qemu/hw/omap_gpmc.c
<<
>>
Prefs
   1/*
   2 * TI OMAP general purpose memory controller emulation.
   3 *
   4 * Copyright (C) 2007-2009 Nokia Corporation
   5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
   6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 or
  11 * (at your option) any later version of the License.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21#include "hw.h"
  22#include "flash.h"
  23#include "omap.h"
  24#include "memory.h"
  25#include "exec-memory.h"
  26
  27/* General-Purpose Memory Controller */
  28struct omap_gpmc_s {
  29    qemu_irq irq;
  30    qemu_irq drq;
  31    MemoryRegion iomem;
  32    int accept_256;
  33
  34    uint8_t revision;
  35    uint8_t sysconfig;
  36    uint16_t irqst;
  37    uint16_t irqen;
  38    uint16_t lastirq;
  39    uint16_t timeout;
  40    uint16_t config;
  41    struct omap_gpmc_cs_file_s {
  42        uint32_t config[7];
  43        MemoryRegion *iomem;
  44        MemoryRegion container;
  45        MemoryRegion nandiomem;
  46        DeviceState *dev;
  47    } cs_file[8];
  48    int ecc_cs;
  49    int ecc_ptr;
  50    uint32_t ecc_cfg;
  51    ECCState ecc[9];
  52    struct prefetch {
  53        uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
  54        uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
  55        int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
  56        int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
  57        int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
  58        MemoryRegion iomem;
  59        uint8_t fifo[64];
  60    } prefetch;
  61};
  62
  63#define OMAP_GPMC_8BIT 0
  64#define OMAP_GPMC_16BIT 1
  65#define OMAP_GPMC_NOR 0
  66#define OMAP_GPMC_NAND 2
  67
  68static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
  69{
  70    return (f->config[0] >> 10) & 3;
  71}
  72
  73static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
  74{
  75    /* devsize field is really 2 bits but we ignore the high
  76     * bit to ensure consistent behaviour if the guest sets
  77     * it (values 2 and 3 are reserved in the TRM)
  78     */
  79    return (f->config[0] >> 12) & 1;
  80}
  81
  82/* Extract the chip-select value from the prefetch config1 register */
  83static int prefetch_cs(uint32_t config1)
  84{
  85    return (config1 >> 24) & 7;
  86}
  87
  88static int prefetch_threshold(uint32_t config1)
  89{
  90    return (config1 >> 8) & 0x7f;
  91}
  92
  93static void omap_gpmc_int_update(struct omap_gpmc_s *s)
  94{
  95    /* The TRM is a bit unclear, but it seems to say that
  96     * the TERMINALCOUNTSTATUS bit is set only on the
  97     * transition when the prefetch engine goes from
  98     * active to inactive, whereas the FIFOEVENTSTATUS
  99     * bit is held high as long as the fifo has at
 100     * least THRESHOLD bytes available.
 101     * So we do the latter here, but TERMINALCOUNTSTATUS
 102     * is set elsewhere.
 103     */
 104    if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
 105        s->irqst |= 1;
 106    }
 107    if ((s->irqen & s->irqst) != s->lastirq) {
 108        s->lastirq = s->irqen & s->irqst;
 109        qemu_set_irq(s->irq, s->lastirq);
 110    }
 111}
 112
 113static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
 114{
 115    if (s->prefetch.config1 & 4) {
 116        qemu_set_irq(s->drq, value);
 117    }
 118}
 119
 120/* Access functions for when a NAND-like device is mapped into memory:
 121 * all addresses in the region behave like accesses to the relevant
 122 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
 123 */
 124static uint64_t omap_nand_read(void *opaque, hwaddr addr,
 125                               unsigned size)
 126{
 127    struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
 128    uint64_t v;
 129    nand_setpins(f->dev, 0, 0, 0, 1, 0);
 130    switch (omap_gpmc_devsize(f)) {
 131    case OMAP_GPMC_8BIT:
 132        v = nand_getio(f->dev);
 133        if (size == 1) {
 134            return v;
 135        }
 136        v |= (nand_getio(f->dev) << 8);
 137        if (size == 2) {
 138            return v;
 139        }
 140        v |= (nand_getio(f->dev) << 16);
 141        v |= (nand_getio(f->dev) << 24);
 142        return v;
 143    case OMAP_GPMC_16BIT:
 144        v = nand_getio(f->dev);
 145        if (size == 1) {
 146            /* 8 bit read from 16 bit device : probably a guest bug */
 147            return v & 0xff;
 148        }
 149        if (size == 2) {
 150            return v;
 151        }
 152        v |= (nand_getio(f->dev) << 16);
 153        return v;
 154    default:
 155        abort();
 156    }
 157}
 158
 159static void omap_nand_setio(DeviceState *dev, uint64_t value,
 160                            int nandsize, int size)
 161{
 162    /* Write the specified value to the NAND device, respecting
 163     * both size of the NAND device and size of the write access.
