{
1778 int iomemtype[2] = {
1779 cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s,
1780 DEVICE_NATIVE_ENDIAN),
1781 cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s,
1782 DEVICE_NATIVE_ENDIAN),
1783 };
1784
1785 s->clkm.arm_idlect1 = 0x03ff;
1786 s->clkm.arm_idlect2 = 0x0100;
1787 s->clkm.dsp_idlect1 = 0x0002;
1788 omap_clkm_reset(s);
1789 s->clkm.cold_start = 0x3a;
1790
1791 cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
1792 cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
1793}
1794
1795
1796struct omap_mpuio_s {
1797 qemu_irq irq;
1798 qemu_irq kbd_irq;
1799 qemu_irq *in;
1800 qemu_irq handler[16];
1801 qemu_irq wakeup;
1802
1803 uint16_t inputs;
1804 uint16_t outputs;
1805 uint16_t dir;
1806 uint16_t edge;
1807 uint16_t mask;
1808 uint16_t ints;
1809
1810 uint16_t debounce;
1811 uint16_t latch;
1812 uint8_t event;
1813
1814 uint8_t buttons[5];
1815 uint8_t row_latch;
1816 uint8_t cols;
1817 int kbd_mask;
1818 int clk;
1819};
1820
1821static void omap_mpuio_set(void *opaque, int line, int level)
1822{
1823 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1824 uint16_t prev = s->inputs;
1825
1826 if (level)
1827 s->inputs |= 1 << line;
1828 else
1829 s->inputs &= ~(1 << line);
1830
1831 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1832 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1833 s->ints |= 1 << line;
1834 qemu_irq_raise(s->irq);
1835
1836 }
1837 if ((s->event & (1 << 0)) &&
1838 (s->event >> 1) == line)
1839 s->latch = s->inputs;
1840 }
1841}
1842
1843static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1844{
1845 int i;
1846 uint8_t *row, rows = 0, cols = ~s->cols;
1847
1848 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1849 if (*row & cols)
1850 rows |= i;
1851
1852 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1853 s->row_latch = ~rows;
1854}
1855
1856static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
1857{
1858 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1859 int offset = addr & OMAP_MPUI_REG_MASK;
1860 uint16_t ret;
1861
1862 switch (offset) {
1863 case 0x00:
1864 return s->inputs;
1865
1866 case 0x04:
1867 return s->outputs;
1868
1869 case 0x08:
1870 return s->dir;
1871
1872 case 0x10:
1873 return s->row_latch;
1874
1875 case 0x14:
1876 return s->cols;
1877
1878 case 0x18:
1879 return s->event;
1880
1881 case 0x1c:
1882 return s->edge;
1883
1884 case 0x20:
1885 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1886
1887 case 0x24:
1888 ret = s->ints;
1889 s->ints &= s->mask;
1890 if (ret)
1891 qemu_irq_lower(s->irq);
1892 return ret;
1893
1894 case 0x28:
1895 return s->kbd_mask;
1896
1897 case 0x2c:
1898 return s->mask;
1899
1900 case 0x30:
1901 return s->debounce;
1902
1903 case 0x34:
1904 return s->latch;
1905 }
1906
1907 OMAP_BAD_REG(addr);
1908 return 0;
1909}
1910
1911static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
1912 uint32_t value)
1913{
1914 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1915 int offset = addr & OMAP_MPUI_REG_MASK;
1916 uint16_t diff;
1917 int ln;
1918
1919 switch (offset) {
1920 case 0x04:
1921 diff = (s->outputs ^ value) & ~s->dir;
1922 s->outputs = value;
1923 while ((ln = ffs(diff))) {
1924 ln --;
1925 if (s->handler[ln])
1926 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1927 diff &= ~(1 << ln);
1928 }
1929 break;
1930
1931 case 0x08:
1932 diff = s->outputs & (s->dir ^ value);
1933 s->dir = value;
1934
1935 value = s->outputs & ~s->dir;
1936 while ((ln = ffs(diff))) {
1937 ln --;
1938 if (s->handler[ln])
1939 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1940 diff &= ~(1 << ln);
1941 }
1942 break;
1943
1944 case 0x14:
1945 s->cols = value;
1946 omap_mpuio_kbd_update(s);
1947 break;
1948
1949 case 0x18:
1950 s->event = value & 0x1f;
1951 break;
1952
1953 case 0x1c:
1954 s->edge = value;
1955 break;
1956
1957 case 0x28:
1958 s->kbd_mask = value & 1;
1959 omap_mpuio_kbd_update(s);
1960 break;
1961
1962 case 0x2c:
1963 s->mask = value;
1964 break;
1965
1966 case 0x30:
1967 s->debounce = value & 0x1ff;
1968 break;
1969
1970 case 0x00:
1971 case 0x10:
1972 case 0x20:
1973 case 0x24:
1974 case 0x34:
1975 OMAP_RO_REG(addr);
1976 return;
1977
1978 default:
1979 OMAP_BAD_REG(addr);
1980 return;
1981 }
1982}
1983
1984static CPUReadMemoryFunc * const omap_mpuio_readfn[] = {
1985 omap_badwidth_read16,
1986 omap_mpuio_read,
1987 omap_badwidth_read16,
1988};
1989
1990static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = {
1991 omap_badwidth_write16,
1992 omap_mpuio_write,
1993 omap_badwidth_write16,
1994};
1995
1996static void omap_mpuio_reset(struct omap_mpuio_s *s)
1997{
1998 s->inputs = 0;
1999 s->outputs = 0;
2000 s->dir = ~0;
2001 s->event = 0;
2002 s->edge = 0;
2003 s->kbd_mask = 0;
2004 s->mask = 0;
2005 s->debounce = 0;
2006 s->latch = 0;
2007 s->ints = 0;
2008 s->row_latch = 0x1f;
2009 s->clk = 1;
2010}
2011
2012static void omap_mpuio_onoff(void *opaque, int line, int on)
2013{
2014 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2015
2016 s->clk = on;
2017 if (on)
2018 omap_mpuio_kbd_update(s);
2019}
2020
2021struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2022 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2023 omap_clk clk)
2024{
2025 int iomemtype;
2026 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2027 qemu_mallocz(sizeof(struct omap_mpuio_s));
2028
2029 s->irq = gpio_int;
2030 s->kbd_irq = kbd_int;
2031 s->wakeup = wakeup;
2032 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2033 omap_mpuio_reset(s);
2034
2035 iomemtype = cpu_register_io_memory(omap_mpuio_readfn,
2036 omap_mpuio_writefn, s, DEVICE_NATIVE_ENDIAN);
2037 cpu_register_physical_memory(base, 0x800, iomemtype);
2038
2039 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2040
2041 return s;
2042}
2043
2044qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2045{
2046 return s->in;
2047}
2048
2049void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2050{
2051 if (line >= 16 || line < 0)
2052 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2053 s->handler[line] = handler;
2054}
2055
2056void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2057{
2058 if (row >= 5 || row < 0)
2059 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2060
2061 if (down)
2062 s->buttons[row] |= 1 << col;
2063 else
2064 s->buttons[row] &= ~(1 << col);
2065
2066 omap_mpuio_kbd_update(s);
2067}
2068
2069
2070struct omap_uwire_s {
2071 qemu_irq txirq;
2072 qemu_irq rxirq;
2073 qemu_irq txdrq;
2074
2075 uint16_t txbuf;
2076 uint16_t rxbuf;
