1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25#include "sysbus.h"
26#include "net.h"
27#include "flash.h"
28#include "boards.h"
29#include "etraxfs.h"
30#include "loader.h"
31#include "elf.h"
32#include "cris-boot.h"
33#include "blockdev.h"
34#include "exec-memory.h"
35
36#define D(x)
37#define DNAND(x)
38
39struct nand_state_t
40{
41 DeviceState *nand;
42 unsigned int rdy:1;
43 unsigned int ale:1;
44 unsigned int cle:1;
45 unsigned int ce:1;
46};
47
48static struct nand_state_t nand_state;
49static uint32_t nand_readl (void *opaque, target_phys_addr_t addr)
50{
51 struct nand_state_t *s = opaque;
52 uint32_t r;
53 int rdy;
54
55 r = nand_getio(s->nand);
56 nand_getpins(s->nand, &rdy);
57 s->rdy = rdy;
58
59 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
60 return r;
61}
62
63static void
64nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
65{
66 struct nand_state_t *s = opaque;
67 int rdy;
68
69 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value));
70 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
71 nand_setio(s->nand, value);
72 nand_getpins(s->nand, &rdy);
73 s->rdy = rdy;
74}
75
76static CPUReadMemoryFunc * const nand_read[] = {
77 &nand_readl,
78 &nand_readl,
79 &nand_readl,
80};
81
82static CPUWriteMemoryFunc * const nand_write[] = {
83 &nand_writel,
84 &nand_writel,
85 &nand_writel,
86};
87
88
89struct tempsensor_t
90{
91 unsigned int shiftreg;
92 unsigned int count;
93 enum {
94 ST_OUT, ST_IN, ST_Z
95 } state;
96
97 uint16_t regs[3];
98};
99
100static void tempsensor_clkedge(struct tempsensor_t *s,
101 unsigned int clk, unsigned int data_in)
102{
103 D(printf("%s clk=%d state=%d sr=%x\n", __func__,
104 clk, s->state, s->shiftreg));
105 if (s->count == 0) {
106 s->count = 16;
107 s->state = ST_OUT;
108 }
109 switch (s->state) {
110 case ST_OUT:
111
112 if (!clk) {
113 s->count--;
114 s->shiftreg <<= 1;
115 if (s->count == 0) {
116 s->shiftreg = 0;
117 s->state = ST_IN;
118 s->count = 16;
119 }
120 }
121 break;
122 case ST_Z:
123 if (clk) {
124 s->count--;
125 if (s->count == 0) {
126 s->shiftreg = 0;
127 s->state = ST_OUT;
128 s->count = 16;
129 }
130 }
131 break;
132 case ST_IN:
133
134 if (clk) {
135 s->count--;
136 s->shiftreg <<= 1;
137 s->shiftreg |= data_in & 1;
138 if (s->count == 0) {
139 D(printf("%s cfgreg=%x\n", __func__, s->shiftreg));
140 s->regs[0] = s->shiftreg;
141 s->state = ST_OUT;
142 s->count = 16;
143
144 if ((s->regs[0] & 0xff) == 0) {
145
146 s->shiftreg = 0x0b9f;
147 } else if ((s->regs[0] & 0xff) == 0xff) {
148
149 s->shiftreg = 0x8100;
150 } else
151 printf("Invalid tempsens state %x\n", s->regs[0]);
152 }
153 }
154 break;
155 }
156}
157
158
159#define RW_PA_DOUT 0x00
160#define R_PA_DIN 0x01
161#define RW_PA_OE 0x02
162#define RW_PD_DOUT 0x10
163#define R_PD_DIN 0x11
164#define RW_PD_OE 0x12
165
166static struct gpio_state_t
167{
168 struct nand_state_t *nand;
169 struct tempsensor_t tempsensor;
170 uint32_t regs[0x5c / 4];
171} gpio_state;
172
173static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr)
174{
175 struct gpio_state_t *s = opaque;
176 uint32_t r = 0;
177
178 addr >>= 2;
179 switch (addr)
180 {
181 case R_PA_DIN:
182 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
183
184
185 r |= s->nand->rdy << 7;
186 break;
187 case R_PD_DIN:
188 r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE];
189
190
191 r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4;
192 break;
193
194 default:
195 r = s->regs[addr];
196 break;
197 }
198 return r;
199 D(printf("%s %x=%x\n", __func__, addr, r));
200}
201
202static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
203{
204 struct gpio_state_t *s = opaque;
205 D(printf("%s %x=%x\n", __func__, addr, value));
206
207 addr >>= 2;
208 switch (addr)
209 {
210 case RW_PA_DOUT:
211
212 s->nand->ale = !!(value & (1 << 6));
213 s->nand->cle = !!(value & (1 << 5));
214 s->nand->ce = !!(value & (1 << 4));
215
216 s->regs[addr] = value;
217 break;
218
219 case RW_PD_DOUT:
220
