qemu/hw/lm32_boards.c
<<
>>
Prefs
   1/*
   2 *  QEMU models for LatticeMico32 uclinux and evr32 boards.
   3 *
   4 *  Copyright (c) 2010 Michael Walle <michael@walle.cc>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "sysbus.h"
  21#include "hw.h"
  22#include "net.h"
  23#include "flash.h"
  24#include "devices.h"
  25#include "boards.h"
  26#include "loader.h"
  27#include "blockdev.h"
  28#include "elf.h"
  29#include "lm32_hwsetup.h"
  30#include "lm32.h"
  31
  32typedef struct {
  33    CPUState *env;
  34    target_phys_addr_t bootstrap_pc;
  35    target_phys_addr_t flash_base;
  36    target_phys_addr_t hwsetup_base;
  37    target_phys_addr_t initrd_base;
  38    size_t initrd_size;
  39    target_phys_addr_t cmdline_base;
  40} ResetInfo;
  41
  42static void cpu_irq_handler(void *opaque, int irq, int level)
  43{
  44    CPUState *env = opaque;
  45
  46    if (level) {
  47        cpu_interrupt(env, CPU_INTERRUPT_HARD);
  48    } else {
  49        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  50    }
  51}
  52
  53static void main_cpu_reset(void *opaque)
  54{
  55    ResetInfo *reset_info = opaque;
  56    CPUState *env = reset_info->env;
  57
  58    cpu_reset(env);
  59
  60    /* init defaults */
  61    env->pc = (uint32_t)reset_info->bootstrap_pc;
  62    env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
  63    env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
  64    env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
  65    env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
  66        reset_info->initrd_size);
  67    env->eba = reset_info->flash_base;
  68    env->deba = reset_info->flash_base;
  69}
  70
  71static void lm32_evr_init(ram_addr_t ram_size_not_used,
  72                          const char *boot_device,
  73                          const char *kernel_filename,
  74                          const char *kernel_cmdline,
  75                          const char *initrd_filename, const char *cpu_model)
  76{
  77    CPUState *env;
  78    DriveInfo *dinfo;
  79    ram_addr_t phys_ram;
  80    ram_addr_t phys_flash;
  81    qemu_irq *cpu_irq, irq[32];
  82    ResetInfo *reset_info;
  83    int i;
  84
  85    /* memory map */
  86    target_phys_addr_t flash_base  = 0x04000000;
  87    size_t flash_sector_size       = 256 * 1024;
  88    size_t flash_size              = 32 * 1024 * 1024;
  89    target_phys_addr_t ram_base    = 0x08000000;
  90    size_t ram_size                = 64 * 1024 * 1024;
  91    target_phys_addr_t timer0_base = 0x80002000;
  92    target_phys_addr_t uart0_base  = 0x80006000;
  93    target_phys_addr_t timer1_base = 0x8000a000;
  94    int uart0_irq                  = 0;
  95    int timer0_irq                 = 1;
  96    int timer1_irq                 = 3;
  97
  98    reset_info = qemu_mallocz(sizeof(ResetInfo));
  99
 100    if (cpu_model == NULL) {
 101        cpu_model = "lm32-full";
 102    }
 103    env = cpu_init(cpu_model);
 104    reset_info->env = env;
 105
 106    reset_info->flash_base = flash_base;
 107
 108    phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
 109    cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
 110
 111    phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
 112    dinfo = drive_get(IF_PFLASH, 0, 0);
 113    /* Spansion S29NS128P */
 114    pflash_cfi02_register(flash_base, phys_flash,
 115                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
 116                          flash_size / flash_sector_size, 1, 2,
 117                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
 118
 119    /* create irq lines */
 120    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
 121    env->pic_state = lm32_pic_init(*cpu_irq);
 122    for (i = 0; i < 32; i++) {
 123        irq[i] = qdev_get_gpio_in(env->pic_state, i);
 124    }
 125
 126    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
 127    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
 128    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
 129
 130    /* make sure juart isn't the first chardev */
 131    env->juart_state = lm32_juart_init();
 132
 133    reset_info->bootstrap_pc = flash_base;
 134
 135    if (kernel_filename) {
 136        uint64_t entry;
 137        int kernel_size;
 138
 139        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
 140                               1, ELF_MACHINE, 0);
 141        reset_info->bootstrap_pc = entry;
 142
 143        if (kernel_size < 0) {
 144            kernel_size = load_image_targphys(kernel_filename, ram_base,
 145                                              ram_size);
 146            reset_info->bootstrap_pc = ram_base;
 147        }
 148
 149        if (kernel_size < 0) {
 150            fprintf(stderr, "qemu: could not load kernel '%s'\n",
 151                    kernel_filename);
 152            exit(1);
 153        }
 154    }
 155
 156    qemu_register_reset(main_cpu_reset, reset_info);
 157}
 158
 159static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
 160                          const char *boot_device,
 161                          const char *kernel_filename,
 162                          const char *kernel_cmdline,