2077 uint16_t control;
2078 uint16_t setup[5];
2079
2080 uWireSlave *chip[4];
2081};
2082
2083static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2084{
2085 int chipselect = (s->control >> 10) & 3;
2086 uWireSlave *slave = s->chip[chipselect];
2087
2088 if ((s->control >> 5) & 0x1f) {
2089 if (s->control & (1 << 12))
2090 if (slave && slave->send)
2091 slave->send(slave->opaque,
2092 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2093 s->control &= ~(1 << 14);
2094
2095
2096 }
2097
2098 if ((s->control >> 0) & 0x1f) {
2099 if (s->control & (1 << 12))
2100 if (slave && slave->receive)
2101 s->rxbuf = slave->receive(slave->opaque);
2102 s->control |= 1 << 15;
2103
2104
2105 }
2106}
2107
2108static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
2109{
2110 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2111 int offset = addr & OMAP_MPUI_REG_MASK;
2112
2113 switch (offset) {
2114 case 0x00:
2115 s->control &= ~(1 << 15);
2116 return s->rxbuf;
2117
2118 case 0x04:
2119 return s->control;
2120
2121 case 0x08:
2122 return s->setup[0];
2123 case 0x0c:
2124 return s->setup[1];
2125 case 0x10:
2126 return s->setup[2];
2127 case 0x14:
2128 return s->setup[3];
2129 case 0x18:
2130 return s->setup[4];
2131 }
2132
2133 OMAP_BAD_REG(addr);
2134 return 0;
2135}
2136
2137static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
2138 uint32_t value)
2139{
2140 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2141 int offset = addr & OMAP_MPUI_REG_MASK;
2142
2143 switch (offset) {
2144 case 0x00:
2145 s->txbuf = value;
2146 if ((s->setup[4] & (1 << 2)) &&
2147 ((s->setup[4] & (1 << 3)) ||
2148 (s->control & (1 << 12)))) {
2149 s->control |= 1 << 14;
2150 omap_uwire_transfer_start(s);
2151 }
2152 break;
2153
2154 case 0x04:
2155 s->control = value & 0x1fff;
2156 if (value & (1 << 13))
2157 omap_uwire_transfer_start(s);
2158 break;
2159
2160 case 0x08:
2161 s->setup[0] = value & 0x003f;
2162 break;
2163
2164 case 0x0c:
2165 s->setup[1] = value & 0x0fc0;
2166 break;
2167
2168 case 0x10:
2169 s->setup[2] = value & 0x0003;
2170 break;
2171
2172 case 0x14:
2173 s->setup[3] = value & 0x0001;
2174 break;
2175
2176 case 0x18:
2177 s->setup[4] = value & 0x000f;
2178 break;
2179
2180 default:
2181 OMAP_BAD_REG(addr);
2182 return;
2183 }
2184}
2185
2186static CPUReadMemoryFunc * const omap_uwire_readfn[] = {
2187 omap_badwidth_read16,
2188 omap_uwire_read,
2189 omap_badwidth_read16,
2190};
2191
2192static CPUWriteMemoryFunc * const omap_uwire_writefn[] = {
2193 omap_badwidth_write16,
2194 omap_uwire_write,
2195 omap_badwidth_write16,
2196};
2197
2198static void omap_uwire_reset(struct omap_uwire_s *s)
2199{
2200 s->control = 0;
2201 s->setup[0] = 0;
2202 s->setup[1] = 0;
2203 s->setup[2] = 0;
2204 s->setup[3] = 0;
2205 s->setup[4] = 0;
2206}
2207
2208struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
2209 qemu_irq *irq, qemu_irq dma, omap_clk clk)
2210{
2211 int iomemtype;
2212 struct omap_uwire_s *s = (struct omap_uwire_s *)
2213 qemu_mallocz(sizeof(struct omap_uwire_s));
2214
2215 s->txirq = irq[0];
2216 s->rxirq = irq[1];
2217 s->txdrq = dma;
2218 omap_uwire_reset(s);
2219
2220 iomemtype = cpu_register_io_memory(omap_uwire_readfn,
2221 omap_uwire_writefn, s, DEVICE_NATIVE_ENDIAN);
2222 cpu_register_physical_memory(base, 0x800, iomemtype);
2223
2224 return s;
2225}
2226
2227void omap_uwire_attach(struct omap_uwire_s *s,
2228 uWireSlave *slave, int chipselect)
2229{
2230 if (chipselect < 0 || chipselect > 3) {
2231 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2232 exit(-1);
2233 }
2234
2235 s->chip[chipselect] = slave;
2236}
2237
2238
2239static void omap_pwl_update(struct omap_mpu_state_s *s)
2240{
2241 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
2242
2243 if (output != s->pwl.output) {
2244 s->pwl.output = output;
2245 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2246 }
2247}
2248
2249static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
2250{
2251 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2252 int offset = addr & OMAP_MPUI_REG_MASK;
2253
2254 switch (offset) {
2255 case 0x00:
2256 return s->pwl.level;
2257 case 0x04:
2258 return s->pwl.enable;
2259 }
2260 OMAP_BAD_REG(addr);
2261 return 0;
2262}
2263
2264static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
2265 uint32_t value)
2266{
2267 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2268 int offset = addr & OMAP_MPUI_REG_MASK;
2269
2270 switch (offset) {
2271 case 0x00:
2272 s->pwl.level = value;
2273 omap_pwl_update(s);
2274 break;
2275 case 0x04:
2276 s->pwl.enable = value & 1;
2277 omap_pwl_update(s);
2278 break;
2279 default:
2280 OMAP_BAD_REG(addr);
2281 return;
2282 }
2283}
2284
2285static CPUReadMemoryFunc * const omap_pwl_readfn[] = {
2286 omap_pwl_read,
2287 omap_badwidth_read8,
2288 omap_badwidth_read8,
2289};
2290
2291static CPUWriteMemoryFunc * const omap_pwl_writefn[] = {
2292 omap_pwl_write,
2293 omap_badwidth_write8,
2294 omap_badwidth_write8,
2295};
2296
2297static void omap_pwl_reset(struct omap_mpu_state_s *s)
2298{
2299 s->pwl.output = 0;
2300 s->pwl.level = 0;
2301 s->pwl.enable = 0;
2302 s->pwl.clk = 1;
2303 omap_pwl_update(s);
2304}
2305
2306static void omap_pwl_clk_update(void *opaque, int line, int on)
2307{
2308 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2309
2310 s->pwl.clk = on;
2311 omap_pwl_update(s);
2312}
2313
2314static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2315 omap_clk clk)
2316{
2317 int iomemtype;
2318
2319 omap_pwl_reset(s);
2320
2321 iomemtype = cpu_register_io_memory(omap_pwl_readfn,
2322 omap_pwl_writefn, s, DEVICE_NATIVE_ENDIAN);
2323 cpu_register_physical_memory(base, 0x800, iomemtype);
2324
2325 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2326}
2327
2328
2329static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
2330{
2331 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2332 int offset = addr & OMAP_MPUI_REG_MASK;
2333
2334 switch (offset) {
2335 case 0x00:
2336 return s->pwt.frc;
2337 case 0x04:
2338 return s->pwt.vrc;
2339 case 0x08:
2340 return s->pwt.gcr;
2341 }
2342 OMAP_BAD_REG(addr);
2343 return 0;
2344}
2345
2346static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
2347 uint32_t value)
2348{
2349 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2350 int offset = addr & OMAP_MPUI_REG_MASK;
2351
2352 switch (offset) {
2353 case 0x00:
2354 s->pwt.frc = value & 0x3f;
2355 break;
2356 case 0x04:
2357 if ((value ^ s->pwt.vrc) & 1) {
2358 if (value & 1)