 164     */
 165    switch (nandsize) {
 166    case OMAP_GPMC_8BIT:
 167        switch (size) {
 168        case 1:
 169            nand_setio(dev, value & 0xff);
 170            break;
 171        case 2:
 172            nand_setio(dev, value & 0xff);
 173            nand_setio(dev, (value >> 8) & 0xff);
 174            break;
 175        case 4:
 176        default:
 177            nand_setio(dev, value & 0xff);
 178            nand_setio(dev, (value >> 8) & 0xff);
 179            nand_setio(dev, (value >> 16) & 0xff);
 180            nand_setio(dev, (value >> 24) & 0xff);
 181            break;
 182        }
 183        break;
 184    case OMAP_GPMC_16BIT:
 185        switch (size) {
 186        case 1:
 187            /* writing to a 16bit device with 8bit access is probably a guest
 188             * bug; pass the value through anyway.
 189             */
 190        case 2:
 191            nand_setio(dev, value & 0xffff);
 192            break;
 193        case 4:
 194        default:
 195            nand_setio(dev, value & 0xffff);
 196            nand_setio(dev, (value >> 16) & 0xffff);
 197            break;
 198        }
 199        break;
 200    }
 201}
 202
 203static void omap_nand_write(void *opaque, hwaddr addr,
 204                            uint64_t value, unsigned size)
 205{
 206    struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
 207    nand_setpins(f->dev, 0, 0, 0, 1, 0);
 208    omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
 209}
 210
 211static const MemoryRegionOps omap_nand_ops = {
 212    .read = omap_nand_read,
 213    .write = omap_nand_write,
 214    .endianness = DEVICE_NATIVE_ENDIAN,
 215};
 216
 217static void fill_prefetch_fifo(struct omap_gpmc_s *s)
 218{
 219    /* Fill the prefetch FIFO by reading data from NAND.
 220     * We do this synchronously, unlike the hardware which
 221     * will do this asynchronously. We refill when the
 222     * FIFO has THRESHOLD bytes free, and we always refill
 223     * as much data as possible starting at the top end
 224     * of the FIFO.
 225     * (We have to refill at THRESHOLD rather than waiting
 226     * for the FIFO to empty to allow for the case where
 227     * the FIFO size isn't an exact multiple of THRESHOLD
 228     * and we're doing DMA transfers.)
 229     * This means we never need to handle wrap-around in
 230     * the fifo-reading code, and the next byte of data
 231     * to read is always fifo[63 - fifopointer].
 232     */
 233    int fptr;
 234    int cs = prefetch_cs(s->prefetch.config1);
 235    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
 236    int bytes;
 237    /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
 238     * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
 239     * Instead believe the bit that says it is always a byte count.
