qemu/hw/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Copyright (c) 2010 Xilinx Inc.
   5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
   6 * Copyright (c) 2012 PetaLogix Pty Ltd.
   7 * Written by Haibing Ma
   8 *            M.Habib
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "sysbus.h"
  20#include "qemu-char.h"
  21#include "qemu-timer.h"
  22
  23#ifdef CADENCE_UART_ERR_DEBUG
  24#define DB_PRINT(...) do { \
  25    fprintf(stderr,  ": %s: ", __func__); \
  26    fprintf(stderr, ## __VA_ARGS__); \
  27    } while (0);
  28#else
  29    #define DB_PRINT(...)
  30#endif
  31
  32#define UART_SR_INTR_RTRIG     0x00000001
  33#define UART_SR_INTR_REMPTY    0x00000002
  34#define UART_SR_INTR_RFUL      0x00000004
  35#define UART_SR_INTR_TEMPTY    0x00000008
  36#define UART_SR_INTR_TFUL      0x00000010
  37/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  38 * SR, then the same bit in CISR is set high too */
  39#define UART_SR_TO_CISR_MASK   0x0000001F
  40
  41#define UART_INTR_ROVR         0x00000020
  42#define UART_INTR_FRAME        0x00000040
  43#define UART_INTR_PARE         0x00000080
  44#define UART_INTR_TIMEOUT      0x00000100
  45#define UART_INTR_DMSI         0x00000200
  46
  47#define UART_SR_RACTIVE    0x00000400
  48#define UART_SR_TACTIVE    0x00000800
  49#define UART_SR_FDELT      0x00001000
  50
  51#define UART_CR_RXRST       0x00000001
  52#define UART_CR_TXRST       0x00000002
  53#define UART_CR_RX_EN       0x00000004
  54#define UART_CR_RX_DIS      0x00000008
  55#define UART_CR_TX_EN       0x00000010
  56#define UART_CR_TX_DIS      0x00000020
  57#define UART_CR_RST_TO      0x00000040
  58#define UART_CR_STARTBRK    0x00000080
  59#define UART_CR_STOPBRK     0x00000100
  60
  61#define UART_MR_CLKS            0x00000001
  62#define UART_MR_CHRL            0x00000006
  63#define UART_MR_CHRL_SH         1
  64#define UART_MR_PAR             0x00000038
  65#define UART_MR_PAR_SH          3
  66#define UART_MR_NBSTOP          0x000000C0
  67#define UART_MR_NBSTOP_SH       6
  68#define UART_MR_CHMODE          0x00000300
  69#define UART_MR_CHMODE_SH       8
  70#define UART_MR_UCLKEN          0x00000400
  71#define UART_MR_IRMODE          0x00000800
  72
  73#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  74#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  75#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  76#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  77#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  78#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  79#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  80#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
  81#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
  82#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
  83
  84#define RX_FIFO_SIZE           16
  85#define TX_FIFO_SIZE           16
  86#define UART_INPUT_CLK         50000000
  87
  88#define R_CR       (0x00/4)
  89#define R_MR       (0x04/4)
  90#define R_IER      (0x08/4)
  91#define R_IDR      (0x0C/4)
  92#define R_IMR      (0x10/4)
  93#define R_CISR     (0x14/4)
  94#define R_BRGR     (0x18/4)
  95#define R_RTOR     (0x1C/4)
  96#define R_RTRIG    (0x20/4)
  97#define R_MCR      (0x24/4)
  98#define R_MSR      (0x28/4)
  99#define R_SR       (0x2C/4)
 100#define R_TX_RX    (0x30/4)
 101#define R_BDIV     (0x34/4)
 102#define R_FDEL     (0x38/4)
 103#define R_PMIN     (0x3C/4)
 104#define R_PWID     (0x40/4)
 105#define R_TTRIG    (0x44/4)
 106
 107#define R_MAX (R_TTRIG + 1)
 108
 109typedef struct {
 110    SysBusDevice busdev;
 111    MemoryRegion iomem;
 112    uint32_t r[R_MAX];
 113    uint8_t r_fifo[RX_FIFO_SIZE];