2359 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2360
2361 ((omap_clk_getrate(s->pwt.clk) >> 3) /
2362
2363 ((s->pwt.gcr & 2) ? 1 : 154) /
2364
2365 (2 << (value & 3)) *
2366
2367 ((value & (1 << 2)) ? 101 : 107) *
2368
2369 ((value & (1 << 3)) ? 49 : 55) *
2370
2371 ((value & (1 << 4)) ? 50 : 63) *
2372
2373 ((value & (1 << 5)) ? 80 : 127) /
2374 (107 * 55 * 63 * 127)));
2375 else
2376 printf("%s: silence!\n", __FUNCTION__);
2377 }
2378 s->pwt.vrc = value & 0x7f;
2379 break;
2380 case 0x08:
2381 s->pwt.gcr = value & 3;
2382 break;
2383 default:
2384 OMAP_BAD_REG(addr);
2385 return;
2386 }
2387}
2388
2389static CPUReadMemoryFunc * const omap_pwt_readfn[] = {
2390 omap_pwt_read,
2391 omap_badwidth_read8,
2392 omap_badwidth_read8,
2393};
2394
2395static CPUWriteMemoryFunc * const omap_pwt_writefn[] = {
2396 omap_pwt_write,
2397 omap_badwidth_write8,
2398 omap_badwidth_write8,
2399};
2400
2401static void omap_pwt_reset(struct omap_mpu_state_s *s)
2402{
2403 s->pwt.frc = 0;
2404 s->pwt.vrc = 0;
2405 s->pwt.gcr = 0;
2406}
2407
2408static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
2409 omap_clk clk)
2410{
2411 int iomemtype;
2412
2413 s->pwt.clk = clk;
2414 omap_pwt_reset(s);
2415
2416 iomemtype = cpu_register_io_memory(omap_pwt_readfn,
2417 omap_pwt_writefn, s, DEVICE_NATIVE_ENDIAN);
2418 cpu_register_physical_memory(base, 0x800, iomemtype);
2419}
2420
2421
2422struct omap_rtc_s {
2423 qemu_irq irq;
2424 qemu_irq alarm;
2425 QEMUTimer *clk;
2426
2427 uint8_t interrupts;
2428 uint8_t status;
2429 int16_t comp_reg;
2430 int running;
2431 int pm_am;
2432 int auto_comp;
2433 int round;
2434 struct tm alarm_tm;
2435 time_t alarm_ti;
2436
2437 struct tm current_tm;
2438 time_t ti;
2439 uint64_t tick;
2440};
2441
2442static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2443{
2444
2445 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2446}
2447
2448static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2449{
2450 s->alarm_ti = mktimegm(&s->alarm_tm);
2451 if (s->alarm_ti == -1)
2452 printf("%s: conversion failed\n", __FUNCTION__);
2453}
2454
2455static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
2456{
2457 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2458 int offset = addr & OMAP_MPUI_REG_MASK;
2459 uint8_t i;
2460
2461 switch (offset) {
2462 case 0x00:
2463 return to_bcd(s->current_tm.tm_sec);
2464
2465 case 0x04:
2466 return to_bcd(s->current_tm.tm_min);
2467
2468 case 0x08:
2469 if (s->pm_am)
2470 return ((s->current_tm.tm_hour > 11) << 7) |
2471 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2472 else
2473 return to_bcd(s->current_tm.tm_hour);
2474
2475 case 0x0c:
2476 return to_bcd(s->current_tm.tm_mday);
2477
2478 case 0x10:
2479 return to_bcd(s->current_tm.tm_mon + 1);
2480
2481 case 0x14:
2482 return to_bcd(s->current_tm.tm_year % 100);
2483
2484 case 0x18:
2485 return s->current_tm.tm_wday;
2486
2487 case 0x20:
2488 return to_bcd(s->alarm_tm.tm_sec);
2489
2490 case 0x24:
2491 return to_bcd(s->alarm_tm.tm_min);
2492
2493 case 0x28:
2494 if (s->pm_am)
2495 return ((s->alarm_tm.tm_hour > 11) << 7) |
2496 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2497 else
2498 return to_bcd(s->alarm_tm.tm_hour);
2499
2500 case 0x2c:
2501 return to_bcd(s->alarm_tm.tm_mday);
2502
2503 case 0x30:
2504 return to_bcd(s->alarm_tm.tm_mon + 1);
2505
2506 case 0x34:
2507 return to_bcd(s->alarm_tm.tm_year % 100);
2508
2509 case 0x40:
2510 return (s->pm_am << 3) | (s->auto_comp << 2) |
2511 (s->round << 1) | s->running;
2512
2513 case 0x44:
2514 i = s->status;
2515 s->status &= ~0x3d;
2516 return i;
2517
2518 case 0x48:
2519 return s->interrupts;
2520
2521 case 0x4c:
2522 return ((uint16_t) s->comp_reg) & 0xff;
2523
2524 case 0x50:
2525 return ((uint16_t) s->comp_reg) >> 8;
2526 }
2527
2528 OMAP_BAD_REG(addr);
2529 return 0;
2530}
2531
2532static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
2533 uint32_t value)
2534{
2535 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2536 int offset = addr & OMAP_MPUI_REG_MASK;
2537 struct tm new_tm;
2538 time_t ti[2];
2539
2540 switch (offset) {
2541 case 0x00:
2542#ifdef ALMDEBUG
2543 printf("RTC SEC_REG <-- %02x\n", value);
2544#endif
2545 s->ti -= s->current_tm.tm_sec;
2546 s->ti += from_bcd(value);
2547 return;
2548
2549 case 0x04:
2550#ifdef ALMDEBUG
2551 printf("RTC MIN_REG <-- %02x\n", value);
2552#endif
2553 s->ti -= s->current_tm.tm_min * 60;
2554 s->ti += from_bcd(value) * 60;
2555 return;
2556
2557 case 0x08:
2558#ifdef ALMDEBUG
2559 printf("RTC HRS_REG <-- %02x\n", value);
2560#endif
2561 s->ti -= s->current_tm.tm_hour * 3600;
2562 if (s->pm_am) {
2563 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2564 s->ti += ((value >> 7) & 1) * 43200;
2565 } else
2566 s->ti += from_bcd(value & 0x3f) * 3600;
2567 return;
2568
2569 case 0x0c:
2570#ifdef ALMDEBUG
2571 printf("RTC DAY_REG <-- %02x\n", value);
2572#endif
2573 s->ti -= s->current_tm.tm_mday * 86400;
2574 s->ti += from_bcd(value) * 86400;
2575 return;
2576
2577 case 0x10:
2578#ifdef ALMDEBUG
2579 printf("RTC MTH_REG <-- %02x\n", value);
2580#endif
2581 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2582 new_tm.tm_mon = from_bcd(value);
2583 ti[0] = mktimegm(&s->current_tm);
2584 ti[1] = mktimegm(&new_tm);
2585
2586 if (ti[0] != -1 && ti[1] != -1) {
2587 s->ti -= ti[0];
2588 s->ti += ti[1];
2589 } else {
2590
2591 s->ti -= s->current_tm.tm_mon * 2592000;
2592 s->ti += from_bcd(value) * 2592000;
2593 }
2594 return;
2595
2596 case 0x14:
2597#ifdef ALMDEBUG
2598 printf("RTC YRS_REG <-- %02x\n", value);
2599#endif
2600 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2601 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2602 ti[0] = mktimegm(&s->current_tm);
2603 ti[1] = mktimegm(&new_tm);
2604
2605 if (ti[0] != -1 && ti[1] != -1) {
2606 s->ti -= ti[0];
2607 s->ti += ti[1];
2608 } else {
2609
2610 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2611 s->ti += from_bcd(value) * 31536000;
2612 }
2613 return;
2614
2615 case 0x18:
2616 return;
2617
2618 case 0x20:
2619#ifdef ALMDEBUG
2620 printf("ALM SEC_REG <-- %02x\n", value);
2621#endif
2622 s->alarm_tm.tm_sec = from_bcd(value);
2623 omap_rtc_alarm_update(s);
2624 return;
2625
2626 case 0x24:
2627#ifdef ALMDEBUG
2628 printf("ALM MIN_REG <-- %02x\n", value);
2629#endif
2630 s->alarm_tm.tm_min = from_bcd(value);
2631 omap_rtc_alarm_update(s);
2632 return;
2633
2634 case 0x28:
2635#ifdef ALMDEBUG
2636 printf("ALM HRS_REG <-- %02x\n", value);
2637#endif
2638 if (s->pm_am)
2639 s->alarm_tm.tm_hour =
