qemu/hw/ne2000.c
<<
>>
Prefs
   1/*
   2 * QEMU NE2000 emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw.h"
  25#include "pci.h"
  26#include "net.h"
  27#include "ne2000.h"
  28#include "loader.h"
  29#include "sysemu.h"
  30
  31/* debug NE2000 card */
  32//#define DEBUG_NE2000
  33
  34#define MAX_ETH_FRAME_SIZE 1514
  35
  36#define E8390_CMD       0x00  /* The command register (for all pages) */
  37/* Page 0 register offsets. */
  38#define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
  39#define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
  40#define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
  41#define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
  42#define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
  43#define EN0_TSR         0x04    /* Transmit status reg RD */
  44#define EN0_TPSR        0x04    /* Transmit starting page WR */
  45#define EN0_NCR         0x05    /* Number of collision reg RD */
  46#define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
  47#define EN0_FIFO        0x06    /* FIFO RD */
  48#define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
  49#define EN0_ISR         0x07    /* Interrupt status reg RD WR */
  50#define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
  51#define EN0_RSARLO      0x08    /* Remote start address reg 0 */
  52#define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
  53#define EN0_RSARHI      0x09    /* Remote start address reg 1 */
  54#define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
  55#define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
  56#define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
  57#define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
  58#define EN0_RSR         0x0c    /* rx status reg RD */
  59#define EN0_RXCR        0x0c    /* RX configuration reg WR */
  60#define EN0_TXCR        0x0d    /* TX configuration reg WR */
  61#define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
  62#define EN0_DCFG        0x0e    /* Data configuration reg WR */
  63#define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
  64#define EN0_IMR         0x0f    /* Interrupt mask reg WR */
  65#define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
  66
  67#define EN1_PHYS        0x11
  68#define EN1_CURPAG      0x17
  69#define EN1_MULT        0x18
  70
  71#define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
  72#define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
  73
  74#define EN3_CONFIG0     0x33
  75#define EN3_CONFIG1     0x34
  76#define EN3_CONFIG2     0x35
  77#define EN3_CONFIG3     0x36
  78
  79/*  Register accessed at EN_CMD, the 8390 base addr.  */
  80#define E8390_STOP      0x01    /* Stop and reset the chip */
  81#define E8390_START     0x02    /* Start the chip, clear reset */
  82#define E8390_TRANS     0x04    /* Transmit a frame */
  83#define E8390_RREAD     0x08    /* Remote read */
  84#define E8390_RWRITE    0x10    /* Remote write  */
  85#define E8390_NODMA     0x20    /* Remote DMA */
  86#define E8390_PAGE0     0x00    /* Select page chip registers */
  87#define E8390_PAGE1     0x40    /* using the two high-order bits */
  88#define E8390_PAGE2     0x80    /* Page 3 is invalid. */
  89
  90/* Bits in EN0_ISR - Interrupt status register */
  91#define ENISR_RX        0x01    /* Receiver, no error */
  92#define ENISR_TX        0x02    /* Transmitter, no error */
  93#define ENISR_RX_ERR    0x04    /* Receiver, with error */
  94#define ENISR_TX_ERR    0x08    /* Transmitter, with error */
  95#define ENISR_OVER      0x10    /* Receiver overwrote the ring */
  96#define ENISR_COUNTERS  0x20    /* Counters need emptying */
  97#define ENISR_RDC       0x40    /* remote dma complete */
  98#define ENISR_RESET     0x80    /* Reset completed */
  99#define ENISR_ALL       0x3f    /* Interrupts we will enable */
 100
 101/* Bits in received packet status byte and EN0_RSR*/
 102#define ENRSR_RXOK      0x01    /* Received a good packet */
 103#define ENRSR_CRC       0x02    /* CRC error */
 104#define ENRSR_FAE       0x04    /* frame alignment error */
 105#define ENRSR_FO        0x08    /* FIFO overrun */