 240     */
 241    bytes = 64 - s->prefetch.fifopointer;
 242    if (bytes > s->prefetch.count) {
 243        bytes = s->prefetch.count;
 244    }
 245    s->prefetch.count -= bytes;
 246    s->prefetch.fifopointer += bytes;
 247    fptr = 64 - s->prefetch.fifopointer;
 248    /* Move the existing data in the FIFO so it sits just
 249     * before what we're about to read in
 250     */
 251    while (fptr < (64 - bytes)) {
 252        s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
 253        fptr++;
 254    }
 255    while (fptr < 64) {
 256        if (is16bit) {
 257            uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
 258            s->prefetch.fifo[fptr++] = v & 0xff;
 259            s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
 260        } else {
 261            s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
 262        }
 263    }
 264    if (s->prefetch.startengine && (s->prefetch.count == 0)) {
 265        /* This was the final transfer: raise TERMINALCOUNTSTATUS */
 266        s->irqst |= 2;
 267        s->prefetch.startengine = 0;
 268    }
 269    /* If there are any bytes in the FIFO at this point then
 270     * we must raise a DMA request (either this is a final part
 271     * transfer, or we filled the FIFO in which case we certainly
 272     * have THRESHOLD bytes available)
 273     */
 274    if (s->prefetch.fifopointer != 0) {
 275        omap_gpmc_dma_update(s, 1);
 276    }
 277    omap_gpmc_int_update(s);
 278}
 279
 280/* Access functions for a NAND-like device when the prefetch/postwrite
 281 * engine is enabled -- all addresses in the region behave alike:
 282 * data is read or written to the FIFO.
 283 */
 284static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
 285                                        unsigned size)
 286{
 287    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 288    uint32_t data;
 289    if (s->prefetch.config1 & 1) {
 290        /* The TRM doesn't define the behaviour if you read from the
 291         * FIFO when the prefetch engine is in write mode. We choose
 292         * to always return zero.
 293         */
 294        return 0;
 295    }
 296    /* Note that trying to read an empty fifo repeats the last byte */
 297    if (s->prefetch.fifopointer) {
 298        s->prefetch.fifopointer--;
 299    }
 300    data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
 301    if (s->prefetch.fifopointer ==
 302        (64 - prefetch_threshold(s->prefetch.config1))) {
 303        /* We've drained THRESHOLD bytes now. So deassert the
 304         * DMA request, then refill the FIFO (which will probably
 305         * assert it again.)
 306         */
 307        omap_gpmc_dma_update(s, 0);
 308        fill_prefetch_fifo(s);
 309    }
 310    omap_gpmc_int_update(s);
 311    return data;
 312}
 313
 314static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
 315                                     uint64_t value, unsigned size)
 316{
 317    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 318    int cs = prefetch_cs(s->prefetch.config1);
 319    if ((s->prefetch.config1 & 1) == 0) {
 320        /* The TRM doesn't define the behaviour of writing to the
 321         * FIFO when the prefetch engine is in read mode. We
 322         * choose to ignore the write.
 323         */
 324        return;
 325    }
 326    if (s->prefetch.count == 0) {
 327        /* The TRM doesn't define the behaviour of writing to the
 328         * FIFO if the transfer is complete. We choose to ignore.
 329         */
 330        return;
 331    }
 332    /* The only reason we do any data buffering in postwrite
 333     * mode is if we are talking to a 16 bit NAND device, in
 334     * which case we need to buffer the first byte of the
 335     * 16 bit word until the other byte arrives.