2640 ((from_bcd(value & 0x3f)) % 12) +
2641 ((value >> 7) & 1) * 12;
2642 else
2643 s->alarm_tm.tm_hour = from_bcd(value);
2644 omap_rtc_alarm_update(s);
2645 return;
2646
2647 case 0x2c:
2648#ifdef ALMDEBUG
2649 printf("ALM DAY_REG <-- %02x\n", value);
2650#endif
2651 s->alarm_tm.tm_mday = from_bcd(value);
2652 omap_rtc_alarm_update(s);
2653 return;
2654
2655 case 0x30:
2656#ifdef ALMDEBUG
2657 printf("ALM MON_REG <-- %02x\n", value);
2658#endif
2659 s->alarm_tm.tm_mon = from_bcd(value);
2660 omap_rtc_alarm_update(s);
2661 return;
2662
2663 case 0x34:
2664#ifdef ALMDEBUG
2665 printf("ALM YRS_REG <-- %02x\n", value);
2666#endif
2667 s->alarm_tm.tm_year = from_bcd(value);
2668 omap_rtc_alarm_update(s);
2669 return;
2670
2671 case 0x40:
2672#ifdef ALMDEBUG
2673 printf("RTC CONTROL <-- %02x\n", value);
2674#endif
2675 s->pm_am = (value >> 3) & 1;
2676 s->auto_comp = (value >> 2) & 1;
2677 s->round = (value >> 1) & 1;
2678 s->running = value & 1;
2679 s->status &= 0xfd;
2680 s->status |= s->running << 1;
2681 return;
2682
2683 case 0x44:
2684#ifdef ALMDEBUG
2685 printf("RTC STATUSL <-- %02x\n", value);
2686#endif
2687 s->status &= ~((value & 0xc0) ^ 0x80);
2688 omap_rtc_interrupts_update(s);
2689 return;
2690
2691 case 0x48:
2692#ifdef ALMDEBUG
2693 printf("RTC INTRS <-- %02x\n", value);
2694#endif
2695 s->interrupts = value;
2696 return;
2697
2698 case 0x4c:
2699#ifdef ALMDEBUG
2700 printf("RTC COMPLSB <-- %02x\n", value);
2701#endif
2702 s->comp_reg &= 0xff00;
2703 s->comp_reg |= 0x00ff & value;
2704 return;
2705
2706 case 0x50:
2707#ifdef ALMDEBUG
2708 printf("RTC COMPMSB <-- %02x\n", value);
2709#endif
2710 s->comp_reg &= 0x00ff;
2711 s->comp_reg |= 0xff00 & (value << 8);
2712 return;
2713
2714 default:
2715 OMAP_BAD_REG(addr);
2716 return;
2717 }
2718}
2719
2720static CPUReadMemoryFunc * const omap_rtc_readfn[] = {
2721 omap_rtc_read,
2722 omap_badwidth_read8,
2723 omap_badwidth_read8,
2724};
2725
2726static CPUWriteMemoryFunc * const omap_rtc_writefn[] = {
2727 omap_rtc_write,
2728 omap_badwidth_write8,
2729 omap_badwidth_write8,
2730};
2731
2732static void omap_rtc_tick(void *opaque)
2733{
2734 struct omap_rtc_s *s = opaque;
2735
2736 if (s->round) {
2737
2738 if (s->current_tm.tm_sec < 30)
2739 s->ti -= s->current_tm.tm_sec;
2740 else
2741 s->ti += 60 - s->current_tm.tm_sec;
2742
2743 s->round = 0;
2744 }
2745
2746 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
2747
2748 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2749 s->status |= 0x40;
2750 omap_rtc_interrupts_update(s);
2751 }
2752
2753 if (s->interrupts & 0x04)
2754 switch (s->interrupts & 3) {
2755 case 0:
2756 s->status |= 0x04;
2757 qemu_irq_pulse(s->irq);
2758 break;
2759 case 1:
2760 if (s->current_tm.tm_sec)
2761 break;
2762 s->status |= 0x08;
2763 qemu_irq_pulse(s->irq);
2764 break;
2765 case 2:
2766 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2767 break;
2768 s->status |= 0x10;
2769 qemu_irq_pulse(s->irq);
2770 break;
2771 case 3:
2772 if (s->current_tm.tm_sec ||
2773 s->current_tm.tm_min || s->current_tm.tm_hour)
2774 break;
2775 s->status |= 0x20;
2776 qemu_irq_pulse(s->irq);
2777 break;
2778 }
2779
2780
2781 if (s->running)
2782 s->ti ++;
2783 s->tick += 1000;
2784
2785
2786
2787
2788
2789 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2790 s->tick += s->comp_reg * 1000 / 32768;
2791
2792 qemu_mod_timer(s->clk, s->tick);
2793}
2794
2795static void omap_rtc_reset(struct omap_rtc_s *s)
2796{
2797 struct tm tm;
2798
2799 s->interrupts = 0;
2800 s->comp_reg = 0;
2801 s->running = 0;
2802 s->pm_am = 0;
2803 s->auto_comp = 0;
2804 s->round = 0;
2805 s->tick = qemu_get_clock(rt_clock);
2806 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2807 s->alarm_tm.tm_mday = 0x01;
2808 s->status = 1 << 7;
2809 qemu_get_timedate(&tm, 0);
2810 s->ti = mktimegm(&tm);
2811
2812 omap_rtc_alarm_update(s);
2813 omap_rtc_tick(s);
2814}
2815
2816static struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
2817 qemu_irq *irq, omap_clk clk)
2818{
2819 int iomemtype;
2820 struct omap_rtc_s *s = (struct omap_rtc_s *)
2821 qemu_mallocz(sizeof(struct omap_rtc_s));
2822
2823 s->irq = irq[0];
2824 s->alarm = irq[1];
2825 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
2826
2827 omap_rtc_reset(s);
2828
2829 iomemtype = cpu_register_io_memory(omap_rtc_readfn,
2830 omap_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
2831 cpu_register_physical_memory(base, 0x800, iomemtype);
2832
2833 return s;
2834}
2835
2836
2837struct omap_mcbsp_s {
2838 qemu_irq txirq;
2839 qemu_irq rxirq;
2840 qemu_irq txdrq;
2841 qemu_irq rxdrq;
2842
2843 uint16_t spcr[2];
2844 uint16_t rcr[2];
2845 uint16_t xcr[2];
2846 uint16_t srgr[2];
2847 uint16_t mcr[2];
2848 uint16_t pcr;
2849 uint16_t rcer[8];
2850 uint16_t xcer[8];
2851 int tx_rate;
2852 int rx_rate;
2853 int tx_req;
2854 int rx_req;
2855
2856 I2SCodec *codec;
2857 QEMUTimer *source_timer;
2858 QEMUTimer *sink_timer;
2859};
2860
2861static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2862{
2863 int irq;
2864
2865 switch ((s->spcr[0] >> 4) & 3) {
2866 case 0:
2867 irq = (s->spcr[0] >> 1) & 1;
2868 break;
2869 case 3:
2870 irq = (s->spcr[0] >> 3) & 1;
2871 break;
2872 default:
2873 irq = 0;
2874 break;
2875 }
2876
2877 if (irq)
2878 qemu_irq_pulse(s->rxirq);
2879
2880 switch ((s->spcr[1] >> 4) & 3) {
2881 case 0:
2882 irq = (s->spcr[1] >> 1) & 1;
2883 break;
2884 case 3:
2885 irq = (s->spcr[1] >> 3) & 1;
2886 break;
2887 default:
2888 irq = 0;
2889 break;
2890 }
2891
2892 if (irq)
2893 qemu_irq_pulse(s->txirq);
2894}
2895
2896static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2897{
2898 if ((s->spcr[0] >> 1) & 1)
2899 s->spcr[0] |= 1 << 2;
2900 s->spcr[0] |= 1 << 1;
2901 qemu_irq_raise(s->rxdrq);
2902 omap_mcbsp_intr_update(s);
2903}
2904
2905static void omap_mcbsp_source_tick(void *opaque)
2906{
2907 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2908 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2909
2910 if (!s->rx_rate)
2911 return;
2912 if (s->rx_req)
2913 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
2914
2915 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
2916
2917 omap_mcbsp_rx_newdata(s);
2918 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) +
2919 get_ticks_per_sec());
2920}
2921
2922static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
2923{
2924 if (!s->codec || !s->codec->rts)
2925 omap_mcbsp_source_tick(s);
2926 else if (s->codec->in.len) {
2927 s->rx_req = s->codec->in.len;
2928 omap_mcbsp_rx_newdata(s);