 106#define ENRSR_MPA       0x10    /* missed pkt */
 107#define ENRSR_PHY       0x20    /* physical/multicast address */
 108#define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
 109#define ENRSR_DEF       0x80    /* deferring */
 110
 111/* Transmitted packet status, EN0_TSR. */
 112#define ENTSR_PTX 0x01  /* Packet transmitted without error */
 113#define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
 114#define ENTSR_COL 0x04  /* The transmit collided at least once. */
 115#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
 116#define ENTSR_CRS 0x10  /* The carrier sense was lost. */
 117#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
 118#define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
 119#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
 120
 121typedef struct PCINE2000State {
 122    PCIDevice dev;
 123    NE2000State ne2000;
 124} PCINE2000State;
 125
 126void ne2000_reset(NE2000State *s)
 127{
 128    int i;
 129
 130    s->isr = ENISR_RESET;
 131    memcpy(s->mem, &s->c.macaddr, 6);
 132    s->mem[14] = 0x57;
 133    s->mem[15] = 0x57;
 134
 135    /* duplicate prom data */
 136    for(i = 15;i >= 0; i--) {
 137        s->mem[2 * i] = s->mem[i];
 138        s->mem[2 * i + 1] = s->mem[i];
 139    }
 140}
 141
 142static void ne2000_update_irq(NE2000State *s)
 143{
 144    int isr;
 145    isr = (s->isr & s->imr) & 0x7f;
 146#if defined(DEBUG_NE2000)
 147    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
 148           isr ? 1 : 0, s->isr, s->imr);
 149#endif
 150    qemu_set_irq(s->irq, (isr != 0));
 151}
 152
 153#define POLYNOMIAL 0x04c11db6
 154
 155/* From FreeBSD */
 156/* XXX: optimize */
 157static int compute_mcast_idx(const uint8_t *ep)
 158{
 159    uint32_t crc;
 160    int carry, i, j;
 161    uint8_t b;
 162
 163    crc = 0xffffffff;
 164    for (i = 0; i < 6; i++) {
 165        b = *ep++;
 166        for (j = 0; j < 8; j++) {
 167            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
 168            crc <<= 1;
 169            b >>= 1;
 170            if (carry)
 171                crc = ((crc ^ POLYNOMIAL) | carry);
 172        }
 173    }
 174    return (crc >> 26);
 175}
 176
 177static int ne2000_buffer_full(NE2000State *s)
 178{
 179    int avail, index, boundary;
 180
 181    index = s->curpag << 8;
 182    boundary = s->boundary << 8;
 183    if (index < boundary)
 184        avail = boundary - index;
 185    else
 186        avail = (s->stop - s->start) - (index - boundary);
 187    if (avail < (MAX_ETH_FRAME_SIZE + 4))
 188        return 1;
 189    return 0;
 190}
 191
 192int ne2000_can_receive(VLANClientState *nc)
 193{
 194    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
 195
 196    if (s->cmd & E8390_STOP)
 197        return 1;
 198    return !ne2000_buffer_full(s);
 199}
 200
 201#define MIN_BUF_SIZE 60
 202
 203ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
 204{
 205    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
 206    int size = size_;
 207    uint8_t *p;
 208    unsigned int total_len, next, avail, len, index, mcast_idx;
 209    uint8_t buf1[60];
 210    static const uint8_t broadcast_macaddr[6] =
 211        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 212
 213#if defined(DEBUG_NE2000)
 214    printf("NE2000: received len=%d\n", size);
 215#endif
 216
 217    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
 218        return -1;
 219
 220    /* XXX: check this */
 221    if (s->rxcr & 0x10) {
 222        /* promiscuous: receive all */
 223    } else {
 224        if (!memcmp(buf,  broadcast_macaddr, 6)) {
 225            /* broadcast address */
 226            if (!(s->rxcr & 0x04))
 227                return size;
 228        } else if (buf[0] & 0x01) {
 229            /* multicast */
 230            if (!(s->rxcr & 0x08))
 231                return size;
 232            mcast_idx = compute_mcast_idx(buf);
 233            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
 234                return size;
 235        } else if (s->mem[0] == buf[0] &&
 236                   s->mem[2] == buf[1] &&
 237                   s->mem[4] == buf[2] &&
 238                   s->mem[6] == buf[3] &&
