qemu/hw/pxa2xx.c
<<
>>
Prefs
   1/*
   2 * Intel XScale PXA255/270 processor support.
   3 *
   4 * Copyright (c) 2006 Openedhand Ltd.
   5 * Written by Andrzej Zaborowski <balrog@zabor.org>
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "sysbus.h"
  11#include "pxa.h"
  12#include "sysemu.h"
  13#include "pc.h"
  14#include "i2c.h"
  15#include "ssi.h"
  16#include "qemu-char.h"
  17#include "blockdev.h"
  18
  19static struct {
  20    target_phys_addr_t io_base;
  21    int irqn;
  22} pxa255_serial[] = {
  23    { 0x40100000, PXA2XX_PIC_FFUART },
  24    { 0x40200000, PXA2XX_PIC_BTUART },
  25    { 0x40700000, PXA2XX_PIC_STUART },
  26    { 0x41600000, PXA25X_PIC_HWUART },
  27    { 0, 0 }
  28}, pxa270_serial[] = {
  29    { 0x40100000, PXA2XX_PIC_FFUART },
  30    { 0x40200000, PXA2XX_PIC_BTUART },
  31    { 0x40700000, PXA2XX_PIC_STUART },
  32    { 0, 0 }
  33};
  34
  35typedef struct PXASSPDef {
  36    target_phys_addr_t io_base;
  37    int irqn;
  38} PXASSPDef;
  39
  40#if 0
  41static PXASSPDef pxa250_ssp[] = {
  42    { 0x41000000, PXA2XX_PIC_SSP },
  43    { 0, 0 }
  44};
  45#endif
  46
  47static PXASSPDef pxa255_ssp[] = {
  48    { 0x41000000, PXA2XX_PIC_SSP },
  49    { 0x41400000, PXA25X_PIC_NSSP },
  50    { 0, 0 }
  51};
  52
  53#if 0
  54static PXASSPDef pxa26x_ssp[] = {
  55    { 0x41000000, PXA2XX_PIC_SSP },
  56    { 0x41400000, PXA25X_PIC_NSSP },
  57    { 0x41500000, PXA26X_PIC_ASSP },
  58    { 0, 0 }
  59};
  60#endif
  61
  62static PXASSPDef pxa27x_ssp[] = {
  63    { 0x41000000, PXA2XX_PIC_SSP },
  64    { 0x41700000, PXA27X_PIC_SSP2 },
  65    { 0x41900000, PXA2XX_PIC_SSP3 },
  66    { 0, 0 }
  67};
  68
  69#define PMCR    0x00    /* Power Manager Control register */
  70#define PSSR    0x04    /* Power Manager Sleep Status register */
  71#define PSPR    0x08    /* Power Manager Scratch-Pad register */
  72#define PWER    0x0c    /* Power Manager Wake-Up Enable register */
  73#define PRER    0x10    /* Power Manager Rising-Edge Detect Enable register */
  74#define PFER    0x14    /* Power Manager Falling-Edge Detect Enable register */
  75#define PEDR    0x18    /* Power Manager Edge-Detect Status register */
  76#define PCFR    0x1c    /* Power Manager General Configuration register */
  77#define PGSR0   0x20    /* Power Manager GPIO Sleep-State register 0 */
  78#define PGSR1   0x24    /* Power Manager GPIO Sleep-State register 1 */
  79#define PGSR2   0x28    /* Power Manager GPIO Sleep-State register 2 */
  80#define PGSR3   0x2c    /* Power Manager GPIO Sleep-State register 3 */
  81#define RCSR    0x30    /* Reset Controller Status register */
  82#define PSLR    0x34    /* Power Manager Sleep Configuration register */
  83#define PTSR    0x38    /* Power Manager Standby Configuration register */
  84#define PVCR    0x40    /* Power Manager Voltage Change Control register */
  85#define PUCR    0x4c    /* Power Manager USIM Card Control/Status register */
  86#define PKWR    0x50    /* Power Manager Keyboard Wake-Up Enable register */
  87#define PKSR    0x54    /* Power Manager Keyboard Level-Detect Status */
  88#define PCMD0   0x80    /* Power Manager I2C Command register File 0 */
  89#define PCMD31  0xfc    /* Power Manager I2C Command register File 31 */
  90
  91static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
  92{
  93    PXA2xxState *s = (PXA2xxState *) opaque;
  94
  95    switch (addr) {
  96    case PMCR ... PCMD31:
  97        if (addr & 3)
  98            goto fail;
  99
 100        return s->pm_regs[addr >> 2];
 101    default:
 102    fail:
 103        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 104        break;
 105    }
 106    return 0;
 107}
 108
 109static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
 110                uint32_t value)
 111{
 112    PXA2xxState *s = (PXA2xxState *) opaque;
 113
 114    switch (addr) {
 115    case PMCR:
 116        s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
 117        s->pm_regs[addr >> 2] |= value & 0x15;
 118        break;
 119
 120    case PSSR:  /* Read-clean registers */
 121    case RCSR:
 122    case PKSR:
 123        s->pm_regs[addr >> 2] &= ~value;
 124        break;
 125
 126    default:    /* Read-write registers */
 127        if (!(addr & 3)) {
 128            s->pm_regs[addr >> 2] = value;
 129            break;
 130        }
 131
 132        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 133        break;
 134    }
 135}
 136
 137static CPUReadMemoryFunc * const pxa2xx_pm_readfn[] = {
 138    pxa2xx_pm_read,
 139    pxa2xx_pm_read,
 140    pxa2xx_pm_read,
 141};
 142
 143static CPUWriteMemoryFunc * const pxa2xx_pm_writefn[] = {
 144    pxa2xx_pm_write,
 145    pxa2xx_pm_write,
 146    pxa2xx_pm_write,
 147};
 148
 149static const VMStateDescription vmstate_pxa2xx_pm = {
 150    .name = "pxa2xx_pm",
 151    .version_id = 0,
 152    .minimum_version_id = 0,
 153    .minimum_version_id_old = 0,
 154    .fields      = (VMStateField[]) {
 155        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
 156        VMSTATE_END_OF_LIST()
 157    }
 158};
 159
 160#define CCCR    0x00    /* Core Clock Configuration register */
 161#define CKEN    0x04    /* Clock Enable register */
 162#define OSCC    0x08    /* Oscillator Configuration register */
 163#define CCSR    0x0c    /* Core Clock Status register */
 164
 165static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
 166{
 167    PXA2xxState *s = (PXA2xxState *) opaque;
 168
 169    switch (addr) {
 170    case CCCR:
 171    case CKEN:
 172    case OSCC:
 173        return s->cm_regs[addr >> 2];
 174
 175    case CCSR:
 176        return s->cm_regs[CCCR >> 2] | (3 << 28);
 177
 178    default:
 179        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 180        break;
 181    }
 182    return 0;
 183}
 184
 185static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
 186                uint32_t value)
 187{
 188    PXA2xxState *s = (PXA2xxState *) opaque;
 189
 190    switch (addr) {
 191    case CCCR:
 192    case CKEN:
 193        s->cm_regs[addr >> 2] = value;
 194        break;
 195
 196    case OSCC:
 197        s->cm_regs[addr >> 2] &= ~0x6c;
 198        s->cm_regs[addr >> 2] |= value & 0x6e;
 199        if ((value >> 1) & 1)                   /* OON */
 200            s->cm_regs[addr >> 2] |= 1 << 0;    /* Oscillator is now stable */
 201        break;
 202
 203    default:
 204        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 205        break;
 206    }
 207}
 208
 209static CPUReadMemoryFunc * const pxa2xx_cm_readfn[] = {
 210    pxa2xx_cm_read,
 211    pxa2xx_cm_read,
 212    pxa2xx_cm_read,
 213};
 214
 215static CPUWriteMemoryFunc * const pxa2xx_cm_writefn[] = {
 216    pxa2xx_cm_write,
 217    pxa2xx_cm_write,
 218    pxa2xx_cm_write,
 219};
 220
 221static const VMStateDescription vmstate_pxa2xx_cm = {
 222    .name = "pxa2xx_cm",
 223    .version_id = 0,
 224    .minimum_version_id = 0,
 225    .minimum_version_id_old = 0,
 226    .fields      = (VMStateField[]) {
 227        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
 228        VMSTATE_UINT32(clkcfg, PXA2xxState),
 229        VMSTATE_UINT32(pmnc, PXA2xxState),
 230        VMSTATE_END_OF_LIST()
 231    }
 232};
 233
 234static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
 235{
 236    PXA2xxState *s = (PXA2xxState *) opaque;
 237
 238    switch (reg) {
 239    case 6:     /* Clock Configuration register */
 240        return s->clkcfg;
 241
 242    case 7:     /* Power Mode register */
 243        return 0;
 244
 245    default:
 246        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
 247        break;
 248    }
 249    return 0;
 250}
 251
 252static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
 253                uint32_t value)
 254{
 255    PXA2xxState *s = (PXA2xxState *) opaque;
 256    static const char *pwrmode[8] = {
 257        "Normal", "Idle", "Deep-idle", "Standby",
 258        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
 259    };
 260
 261    switch (reg) {
 262    case 6:     /* Clock Configuration register */
 263        s->clkcfg = value & 0xf;
 264        if (value & 2)
 265            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
 266        break;
 267
 268    case 7:     /* Power Mode register */
 269        if (value & 8)
 270            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
 271        switch (value & 7) {
 272        case 0:
 273            /* Do nothing */
 274            break;
 275
 276        case 1:
 277            /* Idle */
 278            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
 279                cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
 280                break;
 281            }
 282            /* Fall through.  */
 283
 284        case 2:
 285            /* Deep-Idle */
 286            cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
 287            s->pm_regs[RCSR >> 2] |= 0x8;       /* Set GPR */
 288            goto message;
 289
 290        case 3:
 291            s->env->uncached_cpsr =
 292                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
 293            s->env->cp15.c1_sys = 0;
 294            s->env->cp15.c1_coproc = 0;
 295            s->env->cp15.c2_base0 = 0;
 296            s->env->cp15.c3 = 0;
 297            s->pm_regs[PSSR >> 2] |= 0x8;       /* Set STS */
 298            s->pm_regs[RCSR >> 2] |= 0x8;       /* Set GPR */
 299
 300            /*
 301             * The scratch-pad register is almost universally used
 302             * for storing the return address on suspend.  For the
 303             * lack of a resuming bootloader, perform a jump
 304             * directly to that address.