221 if ((s->regs[addr] ^ value) & 2)
222 tempsensor_clkedge(&s->tempsensor, !!(value & 2),
223 !!(value & 16));
224 s->regs[addr] = value;
225 break;
226
227 default:
228 s->regs[addr] = value;
229 break;
230 }
231}
232
233static CPUReadMemoryFunc * const gpio_read[] = {
234 NULL, NULL,
235 &gpio_readl,
236};
237
238static CPUWriteMemoryFunc * const gpio_write[] = {
239 NULL, NULL,
240 &gpio_writel,
241};
242
243#define INTMEM_SIZE (128 * 1024)
244
245static struct cris_load_info li;
246
247static
248void axisdev88_init (ram_addr_t ram_size,
249 const char *boot_device,
250 const char *kernel_filename, const char *kernel_cmdline,
251 const char *initrd_filename, const char *cpu_model)
252{
253 CPUState *env;
254 DeviceState *dev;
255 SysBusDevice *s;
256 DriveInfo *nand;
257 qemu_irq irq[30], nmi[2], *cpu_irq;
258 void *etraxfs_dmac;
259 struct etraxfs_dma_client *dma_eth;
260 int i;
261 int nand_regs;
262 int gpio_regs;
263 MemoryRegion *address_space_mem = get_system_memory();
264 MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
265 MemoryRegion *phys_intmem = g_new(MemoryRegion, 1);
266
267
268 if (cpu_model == NULL) {
269 cpu_model = "crisv32";
270 }
271 env = cpu_init(cpu_model);
272
273
274 memory_region_init_ram(phys_ram, NULL, "axisdev88.ram", ram_size);
275 memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram);
276
277
278
279 memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", INTMEM_SIZE);
280 memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem);
281
282
283 nand = drive_get(IF_MTD, 0, 0);
284 nand_state.nand = nand_init(nand ? nand->bdrv : NULL,
285 NAND_MFR_STMICRO, 0x39);
286 nand_regs = cpu_register_io_memory(nand_read, nand_write, &nand_state,
287 DEVICE_NATIVE_ENDIAN);
288 cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs);
289
290 gpio_state.nand = &nand_state;
291 gpio_regs = cpu_register_io_memory(gpio_read, gpio_write, &gpio_state,
292 DEVICE_NATIVE_ENDIAN);
293 cpu_register_physical_memory(0x3001a000, 0x5c, gpio_regs);
294
295
296 cpu_irq = cris_pic_init_cpu(env);
297 dev = qdev_create(NULL, "etraxfs,pic");
298
299 qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector);
300 qdev_init_nofail(dev);
301 s = sysbus_from_qdev(dev);
302 sysbus_mmio_map(s, 0, 0x3001c000);
303 sysbus_connect_irq(s, 0, cpu_irq[0]);
304 sysbus_connect_irq(s, 1, cpu_irq[1]);
305 for (i = 0; i < 30; i++) {
306 irq[i] = qdev_get_gpio_in(dev, i);
307 }
308 nmi[0] = qdev_get_gpio_in(dev, 30);
309 nmi[1] = qdev_get_gpio_in(dev, 31);
310
311 etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10);
312 for (i = 0; i < 10; i++) {
313
314 etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1);
315 }
316
317
318 dma_eth = g_malloc0(sizeof dma_eth[0] * 4);
319 etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]);
320 if (nb_nics > 1) {
321 etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]);
322 }
323
324
325 etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]);
326 etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]);
327 if (nb_nics > 1) {
328 etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]);
329 etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]);
330 }
331
332
333 sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL);
334 sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL);
335
336 for (i = 0; i < 4; i++) {
337 sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000,
338 irq[0x14 + i]);
339 }
340
341 if (!kernel_filename) {
342 fprintf(stderr, "Kernel image must be specified\n");
343 exit(1);
344 }
345
346 li.image_filename = kernel_filename;
347 li.cmdline = kernel_cmdline;
348 cris_load_image(env, &li);
349}
350
351static QEMUMachine axisdev88_machine = {
352 .name = "axis-dev88",
353 .desc = "AXIS devboard 88",
354 .init = axisdev88_init,
355 .is_default = 1,
356};
357
358static void axisdev88_machine_init(void)
359{
360 qemu_register_machine(&axisdev88_machine);
361}
362
363machine_init(axisdev88_machine_init);
364