 114    uint32_t rx_wpos;
 115    uint32_t rx_count;
 116    uint64_t char_tx_time;
 117    CharDriverState *chr;
 118    qemu_irq irq;
 119    struct QEMUTimer *fifo_trigger_handle;
 120    struct QEMUTimer *tx_time_handle;
 121} UartState;
 122
 123static void uart_update_status(UartState *s)
 124{
 125    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 126    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 127}
 128
 129static void fifo_trigger_update(void *opaque)
 130{
 131    UartState *s = (UartState *)opaque;
 132
 133    s->r[R_CISR] |= UART_INTR_TIMEOUT;
 134
 135    uart_update_status(s);
 136}
 137
 138static void uart_tx_redo(UartState *s)
 139{
 140    uint64_t new_tx_time = qemu_get_clock_ns(vm_clock);
 141
 142    qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time);
 143
 144    s->r[R_SR] |= UART_SR_INTR_TEMPTY;
 145
 146    uart_update_status(s);
 147}
 148
 149static void uart_tx_write(void *opaque)
 150{
 151    UartState *s = (UartState *)opaque;
 152
 153    uart_tx_redo(s);
 154}
 155
 156static void uart_rx_reset(UartState *s)
 157{
 158    s->rx_wpos = 0;
 159    s->rx_count = 0;
 160
 161    s->r[R_SR] |= UART_SR_INTR_REMPTY;
 162    s->r[R_SR] &= ~UART_SR_INTR_RFUL;
 163}
 164
 165static void uart_tx_reset(UartState *s)
 166{
 167    s->r[R_SR] |= UART_SR_INTR_TEMPTY;
 168    s->r[R_SR] &= ~UART_SR_INTR_TFUL;
 169}
 170
 171static void uart_send_breaks(UartState *s)
 172{
 173    int break_enabled = 1;
 174
 175    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 176                               &break_enabled);
 177}
 178
 179static void uart_parameters_setup(UartState *s)
 180{
 181    QEMUSerialSetParams ssp;
 182    unsigned int baud_rate, packet_size;
 183
 184    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
 185            UART_INPUT_CLK / 8 : UART_INPUT_CLK;
 186
 187    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 188    packet_size = 1;
 189
 190    switch (s->r[R_MR] & UART_MR_PAR) {
 191    case UART_PARITY_EVEN:
 192        ssp.parity = 'E';
 193        packet_size++;
 194        break;
 195    case UART_PARITY_ODD:
 196        ssp.parity = 'O';
 197        packet_size++;
 198        break;
 199    default:
 200        ssp.parity = 'N';
 201        break;
 202    }
 203
 204    switch (s->r[R_MR] & UART_MR_CHRL) {
 205    case UART_DATA_BITS_6:
 206        ssp.data_bits = 6;
 207        break;
 208    case UART_DATA_BITS_7:
 209        ssp.data_bits = 7;
 210        break;
 211    default:
 212        ssp.data_bits = 8;
 213        break;
 214    }
 215
 216    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 217    case UART_STOP_BITS_1:
 218        ssp.stop_bits = 1;
 219        break;
 220    default:
 221        ssp.stop_bits = 2;
 222        break;
 223    }
 224
 225    packet_size += ssp.data_bits + ssp.stop_bits;
 226    s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
 227    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 228}
 229
 230static int uart_can_receive(void *opaque)
 231{
 232    UartState *s = (UartState *)opaque;
 233
 234    return RX_FIFO_SIZE - s->rx_count;
 235}
 236
 237static void uart_ctrl_update(UartState *s)
 238{
 239    if (s->r[R_CR] & UART_CR_TXRST) {
 240        uart_tx_reset(s);
 241    }
 242
 243    if (s->r[R_CR] & UART_CR_RXRST) {
 244        uart_rx_reset(s);
 245    }
 246
 247    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 248
 249    if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
 250            uart_tx_redo(s);
 251    }
 252
 253    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 254        uart_send_breaks(s);
 255    }
 256}
 257
 258static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 259{