 336     */
 337    int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
 338    if (is16bit) {
 339        /* fifopointer alternates between 64 (waiting for first
 340         * byte of word) and 63 (waiting for second byte)
 341         */
 342        if (s->prefetch.fifopointer == 64) {
 343            s->prefetch.fifo[0] = value;
 344            s->prefetch.fifopointer--;
 345        } else {
 346            value = (value << 8) | s->prefetch.fifo[0];
 347            omap_nand_write(&s->cs_file[cs], 0, value, 2);
 348            s->prefetch.count--;
 349            s->prefetch.fifopointer = 64;
 350        }
 351    } else {
 352        /* Just write the byte : fifopointer remains 64 at all times */
 353        omap_nand_write(&s->cs_file[cs], 0, value, 1);
 354        s->prefetch.count--;
 355    }
 356    if (s->prefetch.count == 0) {
 357        /* Final transfer: raise TERMINALCOUNTSTATUS */
 358        s->irqst |= 2;
 359        s->prefetch.startengine = 0;
 360    }
 361    omap_gpmc_int_update(s);
 362}
 363
 364static const MemoryRegionOps omap_prefetch_ops = {
 365    .read = omap_gpmc_prefetch_read,
 366    .write = omap_gpmc_prefetch_write,
 367    .endianness = DEVICE_NATIVE_ENDIAN,
 368    .impl.min_access_size = 1,
 369    .impl.max_access_size = 1,
 370};
 371
 372static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
 373{
 374    /* Return the MemoryRegion* to map/unmap for this chipselect */
 375    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
 376    if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
 377        return f->iomem;
 378    }
 379    if ((s->prefetch.config1 & 0x80) &&
 380        (prefetch_cs(s->prefetch.config1) == cs)) {
 381        /* The prefetch engine is enabled for this CS: map the FIFO */
 382        return &s->prefetch.iomem;
 383    }
 384    return &f->nandiomem;
 385}
 386
 387static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
 388{
 389    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
 390    uint32_t mask = (f->config[6] >> 8) & 0xf;
 391    uint32_t base = f->config[6] & 0x3f;
 392    uint32_t size;
 393
 394    if (!f->iomem && !f->dev) {
 395        return;
 396    }
 397
 398    if (!(f->config[6] & (1 << 6))) {
 399        /* Do nothing unless CSVALID */
 400        return;
 401    }
 402
 403    /* TODO: check for overlapping regions and report access errors */
 404    if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
 405         && !(s->accept_256 && !mask)) {
 406        fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
 407                 __func__, mask);
 408    }
 409
 410    base <<= 24;
 411    size = (0x0fffffff & ~(mask << 24)) + 1;
 412    /* TODO: rather than setting the size of the mapping (which should be
 413     * constant), the mask should cause wrapping of the address space, so
 414     * that the same memory becomes accessible at every <i>size</i> bytes
 415     * starting from <i>base</i>.  */
 416    memory_region_init(&f->container, "omap-gpmc-file", size);
 417    memory_region_add_subregion(&f->container, 0,
 418                                omap_gpmc_cs_memregion(s, cs));
 419    memory_region_add_subregion(get_system_memory(), base,
 420                                &f->container);
 421}
 422
 423static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
 424{
 425    struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
 426    if (!(f->config[6] & (1 << 6))) {
 427        /* Do nothing unless CSVALID */
 428        return;
 429    }
 430    if (!f->iomem && !f->dev) {
 431        return;
 432    }
 433    memory_region_del_subregion(get_system_memory(), &f->container);
 434    memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
 435    memory_region_destroy(&f->container);
 436}
 437
 438void omap_gpmc_reset(struct omap_gpmc_s *s)
 439{
 440    int i;
 441
 442    s->sysconfig = 0;
 443    s->irqst = 0;
 444    s->irqen = 0;
 445    omap_gpmc_int_update(s);
 446    for (i = 0; i < 8; i++) {
 447        /* This has to happen before we change any of the config
 448         * used to determine which memory regions are mapped or unmapped.
 449         */
 450        omap_gpmc_cs_unmap(s, i);
 451    }
 452    s->timeout = 0;
 453    s->config = 0xa00;
 454    s->prefetch.config1 = 0x00004000;
 455    s->prefetch.transfercount = 0x00000000;
 456    s->prefetch.startengine = 0;
 457    s->prefetch.fifopointer = 0;
 458    s->prefetch.count = 0;
 459    for (i = 0; i < 8; i ++) {
 460        s->cs_file[i].config[1] = 0x101001;
 461        s->cs_file[i].config[2] = 0x020201;
 462        s->cs_file[i].config[3] = 0x10031003;
 463        s->cs_file[i].config[4] = 0x10f1111;
 464        s->cs_file[i].config[5] = 0;
 465        s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
 466
 467        s->cs_file[i].config[6] = 0xf00;
 468        /* In theory we could probe attached devices for some CFG1
 469         * bits here, but we just retain them across resets as they
 470         * were set initially by omap_gpmc_attach().