 305             */
 306            memset(s->env->regs, 0, 4 * 15);
 307            s->env->regs[15] = s->pm_regs[PSPR >> 2];
 308
 309#if 0
 310            buffer = 0xe59ff000;        /* ldr     pc, [pc, #0] */
 311            cpu_physical_memory_write(0, &buffer, 4);
 312            buffer = s->pm_regs[PSPR >> 2];
 313            cpu_physical_memory_write(8, &buffer, 4);
 314#endif
 315
 316            /* Suspend */
 317            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
 318
 319            goto message;
 320
 321        default:
 322        message:
 323            printf("%s: machine entered %s mode\n", __FUNCTION__,
 324                            pwrmode[value & 7]);
 325        }
 326        break;
 327
 328    default:
 329        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
 330        break;
 331    }
 332}
 333
 334/* Performace Monitoring Registers */
 335#define CPPMNC          0       /* Performance Monitor Control register */
 336#define CPCCNT          1       /* Clock Counter register */
 337#define CPINTEN         4       /* Interrupt Enable register */
 338#define CPFLAG          5       /* Overflow Flag register */
 339#define CPEVTSEL        8       /* Event Selection register */
 340
 341#define CPPMN0          0       /* Performance Count register 0 */
 342#define CPPMN1          1       /* Performance Count register 1 */
 343#define CPPMN2          2       /* Performance Count register 2 */
 344#define CPPMN3          3       /* Performance Count register 3 */
 345
 346static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
 347{
 348    PXA2xxState *s = (PXA2xxState *) opaque;
 349
 350    switch (reg) {
 351    case CPPMNC:
 352        return s->pmnc;
 353    case CPCCNT:
 354        if (s->pmnc & 1)
 355            return qemu_get_clock_ns(vm_clock);
 356        else
 357            return 0;
 358    case CPINTEN:
 359    case CPFLAG:
 360    case CPEVTSEL:
 361        return 0;
 362
 363    default:
 364        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
 365        break;
 366    }
 367    return 0;
 368}
 369
 370static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
 371                uint32_t value)
 372{
 373    PXA2xxState *s = (PXA2xxState *) opaque;
 374
 375    switch (reg) {
 376    case CPPMNC:
 377        s->pmnc = value;
 378        break;
 379
 380    case CPCCNT:
 381    case CPINTEN:
 382    case CPFLAG:
 383    case CPEVTSEL:
 384        break;
 385
 386    default:
 387        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
 388        break;
 389    }
 390}
 391
 392static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
 393{
 394    switch (crm) {
 395    case 0:
 396        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
 397    case 1:
 398        return pxa2xx_perf_read(opaque, op2, reg, crm);
 399    case 2:
 400        switch (reg) {
 401        case CPPMN0:
 402        case CPPMN1:
 403        case CPPMN2:
 404        case CPPMN3:
 405            return 0;
 406        }
 407        /* Fall through */
 408    default:
 409        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
 410        break;
 411    }
 412    return 0;
 413}
 414
 415static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
 416                uint32_t value)
 417{
 418    switch (crm) {
 419    case 0:
 420        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
 421        break;
 422    case 1:
 423        pxa2xx_perf_write(opaque, op2, reg, crm, value);
 424        break;
 425    case 2:
 426        switch (reg) {
 427        case CPPMN0:
 428        case CPPMN1:
 429        case CPPMN2:
 430        case CPPMN3:
 431            return;
 432        }
 433        /* Fall through */
 434    default:
 435        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
 436        break;
 437    }
 438}
 439
 440#define MDCNFG          0x00    /* SDRAM Configuration register */
 441#define MDREFR          0x04    /* SDRAM Refresh Control register */
 442#define MSC0            0x08    /* Static Memory Control register 0 */
 443#define MSC1            0x0c    /* Static Memory Control register 1 */
 444#define MSC2            0x10    /* Static Memory Control register 2 */
 445#define MECR            0x14    /* Expansion Memory Bus Config register */
 446#define SXCNFG          0x1c    /* Synchronous Static Memory Config register */
 447#define MCMEM0          0x28    /* PC Card Memory Socket 0 Timing register */
 448#define MCMEM1          0x2c    /* PC Card Memory Socket 1 Timing register */
 449#define MCATT0          0x30    /* PC Card Attribute Socket 0 register */
 450#define MCATT1          0x34    /* PC Card Attribute Socket 1 register */
 451#define MCIO0           0x38    /* PC Card I/O Socket 0 Timing register */
 452#define MCIO1           0x3c    /* PC Card I/O Socket 1 Timing register */
 453#define MDMRS           0x40    /* SDRAM Mode Register Set Config register */
 454#define BOOT_DEF        0x44    /* Boot-time Default Configuration register */
 455#define ARB_CNTL        0x48    /* Arbiter Control register */
 456#define BSCNTR0         0x4c    /* Memory Buffer Strength Control register 0 */
 457#define BSCNTR1         0x50    /* Memory Buffer Strength Control register 1 */
 458#define LCDBSCNTR       0x54    /* LCD Buffer Strength Control register */
 459#define MDMRSLP         0x58    /* Low Power SDRAM Mode Set Config register */
 460#define BSCNTR2         0x5c    /* Memory Buffer Strength Control register 2 */
 461#define BSCNTR3         0x60    /* Memory Buffer Strength Control register 3 */
 462#define SA1110          0x64    /* SA-1110 Memory Compatibility register */
 463
 464static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
 465{
 466    PXA2xxState *s = (PXA2xxState *) opaque;
 467
 468    switch (addr) {
 469    case MDCNFG ... SA1110:
 470        if ((addr & 3) == 0)
 471            return s->mm_regs[addr >> 2];
 472
 473    default:
 474        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 475        break;
 476    }
 477    return 0;
 478}
 479
 480static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
 481                uint32_t value)
 482{
 483    PXA2xxState *s = (PXA2xxState *) opaque;
 484
 485    switch (addr) {
 486    case MDCNFG ... SA1110:
 487        if ((addr & 3) == 0) {
 488            s->mm_regs[addr >> 2] = value;
 489            break;
 490        }
 491
 492    default:
 493        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 494        break;
 495    }
 496}
 497
 498static CPUReadMemoryFunc * const pxa2xx_mm_readfn[] = {
 499    pxa2xx_mm_read,
 500    pxa2xx_mm_read,
 501    pxa2xx_mm_read,
 502};
 503
 504static CPUWriteMemoryFunc * const pxa2xx_mm_writefn[] = {
 505    pxa2xx_mm_write,
 506    pxa2xx_mm_write,
 507    pxa2xx_mm_write,
 508};
 509
 510static const VMStateDescription vmstate_pxa2xx_mm = {
 511    .name = "pxa2xx_mm",
 512    .version_id = 0,
 513    .minimum_version_id = 0,
 514    .minimum_version_id_old = 0,
 515    .fields      = (VMStateField[]) {
 516        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
 517        VMSTATE_END_OF_LIST()
 518    }
 519};
 520
 521/* Synchronous Serial Ports */
 522typedef struct {
 523    SysBusDevice busdev;
 524    qemu_irq irq;
 525    int enable;
 526    SSIBus *bus;
 527
 528    uint32_t sscr[2];
 529    uint32_t sspsp;
 530    uint32_t ssto;
 531    uint32_t ssitr;
 532    uint32_t sssr;
 533    uint8_t sstsa;
 534    uint8_t ssrsa;
 535    uint8_t ssacd;
 536
 537    uint32_t rx_fifo[16];
 538    int rx_level;
 539    int rx_start;
 540} PXA2xxSSPState;
 541
 542#define SSCR0   0x00    /* SSP Control register 0 */
 543#define SSCR1   0x04    /* SSP Control register 1 */
 544#define SSSR    0x08    /* SSP Status register */
 545#define SSITR   0x0c    /* SSP Interrupt Test register */
 546#define SSDR    0x10    /* SSP Data register */
 547#define SSTO    0x28    /* SSP Time-Out register */
 548#define SSPSP   0x2c    /* SSP Programmable Serial Protocol register */
 549#define SSTSA   0x30    /* SSP TX Time Slot Active register */
 550#define SSRSA   0x34    /* SSP RX Time Slot Active register */
 551#define SSTSS   0x38    /* SSP Time Slot Status register */
 552#define SSACD   0x3c    /* SSP Audio Clock Divider register */
 553
 554/* Bitfields for above registers */
 555#define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
 556#define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
 557#define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
 558#define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
 559#define SSCR0_SSE       (1 << 7)
 560#define SSCR0_RIM       (1 << 22)
 561#define SSCR0_TIM       (1 << 23)
 562#define SSCR0_MOD       (1 << 31)
 563#define SSCR0_DSS(x)    (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
 564#define SSCR1_RIE       (1 << 0)
 565#define SSCR1_TIE       (1 << 1)
 566#define SSCR1_LBM       (1 << 2)
 567#define SSCR1_MWDS      (1 << 5)
 568#define SSCR1_TFT(x)    ((((x) >> 6) & 0xf) + 1)
 569#define SSCR1_RFT(x)    ((((x) >> 10) & 0xf) + 1)
 570#define SSCR1_EFWR      (1 << 14)
 571#define SSCR1_PINTE     (1 << 18)
 572#define SSCR1_TINTE     (1 << 19)
 573#define SSCR1_RSRE      (1 << 20)
 574#define SSCR1_TSRE      (1 << 21)
 575#define SSCR1_EBCEI     (1 << 29)
 576#define SSITR_INT       (7 << 5)
 577#define SSSR_TNF        (1 << 2)
 578#define SSSR_RNE        (1 << 3)
 579#define SSSR_TFS        (1 << 5)
 580#define SSSR_RFS        (1 << 6)
 581#define SSSR_ROR        (1 << 7)
 582#define SSSR_PINT       (1 << 18)
 583#define SSSR_TINT       (1 << 19)
 584#define SSSR_EOC        (1 << 20)
 585#define SSSR_TUR        (1 << 21)
 586#define SSSR_BCE        (1 << 23)
 587#define SSSR_RW         0x00bc0080
 588
 589static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
 590{
 591    int level = 0;
 592
 593    level |= s->ssitr & SSITR_INT;
 594    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
 595    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
 596    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
 597    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
 598    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