2929 }
2930}
2931
2932static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
2933{
2934 qemu_del_timer(s->source_timer);
2935}
2936
2937static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
2938{
2939 s->spcr[0] &= ~(1 << 1);
2940 qemu_irq_lower(s->rxdrq);
2941 omap_mcbsp_intr_update(s);
2942}
2943
2944static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
2945{
2946 s->spcr[1] |= 1 << 1;
2947 qemu_irq_raise(s->txdrq);
2948 omap_mcbsp_intr_update(s);
2949}
2950
2951static void omap_mcbsp_sink_tick(void *opaque)
2952{
2953 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2954 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2955
2956 if (!s->tx_rate)
2957 return;
2958 if (s->tx_req)
2959 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
2960
2961 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
2962
2963 omap_mcbsp_tx_newdata(s);
2964 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) +
2965 get_ticks_per_sec());
2966}
2967
2968static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
2969{
2970 if (!s->codec || !s->codec->cts)
2971 omap_mcbsp_sink_tick(s);
2972 else if (s->codec->out.size) {
2973 s->tx_req = s->codec->out.size;
2974 omap_mcbsp_tx_newdata(s);
2975 }
2976}
2977
2978static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
2979{
2980 s->spcr[1] &= ~(1 << 1);
2981 qemu_irq_lower(s->txdrq);
2982 omap_mcbsp_intr_update(s);
2983 if (s->codec && s->codec->cts)
2984 s->codec->tx_swallow(s->codec->opaque);
2985}
2986
2987static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
2988{
2989 s->tx_req = 0;
2990 omap_mcbsp_tx_done(s);
2991 qemu_del_timer(s->sink_timer);
2992}
2993
2994static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
2995{
2996 int prev_rx_rate, prev_tx_rate;
2997 int rx_rate = 0, tx_rate = 0;
2998 int cpu_rate = 1500000;
2999
3000
3001 if (s->spcr[1] & (1 << 6)) {
3002 if (s->spcr[0] & (1 << 0)) {
3003 if ((s->srgr[1] & (1 << 13)) &&
3004 (s->pcr & (1 << 8))) {
3005 if (~s->pcr & (1 << 7))
3006 rx_rate = cpu_rate /
3007 ((s->srgr[0] & 0xff) + 1);
3008 } else
3009 if (s->codec)
3010 rx_rate = s->codec->rx_rate;
3011 }
3012
3013 if (s->spcr[1] & (1 << 0)) {
3014 if ((s->srgr[1] & (1 << 13)) &&
3015 (s->pcr & (1 << 9))) {
3016 if (~s->pcr & (1 << 7))
3017 tx_rate = cpu_rate /
3018 ((s->srgr[0] & 0xff) + 1);
3019 } else
3020 if (s->codec)
3021 tx_rate = s->codec->tx_rate;
3022 }
3023 }
3024 prev_tx_rate = s->tx_rate;
3025 prev_rx_rate = s->rx_rate;
3026 s->tx_rate = tx_rate;
3027 s->rx_rate = rx_rate;
3028
3029 if (s->codec)
3030 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3031
3032 if (!prev_tx_rate && tx_rate)
3033 omap_mcbsp_tx_start(s);
3034 else if (s->tx_rate && !tx_rate)
3035 omap_mcbsp_tx_stop(s);
3036
3037 if (!prev_rx_rate && rx_rate)
3038 omap_mcbsp_rx_start(s);
3039 else if (prev_tx_rate && !tx_rate)
3040 omap_mcbsp_rx_stop(s);
3041}
3042
3043static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3044{
3045 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3046 int offset = addr & OMAP_MPUI_REG_MASK;
3047 uint16_t ret;
3048
3049 switch (offset) {
3050 case 0x00:
3051 if (((s->rcr[0] >> 5) & 7) < 3)
3052 return 0x0000;
3053
3054 case 0x02:
3055 if (s->rx_req < 2) {
3056 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3057 omap_mcbsp_rx_done(s);
3058 } else {
3059 s->tx_req -= 2;
3060 if (s->codec && s->codec->in.len >= 2) {
3061 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3062 ret |= s->codec->in.fifo[s->codec->in.start ++];
3063 s->codec->in.len -= 2;
3064 } else
3065 ret = 0x0000;
3066 if (!s->tx_req)
3067 omap_mcbsp_rx_done(s);
3068 return ret;
3069 }
3070 return 0x0000;
3071
3072 case 0x04:
3073 case 0x06:
3074 return 0x0000;
3075
3076 case 0x08:
3077 return s->spcr[1];
3078 case 0x0a:
3079 return s->spcr[0];
3080 case 0x0c:
3081 return s->rcr[1];
3082 case 0x0e:
3083 return s->rcr[0];
3084 case 0x10:
3085 return s->xcr[1];
3086 case 0x12:
3087 return s->xcr[0];
3088 case 0x14:
3089 return s->srgr[1];
3090 case 0x16:
3091 return s->srgr[0];
3092 case 0x18:
3093 return s->mcr[1];
3094 case 0x1a:
3095 return s->mcr[0];
3096 case 0x1c:
3097 return s->rcer[0];
3098 case 0x1e:
3099 return s->rcer[1];
3100 case 0x20:
3101 return s->xcer[0];
3102 case 0x22:
3103 return s->xcer[1];
3104 case 0x24:
3105 return s->pcr;
3106 case 0x26:
3107 return s->rcer[2];
3108 case 0x28:
3109 return s->rcer[3];
3110 case 0x2a:
3111 return s->xcer[2];
3112 case 0x2c:
3113 return s->xcer[3];
3114 case 0x2e:
3115 return s->rcer[4];
3116 case 0x30:
3117 return s->rcer[5];
3118 case 0x32:
3119 return s->xcer[4];
3120 case 0x34:
3121 return s->xcer[5];
3122 case 0x36:
3123 return s->rcer[6];
3124 case 0x38:
3125 return s->rcer[7];
3126 case 0x3a:
3127 return s->xcer[6];
3128 case 0x3c:
3129 return s->xcer[7];
3130 }
3131
3132 OMAP_BAD_REG(addr);
3133 return 0;
3134}
3135
3136static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
3137 uint32_t value)
3138{
3139 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3140 int offset = addr & OMAP_MPUI_REG_MASK;
3141
3142 switch (offset) {
3143 case 0x00:
3144 case 0x02:
3145 OMAP_RO_REG(addr);
3146 return;
3147
3148 case 0x04:
3149 if (((s->xcr[0] >> 5) & 7) < 3)
3150 return;
3151
3152 case 0x06:
3153 if (s->tx_req > 1) {
3154 s->tx_req -= 2;
3155 if (s->codec && s->codec->cts) {
3156 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3157 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3158 }
3159 if (s->tx_req < 2)
3160 omap_mcbsp_tx_done(s);
3161 } else
3162 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3163 return;
3164
3165 case 0x08:
3166 s->spcr[1] &= 0x0002;
3167 s->spcr[1] |= 0x03f9 & value;
3168 s->spcr[1] |= 0x0004 & (value << 2);
3169 if (~value & 1)
3170 s->spcr[1] &= ~6;
3171 omap_mcbsp_req_update(s);
3172 return;
3173 case 0x0a:
3174 s->spcr[0] &= 0x0006;
3175 s->spcr[0] |= 0xf8f9 & value;
3176 if (value & (1 << 15))
3177 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3178 if (~value & 1) {
3179 s->spcr[0] &= ~6;
3180 s->rx_req = 0;
3181 omap_mcbsp_rx_done(s);
3182 }
3183 omap_mcbsp_req_update(s);
3184 return;
3185
3186 case 0x0c:
3187 s->rcr[1] = value & 0xffff;
3188 return;
3189 case 0x0e:
3190 s->rcr[0] = value & 0x7fe0;
3191 return;
3192 case 0x10:
3193 s->xcr[1] = value & 0xffff;
3194 return;
3195 case 0x12:
3196 s->xcr[0] = value & 0x7fe0;
3197 return;
3198 case 0x14:
3199 s->srgr[1] = value & 0xffff;
3200 omap_mcbsp_req_update(s);
3201 return;
3202 case 0x16:
3203 s->srgr[0] = value & 0xffff;