 471         */
 472        if (i == 0) {
 473            s->cs_file[i].config[0] &= 0x00433e00;
 474            s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
 475            omap_gpmc_cs_map(s, i);
 476        } else {
 477            s->cs_file[i].config[0] &= 0x00403c00;
 478        }
 479    }
 480    s->ecc_cs = 0;
 481    s->ecc_ptr = 0;
 482    s->ecc_cfg = 0x3fcff000;
 483    for (i = 0; i < 9; i ++)
 484        ecc_reset(&s->ecc[i]);
 485}
 486
 487static int gpmc_wordaccess_only(hwaddr addr)
 488{
 489    /* Return true if the register offset is to a register that
 490     * only permits word width accesses.
 491     * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
 492     * for any chipselect.
 493     */
 494    if (addr >= 0x60 && addr <= 0x1d4) {
 495        int cs = (addr - 0x60) / 0x30;
 496        addr -= cs * 0x30;
 497        if (addr >= 0x7c && addr < 0x88) {
 498            /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
 499            return 0;
 500        }
 501    }
 502    return 1;
 503}
 504
 505static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
 506                               unsigned size)
 507{
 508    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 509    int cs;
 510    struct omap_gpmc_cs_file_s *f;
 511
 512    if (size != 4 && gpmc_wordaccess_only(addr)) {
 513        return omap_badwidth_read32(opaque, addr);
 514    }
 515
 516    switch (addr) {
 517    case 0x000: /* GPMC_REVISION */
 518        return s->revision;
 519
 520    case 0x010: /* GPMC_SYSCONFIG */
 521        return s->sysconfig;
 522
 523    case 0x014: /* GPMC_SYSSTATUS */
 524        return 1;                                               /* RESETDONE */
 525
 526    case 0x018: /* GPMC_IRQSTATUS */
 527        return s->irqst;
 528
 529    case 0x01c: /* GPMC_IRQENABLE */
 530        return s->irqen;
 531
 532    case 0x040: /* GPMC_TIMEOUT_CONTROL */
 533        return s->timeout;
 534
 535    case 0x044: /* GPMC_ERR_ADDRESS */
 536    case 0x048: /* GPMC_ERR_TYPE */
 537        return 0;
 538
 539    case 0x050: /* GPMC_CONFIG */
 540        return s->config;
 541
 542    case 0x054: /* GPMC_STATUS */
 543        return 0x001;
 544
 545    case 0x060 ... 0x1d4:
 546        cs = (addr - 0x060) / 0x30;
 547        addr -= cs * 0x30;
 548        f = s->cs_file + cs;
 549        switch (addr) {
 550        case 0x60:      /* GPMC_CONFIG1 */
 551            return f->config[0];
 552        case 0x64:      /* GPMC_CONFIG2 */
 553            return f->config[1];
 554        case 0x68:      /* GPMC_CONFIG3 */
 555            return f->config[2];
 556        case 0x6c:      /* GPMC_CONFIG4 */
 557            return f->config[3];
 558        case 0x70:      /* GPMC_CONFIG5 */
 559            return f->config[4];
 560        case 0x74:      /* GPMC_CONFIG6 */
 561            return f->config[5];
 562        case 0x78:      /* GPMC_CONFIG7 */
 563            return f->config[6];
 564        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
 565            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 566                return omap_nand_read(f, 0, size);
 567            }
 568            return 0;
 569        }
 570        break;
 571
 572    case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
 573        return s->prefetch.config1;
 574    case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
 575        return s->prefetch.transfercount;
 576    case 0x1ec: /* GPMC_PREFETCH_CONTROL */
 577        return s->prefetch.startengine;
 578    case 0x1f0: /* GPMC_PREFETCH_STATUS */
 579        /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
 580         * FIFOTHRESHOLDSTATUS bit should be set when
 581         * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
 582         * Apparently the underlying functional spec from which the TRM was
 583         * created states that the behaviour is ">=", and this also
 584         * makes more conceptual sense.