 599    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
 600    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
 601    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
 602    qemu_set_irq(s->irq, !!level);
 603}
 604
 605static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
 606{
 607    s->sssr &= ~(0xf << 12);    /* Clear RFL */
 608    s->sssr &= ~(0xf << 8);     /* Clear TFL */
 609    s->sssr &= ~SSSR_TFS;
 610    s->sssr &= ~SSSR_TNF;
 611    if (s->enable) {
 612        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
 613        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
 614            s->sssr |= SSSR_RFS;
 615        else
 616            s->sssr &= ~SSSR_RFS;
 617        if (s->rx_level)
 618            s->sssr |= SSSR_RNE;
 619        else
 620            s->sssr &= ~SSSR_RNE;
 621        /* TX FIFO is never filled, so it is always in underrun
 622           condition if SSP is enabled */
 623        s->sssr |= SSSR_TFS;
 624        s->sssr |= SSSR_TNF;
 625    }
 626
 627    pxa2xx_ssp_int_update(s);
 628}
 629
 630static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
 631{
 632    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
 633    uint32_t retval;
 634
 635    switch (addr) {
 636    case SSCR0:
 637        return s->sscr[0];
 638    case SSCR1:
 639        return s->sscr[1];
 640    case SSPSP:
 641        return s->sspsp;
 642    case SSTO:
 643        return s->ssto;
 644    case SSITR:
 645        return s->ssitr;
 646    case SSSR:
 647        return s->sssr | s->ssitr;
 648    case SSDR:
 649        if (!s->enable)
 650            return 0xffffffff;
 651        if (s->rx_level < 1) {
 652            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
 653            return 0xffffffff;
 654        }
 655        s->rx_level --;
 656        retval = s->rx_fifo[s->rx_start ++];
 657        s->rx_start &= 0xf;
 658        pxa2xx_ssp_fifo_update(s);
 659        return retval;
 660    case SSTSA:
 661        return s->sstsa;
 662    case SSRSA:
 663        return s->ssrsa;
 664    case SSTSS:
 665        return 0;
 666    case SSACD:
 667        return s->ssacd;
 668    default:
 669        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 670        break;
 671    }
 672    return 0;
 673}
 674
 675static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
 676                uint32_t value)
 677{
 678    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
 679
 680    switch (addr) {
 681    case SSCR0:
 682        s->sscr[0] = value & 0xc7ffffff;
 683        s->enable = value & SSCR0_SSE;
 684        if (value & SSCR0_MOD)
 685            printf("%s: Attempt to use network mode\n", __FUNCTION__);
 686        if (s->enable && SSCR0_DSS(value) < 4)
 687            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
 688                            SSCR0_DSS(value));
 689        if (!(value & SSCR0_SSE)) {
 690            s->sssr = 0;
 691            s->ssitr = 0;
 692            s->rx_level = 0;
 693        }
 694        pxa2xx_ssp_fifo_update(s);
 695        break;
 696
 697    case SSCR1:
 698        s->sscr[1] = value;
 699        if (value & (SSCR1_LBM | SSCR1_EFWR))
 700            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
 701        pxa2xx_ssp_fifo_update(s);
 702        break;
 703
 704    case SSPSP:
 705        s->sspsp = value;
 706        break;
 707
 708    case SSTO:
 709        s->ssto = value;
 710        break;
 711
 712    case SSITR:
 713        s->ssitr = value & SSITR_INT;
 714        pxa2xx_ssp_int_update(s);
 715        break;
 716
 717    case SSSR:
 718        s->sssr &= ~(value & SSSR_RW);
 719        pxa2xx_ssp_int_update(s);
 720        break;
 721
 722    case SSDR:
 723        if (SSCR0_UWIRE(s->sscr[0])) {
 724            if (s->sscr[1] & SSCR1_MWDS)
 725                value &= 0xffff;
 726            else
 727                value &= 0xff;
 728        } else
 729            /* Note how 32bits overflow does no harm here */
 730            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
 731
 732        /* Data goes from here to the Tx FIFO and is shifted out from
 733         * there directly to the slave, no need to buffer it.
 734         */
 735        if (s->enable) {
 736            uint32_t readval;
 737            readval = ssi_transfer(s->bus, value);
 738            if (s->rx_level < 0x10) {
 739                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
 740            } else {
 741                s->sssr |= SSSR_ROR;
 742            }
 743        }
 744        pxa2xx_ssp_fifo_update(s);
 745        break;
 746
 747    case SSTSA:
 748        s->sstsa = value;
 749        break;
 750
 751    case SSRSA:
 752        s->ssrsa = value;
 753        break;
 754
 755    case SSACD:
 756        s->ssacd = value;
 757        break;
 758
 759    default:
 760        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
 761        break;
 762    }
 763}
 764
 765static CPUReadMemoryFunc * const pxa2xx_ssp_readfn[] = {
 766    pxa2xx_ssp_read,
 767    pxa2xx_ssp_read,
 768    pxa2xx_ssp_read,
 769};
 770
 771static CPUWriteMemoryFunc * const pxa2xx_ssp_writefn[] = {
 772    pxa2xx_ssp_write,
 773    pxa2xx_ssp_write,
 774    pxa2xx_ssp_write,
 775};
 776
 777static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
 778{
 779    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
 780    int i;
 781
 782    qemu_put_be32(f, s->enable);
 783
 784    qemu_put_be32s(f, &s->sscr[0]);
 785    qemu_put_be32s(f, &s->sscr[1]);
 786    qemu_put_be32s(f, &s->sspsp);
 787    qemu_put_be32s(f, &s->ssto);
 788    qemu_put_be32s(f, &s->ssitr);
 789    qemu_put_be32s(f, &s->sssr);
 790    qemu_put_8s(f, &s->sstsa);
 791    qemu_put_8s(f, &s->ssrsa);
 792    qemu_put_8s(f, &s->ssacd);
 793
 794    qemu_put_byte(f, s->rx_level);
 795    for (i = 0; i < s->rx_level; i ++)
 796        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
 797}
 798
 799static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
 800{
 801    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
 802    int i;
 803
 804    s->enable = qemu_get_be32(f);
 805
 806    qemu_get_be32s(f, &s->sscr[0]);
 807    qemu_get_be32s(f, &s->sscr[1]);
 808    qemu_get_be32s(f, &s->sspsp);
 809    qemu_get_be32s(f, &s->ssto);
 810    qemu_get_be32s(f, &s->ssitr);
 811    qemu_get_be32s(f, &s->sssr);
 812    qemu_get_8s(f, &s->sstsa);
 813    qemu_get_8s(f, &s->ssrsa);
 814    qemu_get_8s(f, &s->ssacd);
 815
 816    s->rx_level = qemu_get_byte(f);
 817    s->rx_start = 0;
 818    for (i = 0; i < s->rx_level; i ++)
 819        s->rx_fifo[i] = qemu_get_byte(f);
 820
 821    return 0;
 822}
 823
 824static int pxa2xx_ssp_init(SysBusDevice *dev)
 825{
 826    int iomemtype;
 827    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
 828
 829    sysbus_init_irq(dev, &s->irq);
 830
 831    iomemtype = cpu_register_io_memory(pxa2xx_ssp_readfn,
 832                                       pxa2xx_ssp_writefn, s,
 833                                       DEVICE_NATIVE_ENDIAN);
 834    sysbus_init_mmio(dev, 0x1000, iomemtype);
 835    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
 836                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
 837
 838    s->bus = ssi_create_bus(&dev->qdev, "ssi");
 839    return 0;
 840}
 841
 842/* Real-Time Clock */
 843#define RCNR            0x00    /* RTC Counter register */
 844#define RTAR            0x04    /* RTC Alarm register */
 845#define RTSR            0x08    /* RTC Status register */
 846#define RTTR            0x0c    /* RTC Timer Trim register */
 847#define RDCR            0x10    /* RTC Day Counter register */
 848#define RYCR            0x14    /* RTC Year Counter register */
 849#define RDAR1           0x18    /* RTC Wristwatch Day Alarm register 1 */
 850#define RYAR1           0x1c    /* RTC Wristwatch Year Alarm register 1 */
 851#define RDAR2           0x20    /* RTC Wristwatch Day Alarm register 2 */
 852#define RYAR2           0x24    /* RTC Wristwatch Year Alarm register 2 */
 853#define SWCR            0x28    /* RTC Stopwatch Counter register */
 854#define SWAR1           0x2c    /* RTC Stopwatch Alarm register 1 */
 855#define SWAR2           0x30    /* RTC Stopwatch Alarm register 2 */
 856#define RTCPICR         0x34    /* RTC Periodic Interrupt Counter register */
 857#define PIAR            0x38    /* RTC Periodic Interrupt Alarm register */
 858
 859typedef struct {
 860    SysBusDevice busdev;
 861    uint32_t rttr;
 862    uint32_t rtsr;
 863    uint32_t rtar;
 864    uint32_t rdar1;
 865    uint32_t rdar2;
 866    uint32_t ryar1;
 867    uint32_t ryar2;
 868    uint32_t swar1;
 869    uint32_t swar2;
 870    uint32_t piar;
 871    uint32_t last_rcnr;
 872    uint32_t last_rdcr;
 873    uint32_t last_rycr;
 874    uint32_t last_swcr;
 875    uint32_t last_rtcpicr;
 876    int64_t last_hz;
 877    int64_t last_sw;
 878    int64_t last_pi;
 879    QEMUTimer *rtc_hz;
 880    QEMUTimer *rtc_rdal1;
 881    QEMUTimer *rtc_rdal2;
 882    QEMUTimer *rtc_swal1;
 883    QEMUTimer *rtc_swal2;
 884    QEMUTimer *rtc_pi;
 885    qemu_irq rtc_irq;
 886} PXA2xxRTCState;
 887
 888static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
 889{
 890    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
 891}
 892
 893static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
 894{
 895    int64_t rt = qemu_get_clock_ms(rt_clock);
 896    s->last_rcnr += ((rt - s->last_hz) << 15) /
 897            (1000 * ((s->rttr & 0xffff) + 1));
 898    s->last_rdcr += ((rt - s->last_hz) << 15) /
 899            (1000 * ((s->rttr & 0xffff) + 1));
 900    s->last_hz = rt;
 901}
 902
 903static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
 904{
 905    int64_t rt = qemu_get_clock_ms(rt_clock);
 906    if (s->rtsr & (1 << 12))
 907        s->last_swcr += (rt - s->last_sw) / 10;
 908    s->last_sw = rt;
 909}
 910
 911static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
 912{
 913    int64_t rt = qemu_get_clock_ms(rt_clock);
 914    if (s->rtsr & (1 << 15))
 915        s->last_swcr += rt - s->last_pi;
 916    s->last_pi = rt;
 917}
 918
 919static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