 239                   s->mem[8] == buf[4] &&
 240                   s->mem[10] == buf[5]) {
 241            /* match */
 242        } else {
 243            return size;
 244        }
 245    }
 246
 247
 248    /* if too small buffer, then expand it */
 249    if (size < MIN_BUF_SIZE) {
 250        memcpy(buf1, buf, size);
 251        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
 252        buf = buf1;
 253        size = MIN_BUF_SIZE;
 254    }
 255
 256    index = s->curpag << 8;
 257    /* 4 bytes for header */
 258    total_len = size + 4;
 259    /* address for next packet (4 bytes for CRC) */
 260    next = index + ((total_len + 4 + 255) & ~0xff);
 261    if (next >= s->stop)
 262        next -= (s->stop - s->start);
 263    /* prepare packet header */
 264    p = s->mem + index;
 265    s->rsr = ENRSR_RXOK; /* receive status */
 266    /* XXX: check this */
 267    if (buf[0] & 0x01)
 268        s->rsr |= ENRSR_PHY;
 269    p[0] = s->rsr;
 270    p[1] = next >> 8;
 271    p[2] = total_len;
 272    p[3] = total_len >> 8;
 273    index += 4;
 274
 275    /* write packet data */
 276    while (size > 0) {
 277        if (index <= s->stop)
 278            avail = s->stop - index;
 279        else
 280            avail = 0;
 281        len = size;
 282        if (len > avail)
 283            len = avail;
 284        memcpy(s->mem + index, buf, len);
 285        buf += len;
 286        index += len;
 287        if (index == s->stop)
 288            index = s->start;
 289        size -= len;
 290    }
 291    s->curpag = next >> 8;
 292
 293    /* now we can signal we have received something */
 294    s->isr |= ENISR_RX;
 295    ne2000_update_irq(s);
 296
 297    return size_;
 298}
 299
 300void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 301{
 302    NE2000State *s = opaque;
 303    int offset, page, index;
 304
 305    addr &= 0xf;
 306#ifdef DEBUG_NE2000
 307    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
 308#endif
 309    if (addr == E8390_CMD) {
 310        /* control register */
 311        s->cmd = val;
 312        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
 313            s->isr &= ~ENISR_RESET;
 314            /* test specific case: zero length transfer */
 315            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
 316                s->rcnt == 0) {
 317                s->isr |= ENISR_RDC;
 318                ne2000_update_irq(s);
 319            }
 320            if (val & E8390_TRANS) {
 321                index = (s->tpsr << 8);
 322                /* XXX: next 2 lines are a hack to make netware 3.11 work */
 323                if (index >= NE2000_PMEM_END)
 324                    index -= NE2000_PMEM_SIZE;
 325                /* fail safe: check range on the transmitted length  */
 326                if (index + s->tcnt <= NE2000_PMEM_END) {
 327                    qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
 328                }
 329                /* signal end of transfer */
 330                s->tsr = ENTSR_PTX;
 331                s->isr |= ENISR_TX;
 332                s->cmd &= ~E8390_TRANS;
 333                ne2000_update_irq(s);
 334            }
 335        }
 336    } else {
 337        page = s->cmd >> 6;
 338        offset = addr | (page << 4);
 339        switch(offset) {
 340        case EN0_STARTPG:
 341            s->start = val << 8;
 342            break;
 343        case EN0_STOPPG:
 344            s->stop = val << 8;
 345            break;
 346        case EN0_BOUNDARY:
 347            s->boundary = val;
 348            break;
 349        case EN0_IMR:
 350            s->imr = val;
 351            ne2000_update_irq(s);
 352            break;
 353        case EN0_TPSR:
 354            s->tpsr = val;
 355            break;
 356        case EN0_TCNTLO:
 357            s->tcnt = (s->tcnt & 0xff00) | val;
 358            break;
 359        case EN0_TCNTHI:
 360            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
 361            break;
 362        case EN0_RSARLO:
 363            s->rsar = (s->rsar & 0xff00) | val;
 364            break;
 365        case EN0_RSARHI:
 366            s->rsar = (s->rsar & 0x00ff) | (val << 8);
 367            break;
