qemu/hw/hpet.c
<<
>>
Prefs
   1/*
   2 *  High Precisition Event Timer emulation
   3 *
   4 *  Copyright (c) 2007 Alexander Graf
   5 *  Copyright (c) 2008 IBM Corporation
   6 *
   7 *  Authors: Beth Kon <bkon@us.ibm.com>
   8 *
   9 * This library is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU Lesser General Public
  11 * License as published by the Free Software Foundation; either
  12 * version 2 of the License, or (at your option) any later version.
  13 *
  14 * This library is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * Lesser General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU Lesser General Public
  20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  21 *
  22 * *****************************************************************
  23 *
  24 * This driver attempts to emulate an HPET device in software.
  25 */
  26
  27#include "hw.h"
  28#include "pc.h"
  29#include "console.h"
  30#include "qemu-timer.h"
  31#include "hpet_emul.h"
  32#include "sysbus.h"
  33#include "mc146818rtc.h"
  34
  35//#define HPET_DEBUG
  36#ifdef HPET_DEBUG
  37#define DPRINTF printf
  38#else
  39#define DPRINTF(...)
  40#endif
  41
  42#define HPET_MSI_SUPPORT        0
  43
  44struct HPETState;
  45typedef struct HPETTimer {  /* timers */
  46    uint8_t tn;             /*timer number*/
  47    QEMUTimer *qemu_timer;
  48    struct HPETState *state;
  49    /* Memory-mapped, software visible timer registers */
  50    uint64_t config;        /* configuration/cap */
  51    uint64_t cmp;           /* comparator */
  52    uint64_t fsb;           /* FSB route */
  53    /* Hidden register state */
  54    uint64_t period;        /* Last value written to comparator */
  55    uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
  56                             * mode. Next pop will be actual timer expiration.
  57                             */
  58} HPETTimer;
  59
  60typedef struct HPETState {
  61    SysBusDevice busdev;
  62    uint64_t hpet_offset;
  63    qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
  64    uint32_t flags;
  65    uint8_t rtc_irq_level;
  66    uint8_t num_timers;
  67    HPETTimer timer[HPET_MAX_TIMERS];
  68
  69    /* Memory-mapped, software visible registers */
  70    uint64_t capability;        /* capabilities */
  71    uint64_t config;            /* configuration */
  72    uint64_t isr;               /* interrupt status reg */
  73    uint64_t hpet_counter;      /* main counter */
  74    uint8_t  hpet_id;           /* instance id */
  75} HPETState;
  76
  77static uint32_t hpet_in_legacy_mode(HPETState *s)
  78{
  79    return s->config & HPET_CFG_LEGACY;
  80}
  81
  82static uint32_t timer_int_route(struct HPETTimer *timer)
  83{
  84    return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
  85}
  86
  87static uint32_t timer_fsb_route(HPETTimer *t)
  88{
  89    return t->config & HPET_TN_FSB_ENABLE;
  90}
  91
  92static uint32_t hpet_enabled(HPETState *s)
  93{
  94    return s->config & HPET_CFG_ENABLE;
  95}
  96
  97static uint32_t timer_is_periodic(HPETTimer *t)
  98{
  99    return t->config & HPET_TN_PERIODIC;
 100}
 101
 102static uint32_t timer_enabled(HPETTimer *t)
 103{
 104    return t->config & HPET_TN_ENABLE;
 105}
 106
 107static uint32_t hpet_time_after(uint64_t a, uint64_t b)
 108{
 109    return ((int32_t)(b) - (int32_t)(a) < 0);
 110}
 111
 112static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
 113{
 114    return ((int64_t)(b) - (int64_t)(a) < 0);
 115}
 116
 117static uint64_t ticks_to_ns(uint64_t value)
 118{
 119    return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
 120}
 121
 122static uint64_t ns_to_ticks(uint64_t value)
 123{
 124    return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
 125}
 126
 127static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
 128{
 129    new &= mask;
 130    new |= old & ~mask;
 131    return new;
 132}
 133
 134static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
 135{
 136    return (!(old & mask) && (new & mask));
 137}
 138
 139static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
 140{