 920                uint32_t rtsr)
 921{
 922    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
 923        qemu_mod_timer(s->rtc_hz, s->last_hz +
 924                (((s->rtar - s->last_rcnr) * 1000 *
 925                  ((s->rttr & 0xffff) + 1)) >> 15));
 926    else
 927        qemu_del_timer(s->rtc_hz);
 928
 929    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
 930        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
 931                (((s->rdar1 - s->last_rdcr) * 1000 *
 932                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
 933    else
 934        qemu_del_timer(s->rtc_rdal1);
 935
 936    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
 937        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
 938                (((s->rdar2 - s->last_rdcr) * 1000 *
 939                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
 940    else
 941        qemu_del_timer(s->rtc_rdal2);
 942
 943    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
 944        qemu_mod_timer(s->rtc_swal1, s->last_sw +
 945                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
 946    else
 947        qemu_del_timer(s->rtc_swal1);
 948
 949    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
 950        qemu_mod_timer(s->rtc_swal2, s->last_sw +
 951                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
 952    else
 953        qemu_del_timer(s->rtc_swal2);
 954
 955    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
 956        qemu_mod_timer(s->rtc_pi, s->last_pi +
 957                        (s->piar & 0xffff) - s->last_rtcpicr);
 958    else
 959        qemu_del_timer(s->rtc_pi);
 960}
 961
 962static inline void pxa2xx_rtc_hz_tick(void *opaque)
 963{
 964    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
 965    s->rtsr |= (1 << 0);
 966    pxa2xx_rtc_alarm_update(s, s->rtsr);
 967    pxa2xx_rtc_int_update(s);
 968}
 969
 970static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
 971{
 972    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
 973    s->rtsr |= (1 << 4);
 974    pxa2xx_rtc_alarm_update(s, s->rtsr);
 975    pxa2xx_rtc_int_update(s);
 976}
 977
 978static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
 979{
 980    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
 981    s->rtsr |= (1 << 6);
 982    pxa2xx_rtc_alarm_update(s, s->rtsr);
 983    pxa2xx_rtc_int_update(s);
 984}
 985
 986static inline void pxa2xx_rtc_swal1_tick(void *opaque)
 987{
 988    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
 989    s->rtsr |= (1 << 8);
 990    pxa2xx_rtc_alarm_update(s, s->rtsr);
 991    pxa2xx_rtc_int_update(s);
 992}
 993
 994static inline void pxa2xx_rtc_swal2_tick(void *opaque)
 995{
 996    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
 997    s->rtsr |= (1 << 10);
 998    pxa2xx_rtc_alarm_update(s, s->rtsr);
 999    pxa2xx_rtc_int_update(s);
1000}
1001
1002static inline void pxa2xx_rtc_pi_tick(void *opaque)
1003{
1004    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1005    s->rtsr |= (1 << 13);
1006    pxa2xx_rtc_piupdate(s);
1007    s->last_rtcpicr = 0;
1008    pxa2xx_rtc_alarm_update(s, s->rtsr);
1009    pxa2xx_rtc_int_update(s);
1010}
1011
1012static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1013{
1014    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1015
1016    switch (addr) {
1017    case RTTR:
1018        return s->rttr;
1019    case RTSR:
1020        return s->rtsr;
1021    case RTAR:
1022        return s->rtar;
1023    case RDAR1:
1024        return s->rdar1;
1025    case RDAR2:
1026        return s->rdar2;
1027    case RYAR1:
1028        return s->ryar1;
1029    case RYAR2:
1030        return s->ryar2;
1031    case SWAR1:
1032        return s->swar1;
1033    case SWAR2:
1034        return s->swar2;
1035    case PIAR:
1036        return s->piar;
1037    case RCNR:
1038        return s->last_rcnr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1039                (1000 * ((s->rttr & 0xffff) + 1));
1040    case RDCR:
1041        return s->last_rdcr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1042                (1000 * ((s->rttr & 0xffff) + 1));
1043    case RYCR:
1044        return s->last_rycr;
1045    case SWCR:
1046        if (s->rtsr & (1 << 12))
1047            return s->last_swcr + (qemu_get_clock_ms(rt_clock) - s->last_sw) / 10;
1048        else
1049            return s->last_swcr;
1050    default:
1051        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1052        break;
1053    }
1054    return 0;
1055}
1056
1057static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1058                uint32_t value)
1059{
1060    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1061
1062    switch (addr) {
1063    case RTTR:
1064        if (!(s->rttr & (1 << 31))) {
1065            pxa2xx_rtc_hzupdate(s);
1066            s->rttr = value;
1067            pxa2xx_rtc_alarm_update(s, s->rtsr);
1068        }
1069        break;
1070
1071    case RTSR:
1072        if ((s->rtsr ^ value) & (1 << 15))
1073            pxa2xx_rtc_piupdate(s);
1074
1075        if ((s->rtsr ^ value) & (1 << 12))
1076            pxa2xx_rtc_swupdate(s);
1077
1078        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1079            pxa2xx_rtc_alarm_update(s, value);
1080
1081        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1082        pxa2xx_rtc_int_update(s);
1083        break;
1084
1085    case RTAR:
1086        s->rtar = value;
1087        pxa2xx_rtc_alarm_update(s, s->rtsr);
1088        break;
1089
1090    case RDAR1:
1091        s->rdar1 = value;
1092        pxa2xx_rtc_alarm_update(s, s->rtsr);
1093        break;
1094
1095    case RDAR2:
1096        s->rdar2 = value;
1097        pxa2xx_rtc_alarm_update(s, s->rtsr);
1098        break;
1099
1100    case RYAR1:
1101        s->ryar1 = value;
1102        pxa2xx_rtc_alarm_update(s, s->rtsr);
1103        break;
1104
1105    case RYAR2:
1106        s->ryar2 = value;
1107        pxa2xx_rtc_alarm_update(s, s->rtsr);
1108        break;
1109
1110    case SWAR1:
1111        pxa2xx_rtc_swupdate(s);
1112        s->swar1 = value;
1113        s->last_swcr = 0;
1114        pxa2xx_rtc_alarm_update(s, s->rtsr);
1115        break;
1116
1117    case SWAR2:
1118        s->swar2 = value;
1119        pxa2xx_rtc_alarm_update(s, s->rtsr);
1120        break;
1121
1122    case PIAR:
1123        s->piar = value;
1124        pxa2xx_rtc_alarm_update(s, s->rtsr);
1125        break;
1126
1127    case RCNR:
1128        pxa2xx_rtc_hzupdate(s);
1129        s->last_rcnr = value;
1130        pxa2xx_rtc_alarm_update(s, s->rtsr);
1131        break;
1132
1133    case RDCR:
1134        pxa2xx_rtc_hzupdate(s);
1135        s->last_rdcr = value;
1136        pxa2xx_rtc_alarm_update(s, s->rtsr);
1137        break;
1138
1139    case RYCR:
1140        s->last_rycr = value;
1141        break;
1142
1143    case SWCR:
1144        pxa2xx_rtc_swupdate(s);
1145        s->last_swcr = value;
1146        pxa2xx_rtc_alarm_update(s, s->rtsr);
1147        break;
1148
1149    case RTCPICR:
1150        pxa2xx_rtc_piupdate(s);
1151        s->last_rtcpicr = value & 0xffff;
1152        pxa2xx_rtc_alarm_update(s, s->rtsr);
1153        break;
1154
1155    default:
1156        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1157    }
1158}
1159
1160static CPUReadMemoryFunc * const pxa2xx_rtc_readfn[] = {
1161    pxa2xx_rtc_read,
1162    pxa2xx_rtc_read,
1163    pxa2xx_rtc_read,
1164};
1165
1166static CPUWriteMemoryFunc * const pxa2xx_rtc_writefn[] = {
1167    pxa2xx_rtc_write,
1168    pxa2xx_rtc_write,
1169    pxa2xx_rtc_write,
1170};
1171
1172static int pxa2xx_rtc_init(SysBusDevice *dev)
1173{
1174    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1175    struct tm tm;
1176    int wom;
1177    int iomemtype;
1178
1179    s->rttr = 0x7fff;
1180    s->rtsr = 0;
1181
1182    qemu_get_timedate(&tm, 0);
1183    wom = ((tm.tm_mday - 1) / 7) + 1;
1184
1185    s->last_rcnr = (uint32_t) mktimegm(&tm);
1186    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1187            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1188    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1189            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1190    s->last_swcr = (tm.tm_hour << 19) |
1191            (tm.tm_min << 13) | (tm.tm_sec << 7);
1192    s->last_rtcpicr = 0;
1193    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rt_clock);
1194
1195    s->rtc_hz    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_hz_tick,    s);
1196    s->rtc_rdal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1197    s->rtc_rdal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1198    s->rtc_swal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal1_tick, s);
1199    s->rtc_swal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal2_tick, s);
1200    s->rtc_pi    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_pi_tick,    s);
1201
1202    sysbus_init_irq(dev, &s->rtc_irq);
1203
1204    iomemtype = cpu_register_io_memory(pxa2xx_rtc_readfn,
1205                    pxa2xx_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
1206    sysbus_init_mmio(dev, 0x10000, iomemtype);
1207
1208    return 0;
1209}
1210
1211static void pxa2xx_rtc_pre_save(void *opaque)
1212{
1213    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1214
1215    pxa2xx_rtc_hzupdate(s);
1216    pxa2xx_rtc_piupdate(s);
1217    pxa2xx_rtc_swupdate(s);
1218}
1219
1220static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1221{
1222    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1223
1224    pxa2xx_rtc_alarm_update(s, s->rtsr);
1225
1226    return 0;
1227}
1228
1229static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1230    .name = "pxa2xx_rtc",
1231    .version_id = 0,
1232    .minimum_version_id = 0,
1233    .minimum_version_id_old = 0,
1234    .pre_save = pxa2xx_rtc_pre_save,
1235    .post_load = pxa2xx_rtc_post_load,
1236    .fields = (VMStateField[]) {