 260    UartState *s = (UartState *)opaque;
 261    uint64_t new_rx_time = qemu_get_clock_ns(vm_clock);
 262    int i;
 263
 264    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 265        return;
 266    }
 267
 268    s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
 269
 270    if (s->rx_count == RX_FIFO_SIZE) {
 271        s->r[R_CISR] |= UART_INTR_ROVR;
 272    } else {
 273        for (i = 0; i < size; i++) {
 274            s->r_fifo[s->rx_wpos] = buf[i];
 275            s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
 276            s->rx_count++;
 277
 278            if (s->rx_count == RX_FIFO_SIZE) {
 279                s->r[R_SR] |= UART_SR_INTR_RFUL;
 280                break;
 281            }
 282
 283            if (s->rx_count >= s->r[R_RTRIG]) {
 284                s->r[R_SR] |= UART_SR_INTR_RTRIG;
 285            }
 286        }
 287        qemu_mod_timer(s->fifo_trigger_handle, new_rx_time +
 288                                                (s->char_tx_time * 4));
 289    }
 290    uart_update_status(s);
 291}
 292
 293static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
 294{
 295    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 296        return;
 297    }
 298
 299    while (size) {
 300        size -= qemu_chr_fe_write(s->chr, buf, size);
 301    }
 302}
 303
 304static void uart_receive(void *opaque, const uint8_t *buf, int size)
 305{
 306    UartState *s = (UartState *)opaque;
 307    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 308
 309    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 310        uart_write_rx_fifo(opaque, buf, size);
 311    }
 312    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 313        uart_write_tx_fifo(s, buf, size);
 314    }
 315}
 316
 317static void uart_event(void *opaque, int event)
 318{
 319    UartState *s = (UartState *)opaque;
 320    uint8_t buf = '\0';
 321
 322    if (event == CHR_EVENT_BREAK) {
 323        uart_write_rx_fifo(opaque, &buf, 1);
 324    }
 325
 326    uart_update_status(s);
 327}
 328
 329static void uart_read_rx_fifo(UartState *s, uint32_t *c)
 330{
 331    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 332        return;
 333    }
 334
 335    s->r[R_SR] &= ~UART_SR_INTR_RFUL;
 336
 337    if (s->rx_count) {
 338        uint32_t rx_rpos =
 339                (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
 340        *c = s->r_fifo[rx_rpos];
 341        s->rx_count--;
 342
 343        if (!s->rx_count) {
 344            s->r[R_SR] |= UART_SR_INTR_REMPTY;
 345        }
 346    } else {
 347        *c = 0;
 348        s->r[R_SR] |= UART_SR_INTR_REMPTY;
 349    }
 350
 351    if (s->rx_count < s->r[R_RTRIG]) {
 352        s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
 353    }
 354    uart_update_status(s);
 355}
 356
 357static void uart_write(void *opaque, target_phys_addr_t offset,
 358                          uint64_t value, unsigned size)
 359{
 360    UartState *s = (UartState *)opaque;
 361
 362    DB_PRINT(" offset:%x data:%08x\n", offset, (unsigned)value);
 363    offset >>= 2;
 364    switch (offset) {
 365    case R_IER: /* ier (wts imr) */
 366        s->r[R_IMR] |= value;
 367        break;
 368    case R_IDR: /* idr (wtc imr) */
 369        s->r[R_IMR] &= ~value;
 370        break;
 371    case R_IMR: /* imr (read only) */
 372        break;
 373    case R_CISR: /* cisr (wtc) */
 374        s->r[R_CISR] &= ~value;
 375        break;
 376    case R_TX_RX: /* UARTDR */
 377        switch (s->r[R_MR] & UART_MR_CHMODE) {
 378        case NORMAL_MODE:
 379            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 380            break;
 381        case LOCAL_LOOPBACK:
 382            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 383            break;
 384        }
 385        break;
 386    default:
 387        s->r[offset] = value;
 388    }
 389
 390    switch (offset) {
 391    case R_CR:
 392        uart_ctrl_update(s);
 393        break;
 394    case R_MR:
 395        uart_parameters_setup(s);
 396        break;
 397    }
 398}
 399
 400static uint64_t uart_read(void *opaque, target_phys_addr_t offset,
 401        unsigned size)
 402{
 403    UartState *s = (UartState *)opaque;
 404    uint32_t c = 0;
 405
 406    offset >>= 2;
 407    if (offset > R_MAX) {
 408        return 0;
 409    } else if (offset == R_TX_RX) {
 410        uart_read_rx_fifo(s, &c);
 411        return c;
 412    }
 413    return s->r[offset];
 414}
 415
 416static const MemoryRegionOps uart_ops = {
 417    .read = uart_read,
 418    .write = uart_write,
 419    .endianness = DEVICE_NATIVE_ENDIAN,
 420};
 421
 422static void cadence_uart_reset(UartState *s)
 423{
 424    s->r[R_CR] = 0x00000128;
 425    s->r[R_IMR] = 0;
 426    s->r[R_CISR] = 0;
 427    s->r[R_RTRIG] = 0x00000020;
 428    s->r[R_BRGR] = 0x0000000F;
 429    s->r[R_TTRIG] = 0x00000020;
 430
 431    uart_rx_reset(s);
 432    uart_tx_reset(s);
 433
 434    s->rx_count = 0;
 435    s->rx_wpos = 0;
 436}
 437
 438static int cadence_uart_init(SysBusDevice *dev)
 439{
 440    UartState *s = FROM_SYSBUS(UartState, dev);
 441
 442    memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000);
 443    sysbus_init_mmio(dev, &s->iomem);
 444    sysbus_init_irq(dev, &s->irq);
 445
 446    s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock,
 447            (QEMUTimerCB *)fifo_trigger_update, s);
 448
 449    s->tx_time_handle = qemu_new_timer_ns(vm_clock,
 450            (QEMUTimerCB *)uart_tx_write, s);
 451
 452    s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
 453
 454    s->chr = qemu_char_get_next_serial();
 455
 456    cadence_uart_reset(s);
 457
 458    if (s->chr) {
 459        qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
 460                              uart_event, s);
 461    }
 462
 463    return 0;
 464}
 465
 466static int cadence_uart_post_load(void *opaque, int version_id)
 467{
 468    UartState *s = opaque;
 469
 470    uart_parameters_setup(s);
 471    uart_update_status(s);
 472    return 0;
 473}
 474
 475static const VMStateDescription vmstate_cadence_uart = {
 476    .name = "cadence_uart",
 477    .version_id = 1,
 478    .minimum_version_id = 1,
 479    .minimum_version_id_old = 1,
 480    .post_load = cadence_uart_post_load,
 481    .fields = (VMStateField[]) {
 482        VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
 483        VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
 484        VMSTATE_UINT32(rx_count, UartState),
 485        VMSTATE_UINT32(rx_wpos, UartState),
 486        VMSTATE_TIMER(fifo_trigger_handle, UartState),
 487        VMSTATE_TIMER(tx_time_handle, UartState),
 488        VMSTATE_END_OF_LIST()
 489    }
 490};
 491
 492static void cadence_uart_class_init(ObjectClass *klass, void *data)
 493{
 494    DeviceClass *dc = DEVICE_CLASS(klass);
 495    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
 496
 497    sdc->init = cadence_uart_init;
 498    dc->vmsd = &vmstate_cadence_uart;
 499}
 500
 501static TypeInfo cadence_uart_info = {
 502    .name          = "cadence_uart",
 503    .parent        = TYPE_SYS_BUS_DEVICE,
 504    .instance_size = sizeof(UartState),
 505    .class_init    = cadence_uart_class_init,
 506};
 507
 508static void cadence_uart_register_types(void)
 509{
 510    type_register_static(&cadence_uart_info);
 511}
 512
 513type_init(cadence_uart_register_types)
 514