3204 omap_mcbsp_req_update(s);
3205 return;
3206 case 0x18:
3207 s->mcr[1] = value & 0x03e3;
3208 if (value & 3)
3209 printf("%s: Tx channel selection mode enable attempt\n",
3210 __FUNCTION__);
3211 return;
3212 case 0x1a:
3213 s->mcr[0] = value & 0x03e1;
3214 if (value & 1)
3215 printf("%s: Rx channel selection mode enable attempt\n",
3216 __FUNCTION__);
3217 return;
3218 case 0x1c:
3219 s->rcer[0] = value & 0xffff;
3220 return;
3221 case 0x1e:
3222 s->rcer[1] = value & 0xffff;
3223 return;
3224 case 0x20:
3225 s->xcer[0] = value & 0xffff;
3226 return;
3227 case 0x22:
3228 s->xcer[1] = value & 0xffff;
3229 return;
3230 case 0x24:
3231 s->pcr = value & 0x7faf;
3232 return;
3233 case 0x26:
3234 s->rcer[2] = value & 0xffff;
3235 return;
3236 case 0x28:
3237 s->rcer[3] = value & 0xffff;
3238 return;
3239 case 0x2a:
3240 s->xcer[2] = value & 0xffff;
3241 return;
3242 case 0x2c:
3243 s->xcer[3] = value & 0xffff;
3244 return;
3245 case 0x2e:
3246 s->rcer[4] = value & 0xffff;
3247 return;
3248 case 0x30:
3249 s->rcer[5] = value & 0xffff;
3250 return;
3251 case 0x32:
3252 s->xcer[4] = value & 0xffff;
3253 return;
3254 case 0x34:
3255 s->xcer[5] = value & 0xffff;
3256 return;
3257 case 0x36:
3258 s->rcer[6] = value & 0xffff;
3259 return;
3260 case 0x38:
3261 s->rcer[7] = value & 0xffff;
3262 return;
3263 case 0x3a:
3264 s->xcer[6] = value & 0xffff;
3265 return;
3266 case 0x3c:
3267 s->xcer[7] = value & 0xffff;
3268 return;
3269 }
3270
3271 OMAP_BAD_REG(addr);
3272}
3273
3274static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
3275 uint32_t value)
3276{
3277 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3278 int offset = addr & OMAP_MPUI_REG_MASK;
3279
3280 if (offset == 0x04) {
3281 if (((s->xcr[0] >> 5) & 7) < 3)
3282 return;
3283 if (s->tx_req > 3) {
3284 s->tx_req -= 4;
3285 if (s->codec && s->codec->cts) {
3286 s->codec->out.fifo[s->codec->out.len ++] =
3287 (value >> 24) & 0xff;
3288 s->codec->out.fifo[s->codec->out.len ++] =
3289 (value >> 16) & 0xff;
3290 s->codec->out.fifo[s->codec->out.len ++] =
3291 (value >> 8) & 0xff;
3292 s->codec->out.fifo[s->codec->out.len ++] =
3293 (value >> 0) & 0xff;
3294 }
3295 if (s->tx_req < 4)
3296 omap_mcbsp_tx_done(s);
3297 } else
3298 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3299 return;
3300 }
3301
3302 omap_badwidth_write16(opaque, addr, value);
3303}
3304
3305static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = {
3306 omap_badwidth_read16,
3307 omap_mcbsp_read,
3308 omap_badwidth_read16,
3309};
3310
3311static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = {
3312 omap_badwidth_write16,
3313 omap_mcbsp_writeh,
3314 omap_mcbsp_writew,
3315};
3316
3317static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3318{
3319 memset(&s->spcr, 0, sizeof(s->spcr));
3320 memset(&s->rcr, 0, sizeof(s->rcr));
3321 memset(&s->xcr, 0, sizeof(s->xcr));
3322 s->srgr[0] = 0x0001;
3323 s->srgr[1] = 0x2000;
3324 memset(&s->mcr, 0, sizeof(s->mcr));
3325 memset(&s->pcr, 0, sizeof(s->pcr));
3326 memset(&s->rcer, 0, sizeof(s->rcer));
3327 memset(&s->xcer, 0, sizeof(s->xcer));
3328 s->tx_req = 0;
3329 s->rx_req = 0;
3330 s->tx_rate = 0;
3331 s->rx_rate = 0;
3332 qemu_del_timer(s->source_timer);
3333 qemu_del_timer(s->sink_timer);
3334}
3335
3336struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
3337 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
3338{
3339 int iomemtype;
3340 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3341 qemu_mallocz(sizeof(struct omap_mcbsp_s));
3342
3343 s->txirq = irq[0];
3344 s->rxirq = irq[1];
3345 s->txdrq = dma[0];
3346 s->rxdrq = dma[1];
3347 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
3348 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
3349 omap_mcbsp_reset(s);
3350
3351 iomemtype = cpu_register_io_memory(omap_mcbsp_readfn,
3352 omap_mcbsp_writefn, s, DEVICE_NATIVE_ENDIAN);
3353 cpu_register_physical_memory(base, 0x800, iomemtype);
3354
3355 return s;
3356}
3357
3358static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3359{
3360 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3361
3362 if (s->rx_rate) {
3363 s->rx_req = s->codec->in.len;
3364 omap_mcbsp_rx_newdata(s);
3365 }
3366}
3367
3368static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3369{
3370 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3371
3372 if (s->tx_rate) {
3373 s->tx_req = s->codec->out.size;
3374 omap_mcbsp_tx_newdata(s);
3375 }
3376}
3377
3378void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3379{
3380 s->codec = slave;
3381 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3382 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3383}
3384
3385
3386struct omap_lpg_s {
3387 QEMUTimer *tm;
3388
3389 uint8_t control;
3390 uint8_t power;
3391 int64_t on;
3392 int64_t period;
3393 int clk;
3394 int cycle;
3395};
3396
3397static void omap_lpg_tick(void *opaque)
3398{
3399 struct omap_lpg_s *s = opaque;
3400
3401 if (s->cycle)
3402 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
3403 else
3404 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
3405
3406 s->cycle = !s->cycle;
3407 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3408}
3409
3410static void omap_lpg_update(struct omap_lpg_s *s)
3411{
3412 int64_t on, period = 1, ticks = 1000;
3413 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3414
3415 if (~s->control & (1 << 6))
3416 on = 0;
3417 else if (s->control & (1 << 7))
3418 on = period;
3419 else {
3420 period = muldiv64(ticks, per[s->control & 7],
3421 256 / 32);
3422 on = (s->clk && s->power) ? muldiv64(ticks,
3423 per[(s->control >> 3) & 7], 256) : 0;
3424 }
3425
3426 qemu_del_timer(s->tm);
3427 if (on == period && s->on < s->period)
3428 printf("%s: LED is on\n", __FUNCTION__);
3429 else if (on == 0 && s->on)
3430 printf("%s: LED is off\n", __FUNCTION__);
3431 else if (on && (on != s->on || period != s->period)) {
3432 s->cycle = 0;
3433 s->on = on;
3434 s->period = period;
3435 omap_lpg_tick(s);
3436 return;
3437 }
3438
3439 s->on = on;
3440 s->period = period;
3441}
3442
3443static void omap_lpg_reset(struct omap_lpg_s *s)
3444{
3445 s->control = 0x00;
3446 s->power = 0x00;
3447 s->clk = 1;
3448 omap_lpg_update(s);
3449}
3450
3451static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
3452{
3453 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3454 int offset = addr & OMAP_MPUI_REG_MASK;
3455
3456 switch (offset) {
3457 case 0x00:
3458 return s->control;
3459
3460 case 0x04:
3461 return s->power;
3462 }
3463
3464 OMAP_BAD_REG(addr);