 141    return ((old & mask) && !(new & mask));
 142}
 143
 144static uint64_t hpet_get_ticks(HPETState *s)
 145{
 146    return ns_to_ticks(qemu_get_clock_ns(vm_clock) + s->hpet_offset);
 147}
 148
 149/*
 150 * calculate diff between comparator value and current ticks
 151 */
 152static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
 153{
 154
 155    if (t->config & HPET_TN_32BIT) {
 156        uint32_t diff, cmp;
 157
 158        cmp = (uint32_t)t->cmp;
 159        diff = cmp - (uint32_t)current;
 160        diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
 161        return (uint64_t)diff;
 162    } else {
 163        uint64_t diff, cmp;
 164
 165        cmp = t->cmp;
 166        diff = cmp - current;
 167        diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
 168        return diff;
 169    }
 170}
 171
 172static void update_irq(struct HPETTimer *timer, int set)
 173{
 174    uint64_t mask;
 175    HPETState *s;
 176    int route;
 177
 178    if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
 179        /* if LegacyReplacementRoute bit is set, HPET specification requires
 180         * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
 181         * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
 182         */
 183        route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
 184    } else {
 185        route = timer_int_route(timer);
 186    }
 187    s = timer->state;
 188    mask = 1 << timer->tn;
 189    if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
 190        s->isr &= ~mask;
 191        if (!timer_fsb_route(timer)) {
 192            qemu_irq_lower(s->irqs[route]);
 193        }
 194    } else if (timer_fsb_route(timer)) {
 195        stl_le_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
 196    } else if (timer->config & HPET_TN_TYPE_LEVEL) {
 197        s->isr |= mask;
 198        qemu_irq_raise(s->irqs[route]);
 199    } else {
 200        s->isr &= ~mask;
 201        qemu_irq_pulse(s->irqs[route]);
 202    }
 203}
 204
 205static void hpet_pre_save(void *opaque)
 206{
 207    HPETState *s = opaque;
 208
 209    /* save current counter value */
 210    s->hpet_counter = hpet_get_ticks(s);
 211}
 212
 213static int hpet_pre_load(void *opaque)
 214{
 215    HPETState *s = opaque;
 216
 217    /* version 1 only supports 3, later versions will load the actual value */
 218    s->num_timers = HPET_MIN_TIMERS;
 219    return 0;
 220}
 221
 222static int hpet_post_load(void *opaque, int version_id)
 223{
 224    HPETState *s = opaque;
 225
 226    /* Recalculate the offset between the main counter and guest time */
 227    s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_get_clock_ns(vm_clock);
 228
 229    /* Push number of timers into capability returned via HPET_ID */
 230    s->capability &= ~HPET_ID_NUM_TIM_MASK;
 231    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
 232    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
 233
 234    /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
 235    s->flags &= ~(1 << HPET_MSI_SUPPORT);
 236    if (s->timer[0].config & HPET_TN_FSB_CAP) {
 237        s->flags |= 1 << HPET_MSI_SUPPORT;
 238    }
 239    return 0;
 240}
 241
 242static const VMStateDescription vmstate_hpet_timer = {
 243    .name = "hpet_timer",
 244    .version_id = 1,
 245    .minimum_version_id = 1,
 246    .minimum_version_id_old = 1,
 247    .fields      = (VMStateField []) {
 248        VMSTATE_UINT8(tn, HPETTimer),
 249        VMSTATE_UINT64(config, HPETTimer),
 250        VMSTATE_UINT64(cmp, HPETTimer),
 251        VMSTATE_UINT64(fsb, HPETTimer),
 252        VMSTATE_UINT64(period, HPETTimer),
 253        VMSTATE_UINT8(wrap_flag, HPETTimer),
 254        VMSTATE_TIMER(qemu_timer, HPETTimer),
 255        VMSTATE_END_OF_LIST()
 256    }
 257};
 258
 259static const VMStateDescription vmstate_hpet = {
 260    .name = "hpet",
 261    .version_id = 2,
 262    .minimum_version_id = 1,
 263    .minimum_version_id_old = 1,
 264    .pre_save = hpet_pre_save,
 265    .pre_load = hpet_pre_load,
 266    .post_load = hpet_post_load,
 267    .fields      = (VMStateField []) {
 268        VMSTATE_UINT64(config, HPETState),