 163                          const char *initrd_filename, const char *cpu_model)
 164{
 165    CPUState *env;
 166    DriveInfo *dinfo;
 167    ram_addr_t phys_ram;
 168    ram_addr_t phys_flash;
 169    qemu_irq *cpu_irq, irq[32];
 170    HWSetup *hw;
 171    ResetInfo *reset_info;
 172    int i;
 173
 174    /* memory map */
 175    target_phys_addr_t flash_base   = 0x04000000;
 176    size_t flash_sector_size        = 256 * 1024;
 177    size_t flash_size               = 32 * 1024 * 1024;
 178    target_phys_addr_t ram_base     = 0x08000000;
 179    size_t ram_size                 = 64 * 1024 * 1024;
 180    target_phys_addr_t uart0_base   = 0x80000000;
 181    target_phys_addr_t timer0_base  = 0x80002000;
 182    target_phys_addr_t timer1_base  = 0x80010000;
 183    target_phys_addr_t timer2_base  = 0x80012000;
 184    int uart0_irq                   = 0;
 185    int timer0_irq                  = 1;
 186    int timer1_irq                  = 20;
 187    int timer2_irq                  = 21;
 188    target_phys_addr_t hwsetup_base = 0x0bffe000;
 189    target_phys_addr_t cmdline_base = 0x0bfff000;
 190    target_phys_addr_t initrd_base  = 0x08400000;
 191    size_t initrd_max               = 0x01000000;
 192
 193    reset_info = qemu_mallocz(sizeof(ResetInfo));
 194
 195    if (cpu_model == NULL) {
 196        cpu_model = "lm32-full";
 197    }
 198    env = cpu_init(cpu_model);
 199    reset_info->env = env;
 200
 201    reset_info->flash_base = flash_base;
 202
 203    phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
 204    cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
 205
 206    phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
 207    dinfo = drive_get(IF_PFLASH, 0, 0);
 208    /* Spansion S29NS128P */
 209    pflash_cfi02_register(flash_base, phys_flash,
 210                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
 211                          flash_size / flash_sector_size, 1, 2,
 212                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
 213
 214    /* create irq lines */
 215    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
 216    env->pic_state = lm32_pic_init(*cpu_irq);
 217    for (i = 0; i < 32; i++) {
 218        irq[i] = qdev_get_gpio_in(env->pic_state, i);
 219    }
 220
 221    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
 222    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
 223    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
 224    sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
 225
 226    /* make sure juart isn't the first chardev */
 227    env->juart_state = lm32_juart_init();
 228
 229    reset_info->bootstrap_pc = flash_base;
 230
 231    if (kernel_filename) {
 232        uint64_t entry;
 233        int kernel_size;
 234
 235        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
 236                               1, ELF_MACHINE, 0);
 237        reset_info->bootstrap_pc = entry;
 238
 239        if (kernel_size < 0) {
 240            kernel_size = load_image_targphys(kernel_filename, ram_base,
 241                                              ram_size);
 242            reset_info->bootstrap_pc = ram_base;
 243        }
 244
 245        if (kernel_size < 0) {
 246            fprintf(stderr, "qemu: could not load kernel '%s'\n",
 247                    kernel_filename);
 248            exit(1);
 249        }
 250    }
 251
 252    /* generate a rom with the hardware description */
 253    hw = hwsetup_init();
 254    hwsetup_add_cpu(hw, "LM32", 75000000);
 255    hwsetup_add_flash(hw, "flash", flash_base, flash_size);
 256    hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
 257    hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
 258    hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
 259    hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
 260    hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
 261    hwsetup_add_trailer(hw);
 262    hwsetup_create_rom(hw, hwsetup_base);
 263    hwsetup_free(hw);
 264
 265    reset_info->hwsetup_base = hwsetup_base;
 266
 267    if (kernel_cmdline && strlen(kernel_cmdline)) {
 268        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
 269                kernel_cmdline);
 270        reset_info->cmdline_base = cmdline_base;
 271    }
 272
 273    if (initrd_filename) {
 274        size_t initrd_size;
 275        initrd_size = load_image_targphys(initrd_filename, initrd_base,
 276                initrd_max);
 277        reset_info->initrd_base = initrd_base;
 278        reset_info->initrd_size = initrd_size;
 279    }
 280
 281    qemu_register_reset(main_cpu_reset, reset_info);
 282}
 283
 284static QEMUMachine lm32_evr_machine = {
 285    .name = "lm32-evr",
 286    .desc = "LatticeMico32 EVR32 eval system",
 287    .init = lm32_evr_init,
 288    .is_default = 1
 289};
 290
 291static QEMUMachine lm32_uclinux_machine = {
 292    .name = "lm32-uclinux",
 293    .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
 294    .init = lm32_uclinux_init,
 295    .is_default = 0
 296};
 297
 298static void lm32_machine_init(void)
 299{
 300    qemu_register_machine(&lm32_uclinux_machine);
 301    qemu_register_machine(&lm32_evr_machine);
 302}
 303
 304machine_init(lm32_machine_init);
 305