3465 return 0;
3466}
3467
3468static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
3469 uint32_t value)
3470{
3471 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3472 int offset = addr & OMAP_MPUI_REG_MASK;
3473
3474 switch (offset) {
3475 case 0x00:
3476 if (~value & (1 << 6))
3477 omap_lpg_reset(s);
3478 s->control = value & 0xff;
3479 omap_lpg_update(s);
3480 return;
3481
3482 case 0x04:
3483 s->power = value & 0x01;
3484 omap_lpg_update(s);
3485 return;
3486
3487 default:
3488 OMAP_BAD_REG(addr);
3489 return;
3490 }
3491}
3492
3493static CPUReadMemoryFunc * const omap_lpg_readfn[] = {
3494 omap_lpg_read,
3495 omap_badwidth_read8,
3496 omap_badwidth_read8,
3497};
3498
3499static CPUWriteMemoryFunc * const omap_lpg_writefn[] = {
3500 omap_lpg_write,
3501 omap_badwidth_write8,
3502 omap_badwidth_write8,
3503};
3504
3505static void omap_lpg_clk_update(void *opaque, int line, int on)
3506{
3507 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3508
3509 s->clk = on;
3510 omap_lpg_update(s);
3511}
3512
3513static struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
3514{
3515 int iomemtype;
3516 struct omap_lpg_s *s = (struct omap_lpg_s *)
3517 qemu_mallocz(sizeof(struct omap_lpg_s));
3518
3519 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
3520
3521 omap_lpg_reset(s);
3522
3523 iomemtype = cpu_register_io_memory(omap_lpg_readfn,
3524 omap_lpg_writefn, s, DEVICE_NATIVE_ENDIAN);
3525 cpu_register_physical_memory(base, 0x800, iomemtype);
3526
3527 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3528
3529 return s;
3530}
3531
3532
3533static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
3534{
3535 if (addr == OMAP_MPUI_BASE)
3536 return 0xfe4d;
3537
3538 OMAP_BAD_REG(addr);
3539 return 0;
3540}
3541
3542static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = {
3543 omap_badwidth_read16,
3544 omap_mpui_io_read,
3545 omap_badwidth_read16,
3546};
3547
3548static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = {
3549 omap_badwidth_write16,
3550 omap_badwidth_write16,
3551 omap_badwidth_write16,
3552};
3553
3554static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
3555{
3556 int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
3557 omap_mpui_io_writefn, mpu, DEVICE_NATIVE_ENDIAN);
3558 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
3559}
3560
3561
3562static void omap1_mpu_reset(void *opaque)
3563{
3564 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3565
3566 omap_inth_reset(mpu->ih[0]);
3567 omap_inth_reset(mpu->ih[1]);
3568 omap_dma_reset(mpu->dma);
3569 omap_mpu_timer_reset(mpu->timer[0]);
3570 omap_mpu_timer_reset(mpu->timer[1]);
3571 omap_mpu_timer_reset(mpu->timer[2]);
3572 omap_wd_timer_reset(mpu->wdt);
3573 omap_os_timer_reset(mpu->os_timer);
3574 omap_lcdc_reset(mpu->lcd);
3575 omap_ulpd_pm_reset(mpu);
3576 omap_pin_cfg_reset(mpu);
3577 omap_mpui_reset(mpu);
3578 omap_tipb_bridge_reset(mpu->private_tipb);
3579 omap_tipb_bridge_reset(mpu->public_tipb);
3580 omap_dpll_reset(&mpu->dpll[0]);
3581 omap_dpll_reset(&mpu->dpll[1]);
3582 omap_dpll_reset(&mpu->dpll[2]);
3583 omap_uart_reset(mpu->uart[0]);
3584 omap_uart_reset(mpu->uart[1]);
3585 omap_uart_reset(mpu->uart[2]);
3586 omap_mmc_reset(mpu->mmc);
3587 omap_mpuio_reset(mpu->mpuio);
3588 omap_gpio_reset(mpu->gpio);
3589 omap_uwire_reset(mpu->microwire);
3590 omap_pwl_reset(mpu);
3591 omap_pwt_reset(mpu);
3592 omap_i2c_reset(mpu->i2c[0]);
3593 omap_rtc_reset(mpu->rtc);
3594 omap_mcbsp_reset(mpu->mcbsp1);
3595 omap_mcbsp_reset(mpu->mcbsp2);
3596 omap_mcbsp_reset(mpu->mcbsp3);
3597 omap_lpg_reset(mpu->led[0]);
3598 omap_lpg_reset(mpu->led[1]);
3599 omap_clkm_reset(mpu);
3600 cpu_reset(mpu->env);
3601}
3602
3603static const struct omap_map_s {
3604 target_phys_addr_t phys_dsp;
3605 target_phys_addr_t phys_mpu;
3606 uint32_t size;
3607 const char *name;
3608} omap15xx_dsp_mm[] = {
3609
3610 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },
3611 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },
3612 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },
3613 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },
3614 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },
3615 { 0xe1013000, 0xfffb3000, 0x800, "uWire" },
3616 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },
3617 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },
3618 { 0xe1014800, 0xfffb4800, 0x800, "RTC" },
3619 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },
3620 { 0xe1015800, 0xfffb5800, 0x800, "PWL" },
3621 { 0xe1016000, 0xfffb6000, 0x800, "PWT" },
3622 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },
3623 { 0xe1017800, 0xfffb7800, 0x800, "MMC" },
3624 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },
3625 { 0xe1019800, 0xfffb9800, 0x800, "UART3" },
3626 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },
3627
3628 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },
3629
3630 { 0 }
3631};
3632
3633static void omap_setup_dsp_mapping(const struct omap_map_s *map)
3634{
3635 int io;
3636
3637 for (; map->phys_dsp; map ++) {
3638 io = cpu_get_physical_page_desc(map->phys_mpu);
3639
3640 cpu_register_physical_memory(map->phys_dsp, map->size, io);
3641 }
3642}
3643
3644void omap_mpu_wakeup(void *opaque, int irq, int req)
3645{
3646 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3647
3648 if (mpu->env->halted)
3649 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3650}
3651
3652static const struct dma_irq_map omap1_dma_irq_map[] = {
3653 { 0, OMAP_INT_DMA_CH0_6 },
3654 { 0, OMAP_INT_DMA_CH1_7 },
3655 { 0, OMAP_INT_DMA_CH2_8 },
3656 { 0, OMAP_INT_DMA_CH3 },
3657 { 0, OMAP_INT_DMA_CH4 },
3658 { 0, OMAP_INT_DMA_CH5 },
3659 { 1, OMAP_INT_1610_DMA_CH6 },
3660 { 1, OMAP_INT_1610_DMA_CH7 },
3661 { 1, OMAP_INT_1610_DMA_CH8 },
3662 { 1, OMAP_INT_1610_DMA_CH9 },
3663 { 1, OMAP_INT_1610_DMA_CH10 },
3664 { 1, OMAP_INT_1610_DMA_CH11 },
3665 { 1, OMAP_INT_1610_DMA_CH12 },
3666 { 1, OMAP_INT_1610_DMA_CH13 },
3667 { 1, OMAP_INT_1610_DMA_CH14 },
3668 { 1, OMAP_INT_1610_DMA_CH15 }
3669};
3670
3671
3672static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3673 target_phys_addr_t addr)
3674{
3675 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3676}
3677
3678static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3679 target_phys_addr_t addr)
3680{
3681 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3682 addr);
3683}
3684
3685static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3686 target_phys_addr_t addr)
3687{