1237        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1238        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1239        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1240        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1241        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1242        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1243        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1244        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1245        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1246        VMSTATE_UINT32(piar, PXA2xxRTCState),
1247        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1248        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1249        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1250        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1251        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1252        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1253        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1254        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1255        VMSTATE_END_OF_LIST(),
1256    },
1257};
1258
1259static SysBusDeviceInfo pxa2xx_rtc_sysbus_info = {
1260    .init       = pxa2xx_rtc_init,
1261    .qdev.name  = "pxa2xx_rtc",
1262    .qdev.desc  = "PXA2xx RTC Controller",
1263    .qdev.size  = sizeof(PXA2xxRTCState),
1264    .qdev.vmsd  = &vmstate_pxa2xx_rtc_regs,
1265};
1266
1267/* I2C Interface */
1268typedef struct {
1269    i2c_slave i2c;
1270    PXA2xxI2CState *host;
1271} PXA2xxI2CSlaveState;
1272
1273struct PXA2xxI2CState {
1274    SysBusDevice busdev;
1275    PXA2xxI2CSlaveState *slave;
1276    i2c_bus *bus;
1277    qemu_irq irq;
1278    uint32_t offset;
1279    uint32_t region_size;
1280
1281    uint16_t control;
1282    uint16_t status;
1283    uint8_t ibmr;
1284    uint8_t data;
1285};
1286
1287#define IBMR    0x80    /* I2C Bus Monitor register */
1288#define IDBR    0x88    /* I2C Data Buffer register */
1289#define ICR     0x90    /* I2C Control register */
1290#define ISR     0x98    /* I2C Status register */
1291#define ISAR    0xa0    /* I2C Slave Address register */
1292
1293static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1294{
1295    uint16_t level = 0;
1296    level |= s->status & s->control & (1 << 10);                /* BED */
1297    level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1298    level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1299    level |= s->status & (1 << 9);                              /* SAD */
1300    qemu_set_irq(s->irq, !!level);
1301}
1302
1303/* These are only stubs now.  */
1304static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1305{
1306    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1307    PXA2xxI2CState *s = slave->host;
1308
1309    switch (event) {
1310    case I2C_START_SEND:
1311        s->status |= (1 << 9);                          /* set SAD */
1312        s->status &= ~(1 << 0);                         /* clear RWM */
1313        break;
1314    case I2C_START_RECV:
1315        s->status |= (1 << 9);                          /* set SAD */
1316        s->status |= 1 << 0;                            /* set RWM */
1317        break;
1318    case I2C_FINISH:
1319        s->status |= (1 << 4);                          /* set SSD */
1320        break;
1321    case I2C_NACK:
1322        s->status |= 1 << 1;                            /* set ACKNAK */
1323        break;
1324    }
1325    pxa2xx_i2c_update(s);
1326}
1327
1328static int pxa2xx_i2c_rx(i2c_slave *i2c)
1329{
1330    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1331    PXA2xxI2CState *s = slave->host;
1332    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1333        return 0;
1334
1335    if (s->status & (1 << 0)) {                 /* RWM */
1336        s->status |= 1 << 6;                    /* set ITE */
1337    }
1338    pxa2xx_i2c_update(s);
1339
1340    return s->data;
1341}
1342
1343static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1344{
1345    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1346    PXA2xxI2CState *s = slave->host;
1347    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1348        return 1;
1349
1350    if (!(s->status & (1 << 0))) {              /* RWM */
1351        s->status |= 1 << 7;                    /* set IRF */
1352        s->data = data;
1353    }
1354    pxa2xx_i2c_update(s);
1355
1356    return 1;
1357}
1358
1359static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1360{
1361    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1362
1363    addr -= s->offset;
1364    switch (addr) {
1365    case ICR:
1366        return s->control;
1367    case ISR:
1368        return s->status | (i2c_bus_busy(s->bus) << 2);
1369    case ISAR:
1370        return s->slave->i2c.address;
1371    case IDBR:
1372        return s->data;
1373    case IBMR:
1374        if (s->status & (1 << 2))
1375            s->ibmr ^= 3;       /* Fake SCL and SDA pin changes */
1376        else
1377            s->ibmr = 0;
1378        return s->ibmr;
1379    default:
1380        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1381        break;
1382    }
1383    return 0;
1384}
1385
1386static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1387                uint32_t value)
1388{
1389    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1390    int ack;
1391
1392    addr -= s->offset;
1393    switch (addr) {
1394    case ICR:
1395        s->control = value & 0xfff7;
1396        if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1397            /* TODO: slave mode */
1398            if (value & (1 << 0)) {                     /* START condition */
1399                if (s->data & 1)
1400                    s->status |= 1 << 0;                /* set RWM */
1401                else
1402                    s->status &= ~(1 << 0);             /* clear RWM */
1403                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1404            } else {
1405                if (s->status & (1 << 0)) {             /* RWM */
1406                    s->data = i2c_recv(s->bus);
1407                    if (value & (1 << 2))               /* ACKNAK */
1408                        i2c_nack(s->bus);
1409                    ack = 1;
1410                } else
1411                    ack = !i2c_send(s->bus, s->data);
1412            }
1413
1414            if (value & (1 << 1))                       /* STOP condition */
1415                i2c_end_transfer(s->bus);
1416
1417            if (ack) {
1418                if (value & (1 << 0))                   /* START condition */
1419                    s->status |= 1 << 6;                /* set ITE */
1420                else
1421                    if (s->status & (1 << 0))           /* RWM */
1422                        s->status |= 1 << 7;            /* set IRF */
1423                    else
1424                        s->status |= 1 << 6;            /* set ITE */
1425                s->status &= ~(1 << 1);                 /* clear ACKNAK */
1426            } else {
1427                s->status |= 1 << 6;                    /* set ITE */
1428                s->status |= 1 << 10;                   /* set BED */
1429                s->status |= 1 << 1;                    /* set ACKNAK */
1430            }
1431        }
1432        if (!(value & (1 << 3)) && (value & (1 << 6)))  /* !TB and IUE */
1433            if (value & (1 << 4))                       /* MA */
1434                i2c_end_transfer(s->bus);
1435        pxa2xx_i2c_update(s);
1436        break;
1437
1438    case ISR:
1439        s->status &= ~(value & 0x07f0);
1440        pxa2xx_i2c_update(s);
1441        break;
1442
1443    case ISAR:
1444        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1445        break;
1446
1447    case IDBR:
1448        s->data = value & 0xff;
1449        break;
1450
1451    default:
1452        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1453    }
1454}
1455
1456static CPUReadMemoryFunc * const pxa2xx_i2c_readfn[] = {
1457    pxa2xx_i2c_read,
1458    pxa2xx_i2c_read,
1459    pxa2xx_i2c_read,
1460};
1461
1462static CPUWriteMemoryFunc * const pxa2xx_i2c_writefn[] = {
1463    pxa2xx_i2c_write,
1464    pxa2xx_i2c_write,
1465    pxa2xx_i2c_write,
1466};
1467
1468static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1469    .name = "pxa2xx_i2c_slave",
1470    .version_id = 1,
1471    .minimum_version_id = 1,
1472    .minimum_version_id_old = 1,
1473    .fields      = (VMStateField []) {
1474        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1475        VMSTATE_END_OF_LIST()
1476    }
1477};
1478
1479static const VMStateDescription vmstate_pxa2xx_i2c = {
1480    .name = "pxa2xx_i2c",
1481    .version_id = 1,
1482    .minimum_version_id = 1,
1483    .minimum_version_id_old = 1,
1484    .fields      = (VMStateField []) {
1485        VMSTATE_UINT16(control, PXA2xxI2CState),
1486        VMSTATE_UINT16(status, PXA2xxI2CState),
1487        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1488        VMSTATE_UINT8(data, PXA2xxI2CState),
1489        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1490                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1491        VMSTATE_END_OF_LIST()
1492    }
1493};
1494
1495static int pxa2xx_i2c_slave_init(i2c_slave *i2c)
1496{
1497    /* Nothing to do.  */
1498    return 0;
1499}
1500
1501static I2CSlaveInfo pxa2xx_i2c_slave_info = {
1502    .qdev.name = "pxa2xx-i2c-slave",
1503    .qdev.size = sizeof(PXA2xxI2CSlaveState),
1504    .init = pxa2xx_i2c_slave_init,
1505    .event = pxa2xx_i2c_event,
1506    .recv = pxa2xx_i2c_rx,
1507    .send = pxa2xx_i2c_tx
1508};
1509
1510PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1511                qemu_irq irq, uint32_t region_size)
1512{
1513    DeviceState *dev;
1514    SysBusDevice *i2c_dev;
1515    PXA2xxI2CState *s;
1516
1517    i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1518    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1519    qdev_prop_set_uint32(&i2c_dev->qdev, "offset",
1520            base - (base & (~region_size) & TARGET_PAGE_MASK));
1521
1522    qdev_init_nofail(&i2c_dev->qdev);
1523
1524    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1525    sysbus_connect_irq(i2c_dev, 0, irq);
1526
1527    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1528    /* FIXME: Should the slave device really be on a separate bus?  */