 368        case EN0_RCNTLO:
 369            s->rcnt = (s->rcnt & 0xff00) | val;
 370            break;
 371        case EN0_RCNTHI:
 372            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
 373            break;
 374        case EN0_RXCR:
 375            s->rxcr = val;
 376            break;
 377        case EN0_DCFG:
 378            s->dcfg = val;
 379            break;
 380        case EN0_ISR:
 381            s->isr &= ~(val & 0x7f);
 382            ne2000_update_irq(s);
 383            break;
 384        case EN1_PHYS ... EN1_PHYS + 5:
 385            s->phys[offset - EN1_PHYS] = val;
 386            break;
 387        case EN1_CURPAG:
 388            s->curpag = val;
 389            break;
 390        case EN1_MULT ... EN1_MULT + 7:
 391            s->mult[offset - EN1_MULT] = val;
 392            break;
 393        }
 394    }
 395}
 396
 397uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
 398{
 399    NE2000State *s = opaque;
 400    int offset, page, ret;
 401
 402    addr &= 0xf;
 403    if (addr == E8390_CMD) {
 404        ret = s->cmd;
 405    } else {
 406        page = s->cmd >> 6;
 407        offset = addr | (page << 4);
 408        switch(offset) {
 409        case EN0_TSR:
 410            ret = s->tsr;
 411            break;
 412        case EN0_BOUNDARY:
 413            ret = s->boundary;
 414            break;
 415        case EN0_ISR:
 416            ret = s->isr;
 417            break;
 418        case EN0_RSARLO:
 419            ret = s->rsar & 0x00ff;
 420            break;
 421        case EN0_RSARHI:
 422            ret = s->rsar >> 8;
 423            break;
 424        case EN1_PHYS ... EN1_PHYS + 5:
 425            ret = s->phys[offset - EN1_PHYS];
 426            break;
 427        case EN1_CURPAG:
 428            ret = s->curpag;
 429            break;
 430        case EN1_MULT ... EN1_MULT + 7:
 431            ret = s->mult[offset - EN1_MULT];
 432            break;
 433        case EN0_RSR:
 434            ret = s->rsr;
 435            break;
 436        case EN2_STARTPG:
 437            ret = s->start >> 8;
 438            break;
 439        case EN2_STOPPG:
 440            ret = s->stop >> 8;
 441            break;
 442        case EN0_RTL8029ID0:
 443            ret = 0x50;
 444            break;
 445        case EN0_RTL8029ID1:
 446            ret = 0x43;
 447            break;
 448        case EN3_CONFIG0:
 449            ret = 0;            /* 10baseT media */
 450            break;
 451        case EN3_CONFIG2:
 452            ret = 0x40;         /* 10baseT active */
 453            break;
 454        case EN3_CONFIG3:
 455            ret = 0x40;         /* Full duplex */
 456            break;
 457        default:
 458            ret = 0x00;
 459            break;
 460        }
 461    }
 462#ifdef DEBUG_NE2000
 463    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
 464#endif
 465    return ret;
 466}
 467
 468static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
 469                                     uint32_t val)
 470{
 471    if (addr < 32 ||
 472        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 473        s->mem[addr] = val;
 474    }
 475}
 476
 477static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
 478                                     uint32_t val)
 479{
 480    addr &= ~1; /* XXX: check exact behaviour if not even */
 481    if (addr < 32 ||
 482        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 483        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
 484    }
 485}
 486
 487static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
 488                                     uint32_t val)
 489{
 490    addr &= ~1; /* XXX: check exact behaviour if not even */
 491    if (addr < 32 ||
 492        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 493        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
 494    }
 495}
 496
 497static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
 498{
 499    if (addr < 32 ||
 500        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 501        return s->mem[addr];
 502    } else {
 503        return 0xff;
 504    }
 505}
 506
 507static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