3688 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3689}
3690
3691static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3692 target_phys_addr_t addr)
3693{
3694 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3695}
3696
3697static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3698 target_phys_addr_t addr)
3699{
3700 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3701}
3702
3703static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3704 target_phys_addr_t addr)
3705{
3706 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3707}
3708
3709struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3710 const char *core)
3711{
3712 int i;
3713 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3714 qemu_mallocz(sizeof(struct omap_mpu_state_s));
3715 ram_addr_t imif_base, emiff_base;
3716 qemu_irq *cpu_irq;
3717 qemu_irq dma_irqs[6];
3718 DriveInfo *dinfo;
3719
3720 if (!core)
3721 core = "ti925t";
3722
3723
3724 s->mpu_model = omap310;
3725 s->env = cpu_init(core);
3726 if (!s->env) {
3727 fprintf(stderr, "Unable to find CPU definition\n");
3728 exit(1);
3729 }
3730 s->sdram_size = sdram_size;
3731 s->sram_size = OMAP15XX_SRAM_SIZE;
3732
3733 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3734
3735
3736 omap_clk_init(s);
3737
3738
3739 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3740 (emiff_base = qemu_ram_alloc(NULL, "omap1.dram",
3741 s->sdram_size)) | IO_MEM_RAM);
3742 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3743 (imif_base = qemu_ram_alloc(NULL, "omap1.sram",
3744 s->sram_size)) | IO_MEM_RAM);
3745
3746 omap_clkm_init(0xfffece00, 0xe1008000, s);
3747
3748 cpu_irq = arm_pic_init_cpu(s->env);
3749 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
3750 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
3751 omap_findclk(s, "arminth_ck"));
3752 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
3753 omap_inth_get_pin(s->ih[0], OMAP_INT_15XX_IH2_IRQ),
3754 NULL, omap_findclk(s, "arminth_ck"));
3755
3756 for (i = 0; i < 6; i ++)
3757 dma_irqs[i] =
3758 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
3759 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
3760 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3761
3762 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3763 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3764 s->port[imif ].addr_valid = omap_validate_imif_addr;
3765 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3766 s->port[local ].addr_valid = omap_validate_local_addr;
3767 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3768
3769
3770 soc_dma_port_add_mem_ram(s->dma,
3771 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
3772 soc_dma_port_add_mem_ram(s->dma,
3773 imif_base, OMAP_IMIF_BASE, s->sram_size);
3774
3775 s->timer[0] = omap_mpu_timer_init(0xfffec500,
3776 s->irq[0][OMAP_INT_TIMER1],
3777 omap_findclk(s, "mputim_ck"));
3778 s->timer[1] = omap_mpu_timer_init(0xfffec600,
3779 s->irq[0][OMAP_INT_TIMER2],
3780 omap_findclk(s, "mputim_ck"));
3781 s->timer[2] = omap_mpu_timer_init(0xfffec700,
3782 s->irq[0][OMAP_INT_TIMER3],
3783 omap_findclk(s, "mputim_ck"));
3784
3785 s->wdt = omap_wd_timer_init(0xfffec800,
3786 s->irq[0][OMAP_INT_WD_TIMER],
3787 omap_findclk(s, "armwdt_ck"));
3788
3789 s->os_timer = omap_os_timer_init(0xfffb9000,
3790 s->irq[1][OMAP_INT_OS_TIMER],
3791 omap_findclk(s, "clk32-kHz"));
3792
3793 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3794 omap_dma_get_lcdch(s->dma), imif_base, emiff_base,
3795 omap_findclk(s, "lcd_ck"));
3796
3797 omap_ulpd_pm_init(0xfffe0800, s);
3798 omap_pin_cfg_init(0xfffe1000, s);
3799 omap_id_init(s);
3800
3801 omap_mpui_init(0xfffec900, s);
3802
3803 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3804 s->irq[0][OMAP_INT_BRIDGE_PRIV],
3805 omap_findclk(s, "tipb_ck"));
3806 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3807 s->irq[0][OMAP_INT_BRIDGE_PUB],
3808 omap_findclk(s, "tipb_ck"));
3809
3810 omap_tcmi_init(0xfffecc00, s);
3811
3812 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3813 omap_findclk(s, "uart1_ck"),
3814 omap_findclk(s, "uart1_ck"),
3815 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3816 "uart1",
3817 serial_hds[0]);
3818 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3819 omap_findclk(s, "uart2_ck"),
3820 omap_findclk(s, "uart2_ck"),
3821 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3822 "uart2",
3823 serial_hds[0] ? serial_hds[1] : NULL);
3824 s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
3825 omap_findclk(s, "uart3_ck"),
3826 omap_findclk(s, "uart3_ck"),
3827 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3828 "uart3",
3829 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3830
3831 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3832 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3833 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3834
3835 dinfo = drive_get(IF_SD, 0, 0);
3836 if (!dinfo) {
3837 fprintf(stderr, "qemu: missing SecureDigital device\n");
3838 exit(1);
3839 }
3840 s->mmc = omap_mmc_init(0xfffb7800, dinfo->bdrv,
3841 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
3842 omap_findclk(s, "mmc_ck"));
3843
3844 s->mpuio = omap_mpuio_init(0xfffb5000,
3845 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3846 s->wakeup, omap_findclk(s, "clk32-kHz"));
3847
3848 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
3849 omap_findclk(s, "arm_gpio_ck"));
3850
3851 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3852 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3853
3854 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
3855 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
3856
3857 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
3858 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
3859
3860 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
3861 omap_findclk(s, "clk32-kHz"));
3862
3863 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
3864 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
3865 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
3866 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
3867 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
3868 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
3869
3870 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
3871 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888 omap_setup_dsp_mapping(omap15xx_dsp_mm);
3889 omap_setup_mpui_io(s);
3890
3891 qemu_register_reset(omap1_mpu_reset, s);
3892
3893 return s;
3894}
3895