 585         */
 586        return (s->prefetch.fifopointer << 24) |
 587                ((s->prefetch.fifopointer >=
 588                  ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
 589                s->prefetch.count;
 590
 591    case 0x1f4: /* GPMC_ECC_CONFIG */
 592        return s->ecc_cs;
 593    case 0x1f8: /* GPMC_ECC_CONTROL */
 594        return s->ecc_ptr;
 595    case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
 596        return s->ecc_cfg;
 597    case 0x200 ... 0x220:       /* GPMC_ECC_RESULT */
 598        cs = (addr & 0x1f) >> 2;
 599        /* TODO: check correctness */
 600        return
 601                ((s->ecc[cs].cp    &  0x07) <<  0) |
 602                ((s->ecc[cs].cp    &  0x38) << 13) |
 603                ((s->ecc[cs].lp[0] & 0x1ff) <<  3) |
 604                ((s->ecc[cs].lp[1] & 0x1ff) << 19);
 605
 606    case 0x230: /* GPMC_TESTMODE_CTRL */
 607        return 0;
 608    case 0x234: /* GPMC_PSA_LSB */
 609    case 0x238: /* GPMC_PSA_MSB */
 610        return 0x00000000;
 611    }
 612
 613    OMAP_BAD_REG(addr);
 614    return 0;
 615}
 616
 617static void omap_gpmc_write(void *opaque, hwaddr addr,
 618                            uint64_t value, unsigned size)
 619{
 620    struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
 621    int cs;
 622    struct omap_gpmc_cs_file_s *f;
 623
 624    if (size != 4 && gpmc_wordaccess_only(addr)) {
 625        return omap_badwidth_write32(opaque, addr, value);
 626    }
 627
 628    switch (addr) {
 629    case 0x000: /* GPMC_REVISION */
 630    case 0x014: /* GPMC_SYSSTATUS */
 631    case 0x054: /* GPMC_STATUS */
 632    case 0x1f0: /* GPMC_PREFETCH_STATUS */
 633    case 0x200 ... 0x220:       /* GPMC_ECC_RESULT */
 634    case 0x234: /* GPMC_PSA_LSB */
 635    case 0x238: /* GPMC_PSA_MSB */
 636        OMAP_RO_REG(addr);
 637        break;
 638
 639    case 0x010: /* GPMC_SYSCONFIG */
 640        if ((value >> 3) == 0x3)
 641            fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
 642                            __FUNCTION__, value >> 3);
 643        if (value & 2)
 644            omap_gpmc_reset(s);
 645        s->sysconfig = value & 0x19;
 646        break;
 647
 648    case 0x018: /* GPMC_IRQSTATUS */
 649        s->irqst &= ~value;
 650        omap_gpmc_int_update(s);
 651        break;
 652
 653    case 0x01c: /* GPMC_IRQENABLE */
 654        s->irqen = value & 0xf03;
 655        omap_gpmc_int_update(s);
 656        break;
 657
 658    case 0x040: /* GPMC_TIMEOUT_CONTROL */
 659        s->timeout = value & 0x1ff1;
 660        break;
 661
 662    case 0x044: /* GPMC_ERR_ADDRESS */
 663    case 0x048: /* GPMC_ERR_TYPE */
 664        break;
 665
 666    case 0x050: /* GPMC_CONFIG */
 667        s->config = value & 0xf13;
 668        break;
 669
 670    case 0x060 ... 0x1d4:
 671        cs = (addr - 0x060) / 0x30;
 672        addr -= cs * 0x30;
 673        f = s->cs_file + cs;
 674        switch (addr) {
 675        case 0x60:      /* GPMC_CONFIG1 */
 676            f->config[0] = value & 0xffef3e13;
 677            break;
 678        case 0x64:      /* GPMC_CONFIG2 */
 679            f->config[1] = value & 0x001f1f8f;
 680            break;
 681        case 0x68:      /* GPMC_CONFIG3 */
 682            f->config[2] = value & 0x001f1f8f;
 683            break;
 684        case 0x6c:      /* GPMC_CONFIG4 */
 685            f->config[3] = value & 0x1f8f1f8f;
 686            break;
 687        case 0x70:      /* GPMC_CONFIG5 */
 688            f->config[4] = value & 0x0f1f1f1f;
 689            break;
 690        case 0x74:      /* GPMC_CONFIG6 */
 691            f->config[5] = value & 0x00000fcf;
 692            break;
 693        case 0x78:      /* GPMC_CONFIG7 */
 694            if ((f->config[6] ^ value) & 0xf7f) {
 695                omap_gpmc_cs_unmap(s, cs);