 508{
 509    addr &= ~1; /* XXX: check exact behaviour if not even */
 510    if (addr < 32 ||
 511        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 512        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
 513    } else {
 514        return 0xffff;
 515    }
 516}
 517
 518static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
 519{
 520    addr &= ~1; /* XXX: check exact behaviour if not even */
 521    if (addr < 32 ||
 522        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 523        return le32_to_cpupu((uint32_t *)(s->mem + addr));
 524    } else {
 525        return 0xffffffff;
 526    }
 527}
 528
 529static inline void ne2000_dma_update(NE2000State *s, int len)
 530{
 531    s->rsar += len;
 532    /* wrap */
 533    /* XXX: check what to do if rsar > stop */
 534    if (s->rsar == s->stop)
 535        s->rsar = s->start;
 536
 537    if (s->rcnt <= len) {
 538        s->rcnt = 0;
 539        /* signal end of transfer */
 540        s->isr |= ENISR_RDC;
 541        ne2000_update_irq(s);
 542    } else {
 543        s->rcnt -= len;
 544    }
 545}
 546
 547void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 548{
 549    NE2000State *s = opaque;
 550
 551#ifdef DEBUG_NE2000
 552    printf("NE2000: asic write val=0x%04x\n", val);
 553#endif
 554    if (s->rcnt == 0)
 555        return;
 556    if (s->dcfg & 0x01) {
 557        /* 16 bit access */
 558        ne2000_mem_writew(s, s->rsar, val);
 559        ne2000_dma_update(s, 2);
 560    } else {
 561        /* 8 bit access */
 562        ne2000_mem_writeb(s, s->rsar, val);
 563        ne2000_dma_update(s, 1);
 564    }
 565}
 566
 567uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
 568{
 569    NE2000State *s = opaque;
 570    int ret;
 571
 572    if (s->dcfg & 0x01) {
 573        /* 16 bit access */
 574        ret = ne2000_mem_readw(s, s->rsar);
 575        ne2000_dma_update(s, 2);
 576    } else {
 577        /* 8 bit access */
 578        ret = ne2000_mem_readb(s, s->rsar);
 579        ne2000_dma_update(s, 1);
 580    }
 581#ifdef DEBUG_NE2000
 582    printf("NE2000: asic read val=0x%04x\n", ret);
 583#endif
 584    return ret;
 585}
 586
 587static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
 588{
 589    NE2000State *s = opaque;
 590
 591#ifdef DEBUG_NE2000
 592    printf("NE2000: asic writel val=0x%04x\n", val);
 593#endif
 594    if (s->rcnt == 0)
 595        return;
 596    /* 32 bit access */
 597    ne2000_mem_writel(s, s->rsar, val);
 598    ne2000_dma_update(s, 4);
 599}
 600
 601static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
 602{
 603    NE2000State *s = opaque;
 604    int ret;
 605
 606    /* 32 bit access */
 607    ret = ne2000_mem_readl(s, s->rsar);
 608    ne2000_dma_update(s, 4);
 609#ifdef DEBUG_NE2000
 610    printf("NE2000: asic readl val=0x%04x\n", ret);
 611#endif
 612    return ret;
 613}
 614
 615void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 616{
 617    /* nothing to do (end of reset pulse) */
 618}
 619
 620uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
 621{
 622    NE2000State *s = opaque;
 623    ne2000_reset(s);
 624    return 0;
 625}
 626
 627static int ne2000_post_load(void* opaque, int version_id)
 628{
 629    NE2000State* s = opaque;
 630
 631    if (version_id < 2) {
 632        s->rxcr = 0x0c;
 633    }
 634    return 0;
 635}
 636
 637const VMStateDescription vmstate_ne2000 = {
 638    .name = "ne2000",
 639    .version_id = 2,
 640    .minimum_version_id = 0,
 641    .minimum_version_id_old = 0,
 642    .post_load = ne2000_post_load,
 643    .fields      = (VMStateField []) {
 644        VMSTATE_UINT8_V(rxcr, NE2000State, 2),
 645        VMSTATE_UINT8(cmd, NE2000State),
 646        VMSTATE_UINT32(start, NE2000State),
 647        VMSTATE_UINT32(stop, NE2000State),
 648        VMSTATE_UINT8(boundary, NE2000State),
 649        VMSTATE_UINT8(tsr, NE2000State),
 650        VMSTATE_UINT8(tpsr, NE2000State),
 651        VMSTATE_UINT16(tcnt, NE2000State),
 652        VMSTATE_UINT16(rcnt, NE2000State),
 653        VMSTATE_UINT32(rsar, NE2000State),
 654        VMSTATE_UINT8(rsr, NE2000State),
 655        VMSTATE_UINT8(isr, NE2000State),