 269        VMSTATE_UINT64(isr, HPETState),
 270        VMSTATE_UINT64(hpet_counter, HPETState),
 271        VMSTATE_UINT8_V(num_timers, HPETState, 2),
 272        VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
 273                                    vmstate_hpet_timer, HPETTimer),
 274        VMSTATE_END_OF_LIST()
 275    }
 276};
 277
 278/*
 279 * timer expiration callback
 280 */
 281static void hpet_timer(void *opaque)
 282{
 283    HPETTimer *t = opaque;
 284    uint64_t diff;
 285
 286    uint64_t period = t->period;
 287    uint64_t cur_tick = hpet_get_ticks(t->state);
 288
 289    if (timer_is_periodic(t) && period != 0) {
 290        if (t->config & HPET_TN_32BIT) {
 291            while (hpet_time_after(cur_tick, t->cmp)) {
 292                t->cmp = (uint32_t)(t->cmp + t->period);
 293            }
 294        } else {
 295            while (hpet_time_after64(cur_tick, t->cmp)) {
 296                t->cmp += period;
 297            }
 298        }
 299        diff = hpet_calculate_diff(t, cur_tick);
 300        qemu_mod_timer(t->qemu_timer,
 301                       qemu_get_clock_ns(vm_clock) + (int64_t)ticks_to_ns(diff));
 302    } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
 303        if (t->wrap_flag) {
 304            diff = hpet_calculate_diff(t, cur_tick);
 305            qemu_mod_timer(t->qemu_timer, qemu_get_clock_ns(vm_clock) +
 306                           (int64_t)ticks_to_ns(diff));
 307            t->wrap_flag = 0;
 308        }
 309    }
 310    update_irq(t, 1);
 311}
 312
 313static void hpet_set_timer(HPETTimer *t)
 314{
 315    uint64_t diff;
 316    uint32_t wrap_diff;  /* how many ticks until we wrap? */
 317    uint64_t cur_tick = hpet_get_ticks(t->state);
 318
 319    /* whenever new timer is being set up, make sure wrap_flag is 0 */
 320    t->wrap_flag = 0;
 321    diff = hpet_calculate_diff(t, cur_tick);
 322
 323    /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
 324     * counter wraps in addition to an interrupt with comparator match.
 325     */
 326    if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
 327        wrap_diff = 0xffffffff - (uint32_t)cur_tick;
 328        if (wrap_diff < (uint32_t)diff) {
 329            diff = wrap_diff;
 330            t->wrap_flag = 1;
 331        }
 332    }
 333    qemu_mod_timer(t->qemu_timer,
 334                   qemu_get_clock_ns(vm_clock) + (int64_t)ticks_to_ns(diff));
 335}
 336
 337static void hpet_del_timer(HPETTimer *t)
 338{
 339    qemu_del_timer(t->qemu_timer);
 340    update_irq(t, 0);
 341}
 342
 343#ifdef HPET_DEBUG
 344static uint32_t hpet_ram_readb(void *opaque, target_phys_addr_t addr)
 345{
 346    printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
 347    return 0;
 348}
 349
 350static uint32_t hpet_ram_readw(void *opaque, target_phys_addr_t addr)
 351{
 352    printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
 353    return 0;
 354}
 355#endif
 356
 357static uint32_t hpet_ram_readl(void *opaque, target_phys_addr_t addr)
 358{
 359    HPETState *s = opaque;
 360    uint64_t cur_tick, index;
 361
 362    DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
 363    index = addr;
 364    /*address range of all TN regs*/
 365    if (index >= 0x100 && index <= 0x3ff) {
 366        uint8_t timer_id = (addr - 0x100) / 0x20;
 367        HPETTimer *timer = &s->timer[timer_id];
 368
 369        if (timer_id > s->num_timers) {
 370            DPRINTF("qemu: timer id out of range\n");
 371            return 0;
 372        }
 373
 374        switch ((addr - 0x100) % 0x20) {
 375        case HPET_TN_CFG:
 376            return timer->config;
 377        case HPET_TN_CFG + 4: // Interrupt capabilities
 378            return timer->config >> 32;
 379        case HPET_TN_CMP: // comparator register
 380            return timer->cmp;
 381        case HPET_TN_CMP + 4:
 382            return timer->cmp >> 32;
 383        case HPET_TN_ROUTE:
 384            return timer->fsb;
 385        case HPET_TN_ROUTE + 4:
 386            return timer->fsb >> 32;
 387        default:
 388            DPRINTF("qemu: invalid hpet_ram_readl\n");
 389            break;