1529    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1530    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1531    s->slave->host = s;
1532
1533    return s;
1534}
1535
1536static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1537{
1538    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1539    int iomemtype;
1540
1541    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1542
1543    iomemtype = cpu_register_io_memory(pxa2xx_i2c_readfn,
1544                    pxa2xx_i2c_writefn, s, DEVICE_NATIVE_ENDIAN);
1545    sysbus_init_mmio(dev, s->region_size, iomemtype);
1546    sysbus_init_irq(dev, &s->irq);
1547
1548    return 0;
1549}
1550
1551i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1552{
1553    return s->bus;
1554}
1555
1556static SysBusDeviceInfo pxa2xx_i2c_info = {
1557    .init       = pxa2xx_i2c_initfn,
1558    .qdev.name  = "pxa2xx_i2c",
1559    .qdev.desc  = "PXA2xx I2C Bus Controller",
1560    .qdev.size  = sizeof(PXA2xxI2CState),
1561    .qdev.vmsd  = &vmstate_pxa2xx_i2c,
1562    .qdev.props = (Property[]) {
1563        DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1564        DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1565        DEFINE_PROP_END_OF_LIST(),
1566    },
1567};
1568
1569/* PXA Inter-IC Sound Controller */
1570static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1571{
1572    i2s->rx_len = 0;
1573    i2s->tx_len = 0;
1574    i2s->fifo_len = 0;
1575    i2s->clk = 0x1a;
1576    i2s->control[0] = 0x00;
1577    i2s->control[1] = 0x00;
1578    i2s->status = 0x00;
1579    i2s->mask = 0x00;
1580}
1581
1582#define SACR_TFTH(val)  ((val >> 8) & 0xf)
1583#define SACR_RFTH(val)  ((val >> 12) & 0xf)
1584#define SACR_DREC(val)  (val & (1 << 3))
1585#define SACR_DPRL(val)  (val & (1 << 4))
1586
1587static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1588{
1589    int rfs, tfs;
1590    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1591            !SACR_DREC(i2s->control[1]);
1592    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1593            i2s->enable && !SACR_DPRL(i2s->control[1]);
1594
1595    qemu_set_irq(i2s->rx_dma, rfs);
1596    qemu_set_irq(i2s->tx_dma, tfs);
1597
1598    i2s->status &= 0xe0;
1599    if (i2s->fifo_len < 16 || !i2s->enable)
1600        i2s->status |= 1 << 0;                  /* TNF */
1601    if (i2s->rx_len)
1602        i2s->status |= 1 << 1;                  /* RNE */
1603    if (i2s->enable)
1604        i2s->status |= 1 << 2;                  /* BSY */
1605    if (tfs)
1606        i2s->status |= 1 << 3;                  /* TFS */
1607    if (rfs)
1608        i2s->status |= 1 << 4;                  /* RFS */
1609    if (!(i2s->tx_len && i2s->enable))
1610        i2s->status |= i2s->fifo_len << 8;      /* TFL */
1611    i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1612
1613    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1614}
1615
1616#define SACR0   0x00    /* Serial Audio Global Control register */
1617#define SACR1   0x04    /* Serial Audio I2S/MSB-Justified Control register */
1618#define SASR0   0x0c    /* Serial Audio Interface and FIFO Status register */
1619#define SAIMR   0x14    /* Serial Audio Interrupt Mask register */
1620#define SAICR   0x18    /* Serial Audio Interrupt Clear register */
1621#define SADIV   0x60    /* Serial Audio Clock Divider register */
1622#define SADR    0x80    /* Serial Audio Data register */
1623
1624static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1625{
1626    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1627
1628    switch (addr) {
1629    case SACR0:
1630        return s->control[0];
1631    case SACR1:
1632        return s->control[1];
1633    case SASR0:
1634        return s->status;
1635    case SAIMR:
1636        return s->mask;
1637    case SAICR:
1638        return 0;
1639    case SADIV:
1640        return s->clk;
1641    case SADR:
1642        if (s->rx_len > 0) {
1643            s->rx_len --;
1644            pxa2xx_i2s_update(s);
1645            return s->codec_in(s->opaque);
1646        }
1647        return 0;
1648    default:
1649        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1650        break;
1651    }
1652    return 0;
1653}
1654
1655static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1656                uint32_t value)
1657{
1658    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1659    uint32_t *sample;
1660
1661    switch (addr) {
1662    case SACR0:
1663        if (value & (1 << 3))                           /* RST */
1664            pxa2xx_i2s_reset(s);
1665        s->control[0] = value & 0xff3d;
1666        if (!s->enable && (value & 1) && s->tx_len) {   /* ENB */
1667            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1668                s->codec_out(s->opaque, *sample);
1669            s->status &= ~(1 << 7);                     /* I2SOFF */
1670        }
1671        if (value & (1 << 4))                           /* EFWR */
1672            printf("%s: Attempt to use special function\n", __FUNCTION__);
1673        s->enable = (value & 9) == 1;                   /* ENB && !RST*/
1674        pxa2xx_i2s_update(s);
1675        break;
1676    case SACR1:
1677        s->control[1] = value & 0x0039;
1678        if (value & (1 << 5))                           /* ENLBF */
1679            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1680        if (value & (1 << 4))                           /* DPRL */
1681            s->fifo_len = 0;
1682        pxa2xx_i2s_update(s);
1683        break;
1684    case SAIMR:
1685        s->mask = value & 0x0078;
1686        pxa2xx_i2s_update(s);
1687        break;
1688    case SAICR:
1689        s->status &= ~(value & (3 << 5));
1690        pxa2xx_i2s_update(s);
1691        break;
1692    case SADIV:
1693        s->clk = value & 0x007f;
1694        break;
1695    case SADR:
1696        if (s->tx_len && s->enable) {
1697            s->tx_len --;
1698            pxa2xx_i2s_update(s);
1699            s->codec_out(s->opaque, value);
1700        } else if (s->fifo_len < 16) {
1701            s->fifo[s->fifo_len ++] = value;
1702            pxa2xx_i2s_update(s);
1703        }
1704        break;
1705    default:
1706        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1707    }
1708}
1709
1710static CPUReadMemoryFunc * const pxa2xx_i2s_readfn[] = {
1711    pxa2xx_i2s_read,
1712    pxa2xx_i2s_read,
1713    pxa2xx_i2s_read,
1714};
1715
1716static CPUWriteMemoryFunc * const pxa2xx_i2s_writefn[] = {
1717    pxa2xx_i2s_write,
1718    pxa2xx_i2s_write,
1719    pxa2xx_i2s_write,
1720};
1721
1722static const VMStateDescription vmstate_pxa2xx_i2s = {
1723    .name = "pxa2xx_i2s",
1724    .version_id = 0,
1725    .minimum_version_id = 0,
1726    .minimum_version_id_old = 0,
1727    .fields      = (VMStateField[]) {
1728        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1729        VMSTATE_UINT32(status, PXA2xxI2SState),
1730        VMSTATE_UINT32(mask, PXA2xxI2SState),
1731        VMSTATE_UINT32(clk, PXA2xxI2SState),
1732        VMSTATE_INT32(enable, PXA2xxI2SState),
1733        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1734        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1735        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1736        VMSTATE_END_OF_LIST()
1737    }
1738};
1739
1740static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1741{
1742    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1743    uint32_t *sample;
1744
1745    /* Signal FIFO errors */
1746    if (s->enable && s->tx_len)
1747        s->status |= 1 << 5;            /* TUR */
1748    if (s->enable && s->rx_len)
1749        s->status |= 1 << 6;            /* ROR */
1750
1751    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1752     * handle the cases where it makes a difference.  */
1753    s->tx_len = tx - s->fifo_len;
1754    s->rx_len = rx;
1755    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1756    if (s->enable)
1757        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1758            s->codec_out(s->opaque, *sample);
1759    pxa2xx_i2s_update(s);
1760}
1761
1762static PXA2xxI2SState *pxa2xx_i2s_init(target_phys_addr_t base,
1763                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1764{
1765    int iomemtype;
1766    PXA2xxI2SState *s = (PXA2xxI2SState *)
1767            qemu_mallocz(sizeof(PXA2xxI2SState));
1768
1769    s->irq = irq;
1770    s->rx_dma = rx_dma;
1771    s->tx_dma = tx_dma;
1772    s->data_req = pxa2xx_i2s_data_req;
1773
1774    pxa2xx_i2s_reset(s);
1775
1776    iomemtype = cpu_register_io_memory(pxa2xx_i2s_readfn,
1777                    pxa2xx_i2s_writefn, s, DEVICE_NATIVE_ENDIAN);
1778    cpu_register_physical_memory(base, 0x100000, iomemtype);
1779
1780    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1781
1782    return s;
1783}
1784
1785/* PXA Fast Infra-red Communications Port */
1786struct PXA2xxFIrState {
1787    qemu_irq irq;
1788    qemu_irq rx_dma;
1789    qemu_irq tx_dma;
1790    int enable;
1791    CharDriverState *chr;
1792
1793    uint8_t control[3];
1794    uint8_t status[2];
1795
1796    int rx_len;
1797    int rx_start;
1798    uint8_t rx_fifo[64];
1799};
1800
1801static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1802{
1803    s->control[0] = 0x00;
1804    s->control[1] = 0x00;
1805    s->control[2] = 0x00;
1806    s->status[0] = 0x00;
1807    s->status[1] = 0x00;
1808    s->enable = 0;
1809}
1810
1811static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1812{
1813    static const int tresh[4] = { 8, 16, 32, 0 };
1814    int intr = 0;
1815    if ((s->control[0] & (1 << 4)) &&                   /* RXE */
1816                    s->rx_len >= tresh[s->control[2] & 3])      /* TRIG */
1817        s->status[0] |= 1 << 4;                         /* RFS */
1818    else
1819        s->status[0] &= ~(1 << 4);                      /* RFS */
1820    if (s->control[0] & (1 << 3))                       /* TXE */
1821        s->status[0] |= 1 << 3;                         /* TFS */
1822    else
1823        s->status[0] &= ~(1 << 3);                      /* TFS */
1824    if (s->rx_len)
1825        s->status[1] |= 1 << 2;                         /* RNE */
