qemu/target-i386/arch_dump.c
<<
>>
Prefs
   1/*
   2 * i386 memory mapping
   3 *
   4 * Copyright Fujitsu, Corp. 2011, 2012
   5 *
   6 * Authors:
   7 *     Wen Congyang <wency@cn.fujitsu.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#include "cpu.h"
  15#include "cpu-all.h"
  16#include "dump.h"
  17#include "elf.h"
  18
  19#ifdef TARGET_X86_64
  20typedef struct {
  21    target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
  22    target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
  23    target_ulong rip, cs, eflags;
  24    target_ulong rsp, ss;
  25    target_ulong fs_base, gs_base;
  26    target_ulong ds, es, fs, gs;
  27} x86_64_user_regs_struct;
  28
  29typedef struct {
  30    char pad1[32];
  31    uint32_t pid;
  32    char pad2[76];
  33    x86_64_user_regs_struct regs;
  34    char pad3[8];
  35} x86_64_elf_prstatus;
  36
  37static int x86_64_write_elf64_note(write_core_dump_function f,
  38                                   CPUArchState *env, int id,
  39                                   void *opaque)
  40{
  41    x86_64_user_regs_struct regs;
  42    Elf64_Nhdr *note;
  43    char *buf;
  44    int descsz, note_size, name_size = 5;
  45    const char *name = "CORE";
  46    int ret;
  47
  48    regs.r15 = env->regs[15];
  49    regs.r14 = env->regs[14];
  50    regs.r13 = env->regs[13];
  51    regs.r12 = env->regs[12];
  52    regs.r11 = env->regs[11];
  53    regs.r10 = env->regs[10];
  54    regs.r9  = env->regs[9];
  55    regs.r8  = env->regs[8];
  56    regs.rbp = env->regs[R_EBP];
  57    regs.rsp = env->regs[R_ESP];
  58    regs.rdi = env->regs[R_EDI];
  59    regs.rsi = env->regs[R_ESI];
  60    regs.rdx = env->regs[R_EDX];
  61    regs.rcx = env->regs[R_ECX];
  62    regs.rbx = env->regs[R_EBX];
  63    regs.rax = env->regs[R_EAX];
  64    regs.rip = env->eip;
  65    regs.eflags = env->eflags;
  66
  67    regs.orig_rax = 0; /* FIXME */
  68    regs.cs = env->segs[R_CS].selector;
  69    regs.ss = env->segs[R_SS].selector;
  70    regs.fs_base = env->segs[R_FS].base;
  71    regs.gs_base = env->segs[R_GS].base;
  72    regs.ds = env->segs[R_DS].selector;
  73    regs.es = env->segs[R_ES].selector;
  74    regs.fs = env->segs[R_FS].selector;
  75    regs.gs = env->segs[R_GS].selector;
  76
  77    descsz = sizeof(x86_64_elf_prstatus);
  78    note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
  79                (descsz + 3) / 4) * 4;
  80    note = g_malloc(note_size);
  81
  82    memset(note, 0, note_size);
  83    note->n_namesz = cpu_to_le32(name_size);
  84    note->n_descsz = cpu_to_le32(descsz);
  85    note->n_type = cpu_to_le32(NT_PRSTATUS);
  86    buf = (char *)note;
  87    buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
  88    memcpy(buf, name, name_size);
  89    buf += ((name_size + 3) / 4) * 4;
  90    memcpy(buf + 32, &id, 4); /* pr_pid */
  91    buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
  92    memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
  93
  94    ret = f(note, note_size, opaque);
  95    g_free(note);
  96    if (ret < 0) {
  97        return -1;
  98    }
  99
 100    return 0;
 101}
 102#endif
 103
 104typedef struct {
 105    uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
 106    unsigned short ds, __ds, es, __es;
 107    unsigned short fs, __fs, gs, __gs;
 108    uint32_t orig_eax, eip;
 109    unsigned short cs, __cs;
 110    uint32_t eflags, esp;
 111    unsigned short ss, __ss;
 112} x86_user_regs_struct;
 113
 114typedef struct {
 115    char pad1[24];
 116    uint32_t pid;
 117    char pad2[44];
 118    x86_user_regs_struct regs;
 119    char pad3[4];
 120} x86_elf_prstatus;
 121
 122static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUArchState *env,
 123                                  int id)
 124{
 125    memset(prstatus, 0, sizeof(x86_elf_prstatus));