 390        }
 391    } else {
 392        switch (index) {
 393        case HPET_ID:
 394            return s->capability;
 395        case HPET_PERIOD:
 396            return s->capability >> 32;
 397        case HPET_CFG:
 398            return s->config;
 399        case HPET_CFG + 4:
 400            DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
 401            return 0;
 402        case HPET_COUNTER:
 403            if (hpet_enabled(s)) {
 404                cur_tick = hpet_get_ticks(s);
 405            } else {
 406                cur_tick = s->hpet_counter;
 407            }
 408            DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
 409            return cur_tick;
 410        case HPET_COUNTER + 4:
 411            if (hpet_enabled(s)) {
 412                cur_tick = hpet_get_ticks(s);
 413            } else {
 414                cur_tick = s->hpet_counter;
 415            }
 416            DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
 417            return cur_tick >> 32;
 418        case HPET_STATUS:
 419            return s->isr;
 420        default:
 421            DPRINTF("qemu: invalid hpet_ram_readl\n");
 422            break;
 423        }
 424    }
 425    return 0;
 426}
 427
 428#ifdef HPET_DEBUG
 429static void hpet_ram_writeb(void *opaque, target_phys_addr_t addr,
 430                            uint32_t value)
 431{
 432    printf("qemu: invalid hpet_write b at %" PRIx64 " = %#x\n",
 433           addr, value);
 434}
 435
 436static void hpet_ram_writew(void *opaque, target_phys_addr_t addr,
 437                            uint32_t value)
 438{
 439    printf("qemu: invalid hpet_write w at %" PRIx64 " = %#x\n",
 440           addr, value);
 441}
 442#endif
 443
 444static void hpet_ram_writel(void *opaque, target_phys_addr_t addr,
 445                            uint32_t value)
 446{
 447    int i;
 448    HPETState *s = opaque;
 449    uint64_t old_val, new_val, val, index;
 450
 451    DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
 452    index = addr;
 453    old_val = hpet_ram_readl(opaque, addr);
 454    new_val = value;
 455
 456    /*address range of all TN regs*/
 457    if (index >= 0x100 && index <= 0x3ff) {
 458        uint8_t timer_id = (addr - 0x100) / 0x20;
 459        HPETTimer *timer = &s->timer[timer_id];
 460
 461        DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
 462        if (timer_id > s->num_timers) {
 463            DPRINTF("qemu: timer id out of range\n");
 464            return;
 465        }
 466        switch ((addr - 0x100) % 0x20) {
 467        case HPET_TN_CFG:
 468            DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
 469            if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
 470                update_irq(timer, 0);
 471            }
 472            val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
 473            timer->config = (timer->config & 0xffffffff00000000ULL) | val;
 474            if (new_val & HPET_TN_32BIT) {
 475                timer->cmp = (uint32_t)timer->cmp;
 476                timer->period = (uint32_t)timer->period;
 477            }
 478            if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
 479                hpet_set_timer(timer);
 480            } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
 481                hpet_del_timer(timer);
 482            }
 483            break;
 484        case HPET_TN_CFG + 4: // Interrupt capabilities
 485            DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
 486            break;
 487        case HPET_TN_CMP: // comparator register
 488            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
 489            if (timer->config & HPET_TN_32BIT) {
 490                new_val = (uint32_t)new_val;
 491            }
 492            if (!timer_is_periodic(timer)
 493                || (timer->config & HPET_TN_SETVAL)) {
 494                timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
 495            }
 496            if (timer_is_periodic(timer)) {
 497                /*
 498                 * FIXME: Clamp period to reasonable min value?