 656        VMSTATE_UINT8(dcfg, NE2000State),
 657        VMSTATE_UINT8(imr, NE2000State),
 658        VMSTATE_BUFFER(phys, NE2000State),
 659        VMSTATE_UINT8(curpag, NE2000State),
 660        VMSTATE_BUFFER(mult, NE2000State),
 661        VMSTATE_UNUSED(4), /* was irq */
 662        VMSTATE_BUFFER(mem, NE2000State),
 663        VMSTATE_END_OF_LIST()
 664    }
 665};
 666
 667static const VMStateDescription vmstate_pci_ne2000 = {
 668    .name = "ne2000",
 669    .version_id = 3,
 670    .minimum_version_id = 3,
 671    .minimum_version_id_old = 3,
 672    .fields      = (VMStateField []) {
 673        VMSTATE_PCI_DEVICE(dev, PCINE2000State),
 674        VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
 675        VMSTATE_END_OF_LIST()
 676    }
 677};
 678
 679/***********************************************************/
 680/* PCI NE2000 definitions */
 681
 682static void ne2000_map(PCIDevice *pci_dev, int region_num,
 683                       pcibus_t addr, pcibus_t size, int type)
 684{
 685    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 686    NE2000State *s = &d->ne2000;
 687
 688    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
 689    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
 690
 691    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
 692    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
 693    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
 694    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
 695    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
 696    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
 697
 698    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
 699    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
 700}
 701
 702static void ne2000_cleanup(VLANClientState *nc)
 703{
 704    NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
 705
 706    s->nic = NULL;
 707}
 708
 709static NetClientInfo net_ne2000_info = {
 710    .type = NET_CLIENT_TYPE_NIC,
 711    .size = sizeof(NICState),
 712    .can_receive = ne2000_can_receive,
 713    .receive = ne2000_receive,
 714    .cleanup = ne2000_cleanup,
 715};
 716
 717static int pci_ne2000_init(PCIDevice *pci_dev)
 718{
 719    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 720    NE2000State *s;
 721    uint8_t *pci_conf;
 722
 723    pci_conf = d->dev.config;
 724    /* TODO: RST# value should be 0. PCI spec 6.2.4 */
 725    pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
 726
 727    pci_register_bar(&d->dev, 0, 0x100,
 728                           PCI_BASE_ADDRESS_SPACE_IO, ne2000_map);
 729    s = &d->ne2000;
 730    s->irq = d->dev.irq[0];
 731
 732    qemu_macaddr_default_if_unset(&s->c.macaddr);
 733    ne2000_reset(s);
 734
 735    s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
 736                          pci_dev->qdev.info->name, pci_dev->qdev.id, s);
 737    qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
 738
 739    if (!pci_dev->qdev.hotplugged) {
 740        static int loaded = 0;
 741        if (!loaded) {
 742            rom_add_option("pxe-ne2k_pci.rom", -1);
 743            loaded = 1;
 744        }
 745    }
 746
 747    add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
 748
 749    return 0;
 750}
 751
 752static int pci_ne2000_exit(PCIDevice *pci_dev)
 753{
 754    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 755    NE2000State *s = &d->ne2000;
 756
 757    qemu_del_vlan_client(&s->nic->nc);
 758    return 0;
 759}
 760
 761static PCIDeviceInfo ne2000_info = {
 762    .qdev.name  = "ne2k_pci",
 763    .qdev.size  = sizeof(PCINE2000State),
 764    .qdev.vmsd  = &vmstate_pci_ne2000,
 765    .init       = pci_ne2000_init,
 766    .exit       = pci_ne2000_exit,
 767    .vendor_id  = PCI_VENDOR_ID_REALTEK,
 768    .device_id  = PCI_DEVICE_ID_REALTEK_8029,
 769    .class_id   = PCI_CLASS_NETWORK_ETHERNET,
 770    .qdev.props = (Property[]) {
 771        DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
 772        DEFINE_PROP_END_OF_LIST(),
 773    }
 774};
 775
 776static void ne2000_register_devices(void)
 777{
 778    pci_qdev_register(&ne2000_info);
 779}
 780
 781device_init(ne2000_register_devices)
 782