 126    prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
 127    prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
 128    prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
 129    prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
 130    prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
 131    prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
 132    prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
 133    prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
 134    prstatus->regs.eip = env->eip & 0xffffffff;
 135    prstatus->regs.eflags = env->eflags & 0xffffffff;
 136
 137    prstatus->regs.cs = env->segs[R_CS].selector;
 138    prstatus->regs.ss = env->segs[R_SS].selector;
 139    prstatus->regs.ds = env->segs[R_DS].selector;
 140    prstatus->regs.es = env->segs[R_ES].selector;
 141    prstatus->regs.fs = env->segs[R_FS].selector;
 142    prstatus->regs.gs = env->segs[R_GS].selector;
 143
 144    prstatus->pid = id;
 145}
 146
 147static int x86_write_elf64_note(write_core_dump_function f, CPUArchState *env,
 148                                int id, void *opaque)
 149{
 150    x86_elf_prstatus prstatus;
 151    Elf64_Nhdr *note;
 152    char *buf;
 153    int descsz, note_size, name_size = 5;
 154    const char *name = "CORE";
 155    int ret;
 156
 157    x86_fill_elf_prstatus(&prstatus, env, id);
 158    descsz = sizeof(x86_elf_prstatus);
 159    note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
 160                (descsz + 3) / 4) * 4;
 161    note = g_malloc(note_size);
 162
 163    memset(note, 0, note_size);
 164    note->n_namesz = cpu_to_le32(name_size);
 165    note->n_descsz = cpu_to_le32(descsz);
 166    note->n_type = cpu_to_le32(NT_PRSTATUS);
 167    buf = (char *)note;
 168    buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
 169    memcpy(buf, name, name_size);
 170    buf += ((name_size + 3) / 4) * 4;
 171    memcpy(buf, &prstatus, sizeof(prstatus));
 172
 173    ret = f(note, note_size, opaque);
 174    g_free(note);
 175    if (ret < 0) {
 176        return -1;
 177    }
 178
 179    return 0;
 180}
 181
 182int cpu_write_elf64_note(write_core_dump_function f, CPUArchState *env,
 183                         int cpuid, void *opaque)
 184{
 185    int ret;
 186#ifdef TARGET_X86_64
 187    bool lma = !!(first_cpu->hflags & HF_LMA_MASK);
 188
 189    if (lma) {
 190        ret = x86_64_write_elf64_note(f, env, cpuid, opaque);
 191    } else {
 192#endif
 193        ret = x86_write_elf64_note(f, env, cpuid, opaque);
 194#ifdef TARGET_X86_64
 195    }
 196#endif
 197
 198    return ret;
 199}
 200
 201int cpu_write_elf32_note(write_core_dump_function f, CPUArchState *env,
 202                         int cpuid, void *opaque)
 203{
 204    x86_elf_prstatus prstatus;
 205    Elf32_Nhdr *note;
 206    char *buf;
 207    int descsz, note_size, name_size = 5;
 208    const char *name = "CORE";
 209    int ret;
 210
 211    x86_fill_elf_prstatus(&prstatus, env, cpuid);
 212    descsz = sizeof(x86_elf_prstatus);
 213    note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
 214                (descsz + 3) / 4) * 4;
 215    note = g_malloc(note_size);
 216
 217    memset(note, 0, note_size);
 218    note->n_namesz = cpu_to_le32(name_size);
 219    note->n_descsz = cpu_to_le32(descsz);
 220    note->n_type = cpu_to_le32(NT_PRSTATUS);
 221    buf = (char *)note;
 222    buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4;
 223    memcpy(buf, name, name_size);
 224    buf += ((name_size + 3) / 4) * 4;
 225    memcpy(buf, &prstatus, sizeof(prstatus));
 226
 227    ret = f(note, note_size, opaque);
 228    g_free(note);
 229    if (ret < 0) {
 230        return -1;
 231    }
 232
 233    return 0;
 234}
 235
 236/*
 237 * please count up QEMUCPUSTATE_VERSION if you have changed definition of
 238 * QEMUCPUState, and modify the tools using this information accordingly.