 499                 * Clamp period to reasonable max value
 500                 */
 501                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
 502                timer->period =
 503                    (timer->period & 0xffffffff00000000ULL) | new_val;
 504            }
 505            timer->config &= ~HPET_TN_SETVAL;
 506            if (hpet_enabled(s)) {
 507                hpet_set_timer(timer);
 508            }
 509            break;
 510        case HPET_TN_CMP + 4: // comparator register high order
 511            DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
 512            if (!timer_is_periodic(timer)
 513                || (timer->config & HPET_TN_SETVAL)) {
 514                timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
 515            } else {
 516                /*
 517                 * FIXME: Clamp period to reasonable min value?
 518                 * Clamp period to reasonable max value
 519                 */
 520                new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
 521                timer->period =
 522                    (timer->period & 0xffffffffULL) | new_val << 32;
 523                }
 524                timer->config &= ~HPET_TN_SETVAL;
 525                if (hpet_enabled(s)) {
 526                    hpet_set_timer(timer);
 527                }
 528                break;
 529        case HPET_TN_ROUTE:
 530            timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
 531            break;
 532        case HPET_TN_ROUTE + 4:
 533            timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
 534            break;
 535        default:
 536            DPRINTF("qemu: invalid hpet_ram_writel\n");
 537            break;
 538        }
 539        return;
 540    } else {
 541        switch (index) {
 542        case HPET_ID:
 543            return;
 544        case HPET_CFG:
 545            val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
 546            s->config = (s->config & 0xffffffff00000000ULL) | val;
 547            if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
 548                /* Enable main counter and interrupt generation. */
 549                s->hpet_offset =
 550                    ticks_to_ns(s->hpet_counter) - qemu_get_clock_ns(vm_clock);
 551                for (i = 0; i < s->num_timers; i++) {
 552                    if ((&s->timer[i])->cmp != ~0ULL) {
 553                        hpet_set_timer(&s->timer[i]);
 554                    }
 555                }
 556            } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
 557                /* Halt main counter and disable interrupt generation. */
 558                s->hpet_counter = hpet_get_ticks(s);
 559                for (i = 0; i < s->num_timers; i++) {
 560                    hpet_del_timer(&s->timer[i]);
 561                }
 562            }
 563            /* i8254 and RTC are disabled when HPET is in legacy mode */
 564            if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
 565                hpet_pit_disable();
 566                qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
 567            } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
 568                hpet_pit_enable();
 569                qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
 570            }
 571            break;
 572        case HPET_CFG + 4:
 573            DPRINTF("qemu: invalid HPET_CFG+4 write\n");
 574            break;
 575        case HPET_STATUS:
 576            val = new_val & s->isr;
 577            for (i = 0; i < s->num_timers; i++) {
 578                if (val & (1 << i)) {
 579                    update_irq(&s->timer[i], 0);
 580                }
 581            }
 582            break;
 583        case HPET_COUNTER:
 584            if (hpet_enabled(s)) {
 585                DPRINTF("qemu: Writing counter while HPET enabled!\n");
 586            }
 587            s->hpet_counter =
 588                (s->hpet_counter & 0xffffffff00000000ULL) | value;
 589            DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
 590                    value, s->hpet_counter);
 591            break;
 592        case HPET_COUNTER + 4:
 593            if (hpet_enabled(s)) {
 594                DPRINTF("qemu: Writing counter while HPET enabled!\n");
 595            }
 596            s->hpet_counter =
 597                (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
 598            DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
 599                    value, s->hpet_counter);
 600            break;
 601        default:
 602            DPRINTF("qemu: invalid hpet_ram_writel\n");
 603            break;
 604        }
 605    }
 606}
 607
 608static CPUReadMemoryFunc * const hpet_ram_read[] = {
 609#ifdef HPET_DEBUG
 610    hpet_ram_readb,
 611    hpet_ram_readw,
 612#else
 613    NULL,
 614    NULL,
 615#endif
 616    hpet_ram_readl,
 617};
 618
 619static CPUWriteMemoryFunc * const hpet_ram_write[] = {
 620#ifdef HPET_DEBUG
 621    hpet_ram_writeb,
 622    hpet_ram_writew,
 623#else
 624    NULL,
 625    NULL,
 626#endif
 627    hpet_ram_writel,
 628};
 629
 630static void hpet_reset(DeviceState *d)
 631{
 632    HPETState *s = FROM_SYSBUS(HPETState, sysbus_from_qdev(d));
 633    int i;
 634    static int count = 0;
 635
 636    for (i = 0; i < s->num_timers; i++) {
 637        HPETTimer *timer = &s->timer[i];
 638
 639        hpet_del_timer(timer);
 640        timer->cmp = ~0ULL;
 641        timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
 642        if (s->flags & (1 << HPET_MSI_SUPPORT)) {
 643            timer->config |= HPET_TN_FSB_CAP;
 644        }
 645        /* advertise availability of ioapic inti2 */
 646        timer->config |=  0x00000004ULL << 32;
 647        timer->period = 0ULL;
 648        timer->wrap_flag = 0;
 649    }
 650
 651    s->hpet_counter = 0ULL;
 652    s->hpet_offset = 0ULL;
 653    s->config = 0ULL;
 654    if (count > 0) {
 655        /* we don't enable pit when hpet_reset is first called (by hpet_init)
 656         * because hpet is taking over for pit here. On subsequent invocations,
 657         * hpet_reset is called due to system reset. At this point control must
 658         * be returned to pit until SW reenables hpet.