1826    else
1827        s->status[1] &= ~(1 << 2);                      /* RNE */
1828    if (s->control[0] & (1 << 4))                       /* RXE */
1829        s->status[1] |= 1 << 0;                         /* RSY */
1830    else
1831        s->status[1] &= ~(1 << 0);                      /* RSY */
1832
1833    intr |= (s->control[0] & (1 << 5)) &&               /* RIE */
1834            (s->status[0] & (1 << 4));                  /* RFS */
1835    intr |= (s->control[0] & (1 << 6)) &&               /* TIE */
1836            (s->status[0] & (1 << 3));                  /* TFS */
1837    intr |= (s->control[2] & (1 << 4)) &&               /* TRAIL */
1838            (s->status[0] & (1 << 6));                  /* EOC */
1839    intr |= (s->control[0] & (1 << 2)) &&               /* TUS */
1840            (s->status[0] & (1 << 1));                  /* TUR */
1841    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1842
1843    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1844    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1845
1846    qemu_set_irq(s->irq, intr && s->enable);
1847}
1848
1849#define ICCR0   0x00    /* FICP Control register 0 */
1850#define ICCR1   0x04    /* FICP Control register 1 */
1851#define ICCR2   0x08    /* FICP Control register 2 */
1852#define ICDR    0x0c    /* FICP Data register */
1853#define ICSR0   0x14    /* FICP Status register 0 */
1854#define ICSR1   0x18    /* FICP Status register 1 */
1855#define ICFOR   0x1c    /* FICP FIFO Occupancy Status register */
1856
1857static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1858{
1859    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1860    uint8_t ret;
1861
1862    switch (addr) {
1863    case ICCR0:
1864        return s->control[0];
1865    case ICCR1:
1866        return s->control[1];
1867    case ICCR2:
1868        return s->control[2];
1869    case ICDR:
1870        s->status[0] &= ~0x01;
1871        s->status[1] &= ~0x72;
1872        if (s->rx_len) {
1873            s->rx_len --;
1874            ret = s->rx_fifo[s->rx_start ++];
1875            s->rx_start &= 63;
1876            pxa2xx_fir_update(s);
1877            return ret;
1878        }
1879        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1880        break;
1881    case ICSR0:
1882        return s->status[0];
1883    case ICSR1:
1884        return s->status[1] | (1 << 3);                 /* TNF */
1885    case ICFOR:
1886        return s->rx_len;
1887    default:
1888        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1889        break;
1890    }
1891    return 0;
1892}
1893
1894static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1895                uint32_t value)
1896{
1897    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1898    uint8_t ch;
1899
1900    switch (addr) {
1901    case ICCR0:
1902        s->control[0] = value;
1903        if (!(value & (1 << 4)))                        /* RXE */
1904            s->rx_len = s->rx_start = 0;
1905        if (!(value & (1 << 3))) {                      /* TXE */
1906            /* Nop */
1907        }
1908        s->enable = value & 1;                          /* ITR */
1909        if (!s->enable)
1910            s->status[0] = 0;
1911        pxa2xx_fir_update(s);
1912        break;
1913    case ICCR1:
1914        s->control[1] = value;
1915        break;
1916    case ICCR2:
1917        s->control[2] = value & 0x3f;
1918        pxa2xx_fir_update(s);
1919        break;
1920    case ICDR:
1921        if (s->control[2] & (1 << 2))                   /* TXP */
1922            ch = value;
1923        else
1924            ch = ~value;
1925        if (s->chr && s->enable && (s->control[0] & (1 << 3)))  /* TXE */
1926            qemu_chr_write(s->chr, &ch, 1);
1927        break;
1928    case ICSR0:
1929        s->status[0] &= ~(value & 0x66);
1930        pxa2xx_fir_update(s);
1931        break;
1932    case ICFOR:
1933        break;
1934    default:
1935        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1936    }
1937}
1938
1939static CPUReadMemoryFunc * const pxa2xx_fir_readfn[] = {
1940    pxa2xx_fir_read,
1941    pxa2xx_fir_read,
1942    pxa2xx_fir_read,
1943};
1944
1945static CPUWriteMemoryFunc * const pxa2xx_fir_writefn[] = {
1946    pxa2xx_fir_write,
1947    pxa2xx_fir_write,
1948    pxa2xx_fir_write,
1949};
1950
1951static int pxa2xx_fir_is_empty(void *opaque)
1952{
1953    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1954    return (s->rx_len < 64);
1955}
1956
1957static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1958{
1959    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1960    if (!(s->control[0] & (1 << 4)))                    /* RXE */
1961        return;
1962
1963    while (size --) {
1964        s->status[1] |= 1 << 4;                         /* EOF */
1965        if (s->rx_len >= 64) {
1966            s->status[1] |= 1 << 6;                     /* ROR */
1967            break;
1968        }
1969
1970        if (s->control[2] & (1 << 3))                   /* RXP */
1971            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1972        else
1973            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1974    }
1975
1976    pxa2xx_fir_update(s);
1977}
1978
1979static void pxa2xx_fir_event(void *opaque, int event)
1980{
1981}
1982
1983static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1984{
1985    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1986    int i;
1987
1988    qemu_put_be32(f, s->enable);
1989
1990    qemu_put_8s(f, &s->control[0]);
1991    qemu_put_8s(f, &s->control[1]);
1992    qemu_put_8s(f, &s->control[2]);
1993    qemu_put_8s(f, &s->status[0]);
1994    qemu_put_8s(f, &s->status[1]);
1995
1996    qemu_put_byte(f, s->rx_len);
1997    for (i = 0; i < s->rx_len; i ++)
1998        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1999}
2000
2001static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
2002{
2003    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
2004    int i;
2005
2006    s->enable = qemu_get_be32(f);
2007
2008    qemu_get_8s(f, &s->control[0]);
2009    qemu_get_8s(f, &s->control[1]);
2010    qemu_get_8s(f, &s->control[2]);
2011    qemu_get_8s(f, &s->status[0]);
2012    qemu_get_8s(f, &s->status[1]);
2013
2014    s->rx_len = qemu_get_byte(f);
2015    s->rx_start = 0;
2016    for (i = 0; i < s->rx_len; i ++)
2017        s->rx_fifo[i] = qemu_get_byte(f);
2018
2019    return 0;
2020}
2021
2022static PXA2xxFIrState *pxa2xx_fir_init(target_phys_addr_t base,
2023                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
2024                CharDriverState *chr)
2025{
2026    int iomemtype;
2027    PXA2xxFIrState *s = (PXA2xxFIrState *)
2028            qemu_mallocz(sizeof(PXA2xxFIrState));
2029
2030    s->irq = irq;
2031    s->rx_dma = rx_dma;
2032    s->tx_dma = tx_dma;
2033    s->chr = chr;
2034
2035    pxa2xx_fir_reset(s);
2036
2037    iomemtype = cpu_register_io_memory(pxa2xx_fir_readfn,
2038                    pxa2xx_fir_writefn, s, DEVICE_NATIVE_ENDIAN);
2039    cpu_register_physical_memory(base, 0x1000, iomemtype);
2040
2041    if (chr)
2042        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2043                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
2044
2045    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2046                    pxa2xx_fir_load, s);
2047
2048    return s;
2049}
2050
2051static void pxa2xx_reset(void *opaque, int line, int level)
2052{
2053    PXA2xxState *s = (PXA2xxState *) opaque;
2054
2055    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {      /* GPR_EN */
2056        cpu_reset(s->env);
2057        /* TODO: reset peripherals */
2058    }
2059}
2060
2061/* Initialise a PXA270 integrated chip (ARM based core).  */
2062PXA2xxState *pxa270_init(unsigned int sdram_size, const char *revision)
2063{
2064    PXA2xxState *s;
2065    int iomemtype, i;
2066    DriveInfo *dinfo;
2067    s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
2068
2069    if (revision && strncmp(revision, "pxa27", 5)) {
2070        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2071        exit(1);
2072    }
2073    if (!revision)
2074        revision = "pxa270";
2075    
2076    s->env = cpu_init(revision);
2077    if (!s->env) {
2078        fprintf(stderr, "Unable to find CPU definition\n");
2079        exit(1);
2080    }
2081    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2082
2083    /* SDRAM & Internal Memory Storage */
2084    cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2085                    sdram_size, qemu_ram_alloc(NULL, "pxa270.sdram",
2086                                               sdram_size) | IO_MEM_RAM);
2087    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2088                    0x40000, qemu_ram_alloc(NULL, "pxa270.internal",
2089                                            0x40000) | IO_MEM_RAM);
2090
2091    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2092
2093    s->dma = pxa27x_dma_init(0x40000000,
2094                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2095
2096    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2097                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2098                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2099                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2100                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2101                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2102                    NULL);
2103
2104    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2105
2106    dinfo = drive_get(IF_SD, 0, 0);
2107    if (!dinfo) {
2108        fprintf(stderr, "qemu: missing SecureDigital device\n");
2109        exit(1);
2110    }
2111    s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2112                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2113                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2114                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2115
2116    for (i = 0; pxa270_serial[i].io_base; i ++)
2117        if (serial_hds[i])
2118#ifdef TARGET_WORDS_BIGENDIAN
2119            serial_mm_init(pxa270_serial[i].io_base, 2,