 696                f->config[6] = value & 0x00000f7f;
 697                omap_gpmc_cs_map(s, cs);
 698            }
 699            break;
 700        case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
 701            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 702                nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
 703                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
 704            }
 705            break;
 706        case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
 707            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 708                nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
 709                omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
 710            }
 711            break;
 712        case 0x84 ... 0x87: /* GPMC_NAND_DATA */
 713            if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
 714                omap_nand_write(f, 0, value, size);
 715            }
 716            break;
 717        default:
 718            goto bad_reg;
 719        }
 720        break;
 721
 722    case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
 723        if (!s->prefetch.startengine) {
 724            uint32_t newconfig1 = value & 0x7f8f7fbf;
 725            uint32_t changed;
 726            changed = newconfig1 ^ s->prefetch.config1;
 727            if (changed & (0x80 | 0x7000000)) {
 728                /* Turning the engine on or off, or mapping it somewhere else.
 729                 * cs_map() and cs_unmap() check the prefetch config and
 730                 * overall CSVALID bits, so it is sufficient to unmap-and-map
 731                 * both the old cs and the new one. Note that we adhere to
 732                 * the "unmap/change config/map" order (and not unmap twice
 733                 * if newcs == oldcs), otherwise we'll try to delete the wrong
 734                 * memory region.
 735                 */
 736                int oldcs = prefetch_cs(s->prefetch.config1);
 737                int newcs = prefetch_cs(newconfig1);
 738                omap_gpmc_cs_unmap(s, oldcs);
 739                if (oldcs != newcs) {
 740                    omap_gpmc_cs_unmap(s, newcs);
 741                }
 742                s->prefetch.config1 = newconfig1;
 743                omap_gpmc_cs_map(s, oldcs);
 744                if (oldcs != newcs) {
 745                    omap_gpmc_cs_map(s, newcs);
 746                }
 747            } else {
 748                s->prefetch.config1 = newconfig1;
 749            }
 750        }
 751        break;
 752
 753    case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
 754        if (!s->prefetch.startengine) {
 755            s->prefetch.transfercount = value & 0x3fff;
 756        }
 757        break;
 758
 759    case 0x1ec: /* GPMC_PREFETCH_CONTROL */
 760        if (s->prefetch.startengine != (value & 1)) {
 761            s->prefetch.startengine = value & 1;
 762            if (s->prefetch.startengine) {
 763                /* Prefetch engine start */
 764                s->prefetch.count = s->prefetch.transfercount;
 765                if (s->prefetch.config1 & 1) {
 766                    /* Write */
 767                    s->prefetch.fifopointer = 64;
 768                } else {
 769                    /* Read */
 770                    s->prefetch.fifopointer = 0;
 771                    fill_prefetch_fifo(s);
 772                }
 773            } else {
 774                /* Prefetch engine forcibly stopped. The TRM
 775                 * doesn't define the behaviour if you do this.
 776                 * We clear the prefetch count, which means that
 777                 * we permit no more writes, and don't read any
 778                 * more data from NAND. The CPU can still drain
 779                 * the FIFO of unread data.