 659         */
 660        hpet_pit_enable();
 661    }
 662    hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
 663    hpet_cfg.hpet[s->hpet_id].address = sysbus_from_qdev(d)->mmio[0].addr;
 664    count = 1;
 665}
 666
 667static void hpet_handle_rtc_irq(void *opaque, int n, int level)
 668{
 669    HPETState *s = FROM_SYSBUS(HPETState, opaque);
 670
 671    s->rtc_irq_level = level;
 672    if (!hpet_in_legacy_mode(s)) {
 673        qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
 674    }
 675}
 676
 677static int hpet_init(SysBusDevice *dev)
 678{
 679    HPETState *s = FROM_SYSBUS(HPETState, dev);
 680    int i, iomemtype;
 681    HPETTimer *timer;
 682
 683    if (hpet_cfg.count == UINT8_MAX) {
 684        /* first instance */
 685        hpet_cfg.count = 0;
 686    }
 687
 688    if (hpet_cfg.count == 8) {
 689        fprintf(stderr, "Only 8 instances of HPET is allowed\n");
 690        return -1;
 691    }
 692
 693    s->hpet_id = hpet_cfg.count++;
 694
 695    for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
 696        sysbus_init_irq(dev, &s->irqs[i]);
 697    }
 698
 699    if (s->num_timers < HPET_MIN_TIMERS) {
 700        s->num_timers = HPET_MIN_TIMERS;
 701    } else if (s->num_timers > HPET_MAX_TIMERS) {
 702        s->num_timers = HPET_MAX_TIMERS;
 703    }
 704    for (i = 0; i < HPET_MAX_TIMERS; i++) {
 705        timer = &s->timer[i];
 706        timer->qemu_timer = qemu_new_timer_ns(vm_clock, hpet_timer, timer);
 707        timer->tn = i;
 708        timer->state = s;
 709    }
 710
 711    /* 64-bit main counter; LegacyReplacementRoute. */
 712    s->capability = 0x8086a001ULL;
 713    s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
 714    s->capability |= ((HPET_CLK_PERIOD) << 32);
 715
 716    qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1);
 717
 718    /* HPET Area */
 719    iomemtype = cpu_register_io_memory(hpet_ram_read,
 720                                       hpet_ram_write, s,
 721                                       DEVICE_NATIVE_ENDIAN);
 722    sysbus_init_mmio(dev, 0x400, iomemtype);
 723    return 0;
 724}
 725
 726static SysBusDeviceInfo hpet_device_info = {
 727    .qdev.name    = "hpet",
 728    .qdev.size    = sizeof(HPETState),
 729    .qdev.no_user = 1,
 730    .qdev.vmsd    = &vmstate_hpet,
 731    .qdev.reset   = hpet_reset,
 732    .init         = hpet_init,
 733    .qdev.props = (Property[]) {
 734        DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
 735        DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
 736        DEFINE_PROP_END_OF_LIST(),
 737    },
 738};
 739
 740static void hpet_register_device(void)
 741{
 742    sysbus_register_withprop(&hpet_device_info);
 743}
 744
 745device_init(hpet_register_device)
 746