2120                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2121                            14857000 / 16, serial_hds[i], 1, 1);
2122#else
2123            serial_mm_init(pxa270_serial[i].io_base, 2,
2124                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2125                            14857000 / 16, serial_hds[i], 1, 0);
2126#endif
2127        else
2128            break;
2129    if (serial_hds[i])
2130        s->fir = pxa2xx_fir_init(0x40800000,
2131                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2132                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2133                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2134                        serial_hds[i]);
2135
2136    s->lcd = pxa2xx_lcdc_init(0x44000000,
2137                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2138
2139    s->cm_base = 0x41300000;
2140    s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2141    s->clkcfg = 0x00000009;             /* Turbo mode active */
2142    iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
2143                    pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
2144    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2145    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2146
2147    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2148
2149    s->mm_base = 0x48000000;
2150    s->mm_regs[MDMRS >> 2] = 0x00020002;
2151    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2152    s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2153    iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
2154                    pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
2155    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2156    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2157
2158    s->pm_base = 0x40f00000;
2159    iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
2160                    pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
2161    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2162    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2163
2164    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2165    s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
2166    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2167        DeviceState *dev;
2168        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2169                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2170        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2171    }
2172
2173    if (usb_enabled) {
2174        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2175                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2176    }
2177
2178    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2179    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2180
2181    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2182                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2183
2184    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2185                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2186    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2187                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2188
2189    s->i2s = pxa2xx_i2s_init(0x40400000,
2190                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2191                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2192                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2193
2194    s->kp = pxa27x_keypad_init(0x41500000,
2195                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2196
2197    /* GPIO1 resets the processor */
2198    /* The handler can be overridden by board-specific code */
2199    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2200    return s;
2201}
2202
2203/* Initialise a PXA255 integrated chip (ARM based core).  */
2204PXA2xxState *pxa255_init(unsigned int sdram_size)
2205{
2206    PXA2xxState *s;
2207    int iomemtype, i;
2208    DriveInfo *dinfo;
2209
2210    s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
2211
2212    s->env = cpu_init("pxa255");
2213    if (!s->env) {
2214        fprintf(stderr, "Unable to find CPU definition\n");
2215        exit(1);
2216    }
2217    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2218
2219    /* SDRAM & Internal Memory Storage */
2220    cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2221                    qemu_ram_alloc(NULL, "pxa255.sdram",
2222                                   sdram_size) | IO_MEM_RAM);
2223    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2224                    qemu_ram_alloc(NULL, "pxa255.internal",
2225                                   PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
2226
2227    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2228
2229    s->dma = pxa255_dma_init(0x40000000,
2230                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2231
2232    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2233                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2234                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2235                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2236                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2237                    NULL);
2238
2239    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2240
2241    dinfo = drive_get(IF_SD, 0, 0);
2242    if (!dinfo) {
2243        fprintf(stderr, "qemu: missing SecureDigital device\n");
2244        exit(1);
2245    }
2246    s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2247                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2248                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2249                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2250
2251    for (i = 0; pxa255_serial[i].io_base; i ++)
2252        if (serial_hds[i]) {
2253#ifdef TARGET_WORDS_BIGENDIAN
2254            serial_mm_init(pxa255_serial[i].io_base, 2,
2255                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2256                            14745600 / 16, serial_hds[i], 1, 1);
2257#else
2258            serial_mm_init(pxa255_serial[i].io_base, 2,
2259                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2260                            14745600 / 16, serial_hds[i], 1, 0);
2261#endif
2262        } else {
2263            break;
2264        }
2265    if (serial_hds[i])
2266        s->fir = pxa2xx_fir_init(0x40800000,
2267                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2268                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2269                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2270                        serial_hds[i]);
2271
2272    s->lcd = pxa2xx_lcdc_init(0x44000000,
2273                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2274
2275    s->cm_base = 0x41300000;
2276    s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2277    s->clkcfg = 0x00000009;             /* Turbo mode active */
2278    iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
2279                    pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
2280    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2281    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2282
2283    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2284
2285    s->mm_base = 0x48000000;
2286    s->mm_regs[MDMRS >> 2] = 0x00020002;
2287    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2288    s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2289    iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
2290                    pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
2291    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2292    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2293
2294    s->pm_base = 0x40f00000;
2295    iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
2296                    pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
2297    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2298    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2299
2300    for (i = 0; pxa255_ssp[i].io_base; i ++);
2301    s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
2302    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2303        DeviceState *dev;
2304        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2305                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2306        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2307    }
2308
2309    if (usb_enabled) {
2310        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2311                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2312    }
2313
2314    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2315    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2316
2317    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2318                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2319
2320    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2321                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2322    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2323                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2324
2325    s->i2s = pxa2xx_i2s_init(0x40400000,
2326                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2327                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2328                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2329
2330    /* GPIO1 resets the processor */
2331    /* The handler can be overridden by board-specific code */
2332    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2333    return s;
2334}
2335
2336static void pxa2xx_register_devices(void)
2337{
2338    i2c_register_slave(&pxa2xx_i2c_slave_info);
2339    sysbus_register_dev("pxa2xx-ssp", sizeof(PXA2xxSSPState), pxa2xx_ssp_init);
2340    sysbus_register_withprop(&pxa2xx_i2c_info);
2341    sysbus_register_withprop(&pxa2xx_rtc_sysbus_info);
2342}
2343
2344device_init(pxa2xx_register_devices)
2345