 780                 */
 781                s->prefetch.count = 0;
 782            }
 783            omap_gpmc_int_update(s);
 784        }
 785        break;
 786
 787    case 0x1f4: /* GPMC_ECC_CONFIG */
 788        s->ecc_cs = 0x8f;
 789        break;
 790    case 0x1f8: /* GPMC_ECC_CONTROL */
 791        if (value & (1 << 8))
 792            for (cs = 0; cs < 9; cs ++)
 793                ecc_reset(&s->ecc[cs]);
 794        s->ecc_ptr = value & 0xf;
 795        if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
 796            s->ecc_ptr = 0;
 797            s->ecc_cs &= ~1;
 798        }
 799        break;
 800    case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
 801        s->ecc_cfg = value & 0x3fcff1ff;
 802        break;
 803    case 0x230: /* GPMC_TESTMODE_CTRL */
 804        if (value & 7)
 805            fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
 806        break;
 807
 808    default:
 809    bad_reg:
 810        OMAP_BAD_REG(addr);
 811        return;
 812    }
 813}
 814
 815static const MemoryRegionOps omap_gpmc_ops = {
 816    .read = omap_gpmc_read,
 817    .write = omap_gpmc_write,
 818    .endianness = DEVICE_NATIVE_ENDIAN,
 819};
 820
 821struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
 822                                   hwaddr base,
 823                                   qemu_irq irq, qemu_irq drq)
 824{
 825    int cs;
 826    struct omap_gpmc_s *s = (struct omap_gpmc_s *)
 827            g_malloc0(sizeof(struct omap_gpmc_s));
 828
 829    memory_region_init_io(&s->iomem, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
 830    memory_region_add_subregion(get_system_memory(), base, &s->iomem);
 831
 832    s->irq = irq;
 833    s->drq = drq;
 834    s->accept_256 = cpu_is_omap3630(mpu);
 835    s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
 836    s->lastirq = 0;
 837    omap_gpmc_reset(s);
 838
 839    /* We have to register a different IO memory handler for each
 840     * chip select region in case a NAND device is mapped there. We
 841     * make the region the worst-case size of 256MB and rely on the
 842     * container memory region in cs_map to chop it down to the actual
 843     * guest-requested size.
 844     */
 845    for (cs = 0; cs < 8; cs++) {
 846        memory_region_init_io(&s->cs_file[cs].nandiomem,
 847                              &omap_nand_ops,
 848                              &s->cs_file[cs],
 849                              "omap-nand",
 850                              256 * 1024 * 1024);
 851    }
 852
 853    memory_region_init_io(&s->prefetch.iomem, &omap_prefetch_ops, s,
 854                          "omap-gpmc-prefetch", 256 * 1024 * 1024);
 855    return s;
 856}
 857
 858void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
 859{
 860    struct omap_gpmc_cs_file_s *f;
 861    assert(iomem);
 862
 863    if (cs < 0 || cs >= 8) {
 864        fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
 865        exit(-1);
 866    }
 867    f = &s->cs_file[cs];
 868
 869    omap_gpmc_cs_unmap(s, cs);
 870    f->config[0] &= ~(0xf << 10);
 871    f->iomem = iomem;
 872    omap_gpmc_cs_map(s, cs);
 873}
 874
 875void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
 876{
 877    struct omap_gpmc_cs_file_s *f;
 878    assert(nand);
 879
 880    if (cs < 0 || cs >= 8) {
 881        fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
 882        exit(-1);
 883    }
 884    f = &s->cs_file[cs];
 885
 886    omap_gpmc_cs_unmap(s, cs);
 887    f->config[0] &= ~(0xf << 10);
 888    f->config[0] |= (OMAP_GPMC_NAND << 10);
 889    f->dev = nand;
 890    if (nand_getbuswidth(f->dev) == 16) {
 891        f->config[0] |= OMAP_GPMC_16BIT << 12;
 892    }
 893    omap_gpmc_cs_map(s, cs);
 894}
 895