 239 */
 240#define QEMUCPUSTATE_VERSION (1)
 241
 242struct QEMUCPUSegment {
 243    uint32_t selector;
 244    uint32_t limit;
 245    uint32_t flags;
 246    uint32_t pad;
 247    uint64_t base;
 248};
 249
 250typedef struct QEMUCPUSegment QEMUCPUSegment;
 251
 252struct QEMUCPUState {
 253    uint32_t version;
 254    uint32_t size;
 255    uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
 256    uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
 257    uint64_t rip, rflags;
 258    QEMUCPUSegment cs, ds, es, fs, gs, ss;
 259    QEMUCPUSegment ldt, tr, gdt, idt;
 260    uint64_t cr[5];
 261};
 262
 263typedef struct QEMUCPUState QEMUCPUState;
 264
 265static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
 266{
 267    d->pad = 0;
 268    d->selector = s->selector;
 269    d->limit = s->limit;
 270    d->flags = s->flags;
 271    d->base = s->base;
 272}
 273
 274static void qemu_get_cpustate(QEMUCPUState *s, CPUArchState *env)
 275{
 276    memset(s, 0, sizeof(QEMUCPUState));
 277
 278    s->version = QEMUCPUSTATE_VERSION;
 279    s->size = sizeof(QEMUCPUState);
 280
 281    s->rax = env->regs[R_EAX];
 282    s->rbx = env->regs[R_EBX];
 283    s->rcx = env->regs[R_ECX];
 284    s->rdx = env->regs[R_EDX];
 285    s->rsi = env->regs[R_ESI];
 286    s->rdi = env->regs[R_EDI];
 287    s->rsp = env->regs[R_ESP];
 288    s->rbp = env->regs[R_EBP];
 289#ifdef TARGET_X86_64
 290    s->r8  = env->regs[8];
 291    s->r9  = env->regs[9];
 292    s->r10 = env->regs[10];
 293    s->r11 = env->regs[11];
 294    s->r12 = env->regs[12];
 295    s->r13 = env->regs[13];
 296    s->r14 = env->regs[14];
 297    s->r15 = env->regs[15];
 298#endif
 299    s->rip = env->eip;
 300    s->rflags = env->eflags;
 301
 302    copy_segment(&s->cs, &env->segs[R_CS]);
 303    copy_segment(&s->ds, &env->segs[R_DS]);
 304    copy_segment(&s->es, &env->segs[R_ES]);
 305    copy_segment(&s->fs, &env->segs[R_FS]);
 306    copy_segment(&s->gs, &env->segs[R_GS]);
 307    copy_segment(&s->ss, &env->segs[R_SS]);
 308    copy_segment(&s->ldt, &env->ldt);
 309    copy_segment(&s->tr, &env->tr);
 310    copy_segment(&s->gdt, &env->gdt);
 311    copy_segment(&s->idt, &env->idt);
 312
 313    s->cr[0] = env->cr[0];
 314    s->cr[1] = env->cr[1];
 315    s->cr[2] = env->cr[2];
 316    s->cr[3] = env->cr[3];
 317    s->cr[4] = env->cr[4];
 318}
 319
 320static inline int cpu_write_qemu_note(write_core_dump_function f,
 321                                      CPUArchState *env,
 322                                      void *opaque,
 323                                      int type)
 324{
 325    QEMUCPUState state;
 326    Elf64_Nhdr *note64;
 327    Elf32_Nhdr *note32;
 328    void *note;
 329    char *buf;
 330    int descsz, note_size, name_size = 5, note_head_size;
 331    const char *name = "QEMU";
 332    int ret;
 333
 334    qemu_get_cpustate(&state, env);
 335
 336    descsz = sizeof(state);
 337    if (type == 0) {
 338        note_head_size = sizeof(Elf32_Nhdr);
 339    } else {
 340        note_head_size = sizeof(Elf64_Nhdr);
 341    }
 342    note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
 343                (descsz + 3) / 4) * 4;
 344    note = g_malloc(note_size);
 345
 346    memset(note, 0, note_size);
 347    if (type == 0) {
 348        note32 = note;
 349        note32->n_namesz = cpu_to_le32(name_size);
 350        note32->n_descsz = cpu_to_le32(descsz);
 351        note32->n_type = 0;
 352    } else {
 353        note64 = note;
 354        note64->n_namesz = cpu_to_le32(name_size);
 355        note64->n_descsz = cpu_to_le32(descsz);
 356        note64->n_type = 0;
 357    }
 358    buf = note;
 359    buf += ((note_head_size + 3) / 4) * 4;
 360    memcpy(buf, name, name_size);
 361    buf += ((name_size + 3) / 4) * 4;
 362    memcpy(buf, &state, sizeof(state));
 363
 364    ret = f(note, note_size, opaque);
 365    g_free(note);
 366    if (ret < 0) {
 367        return -1;
 368    }
 369
 370    return 0;
 371}
 372
 373int cpu_write_elf64_qemunote(write_core_dump_function f, CPUArchState *env,
 374                             void *opaque)
 375{
 376    return cpu_write_qemu_note(f, env, opaque, 1);
 377}
 378
 379int cpu_write_elf32_qemunote(write_core_dump_function f, CPUArchState *env,
 380                             void *opaque)
 381{
 382    return cpu_write_qemu_note(f, env, opaque, 0);
 383}
 384
 385int cpu_get_dump_info(ArchDumpInfo *info)
 386{
 387    bool lma = false;
 388    RAMBlock *block;
 389
 390#ifdef TARGET_X86_64
 391    lma = !!(first_cpu->hflags & HF_LMA_MASK);
 392#endif
 393
 394    if (lma) {
 395        info->d_machine = EM_X86_64;
 396    } else {
 397        info->d_machine = EM_386;
 398    }
 399    info->d_endian = ELFDATA2LSB;
 400
 401    if (lma) {
 402        info->d_class = ELFCLASS64;
 403    } else {
 404        info->d_class = ELFCLASS32;
 405
 406        QLIST_FOREACH(block, &ram_list.blocks, next) {
 407            if (block->offset + block->length > UINT_MAX) {
 408                /* The memory size is greater than 4G */
 409                info->d_class = ELFCLASS64;
 410                break;
 411            }
 412        }
 413    }
 414
 415    return 0;
 416}
 417
 418ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
 419{
 420    int name_size = 5; /* "CORE" or "QEMU" */
 421    size_t elf_note_size = 0;
 422    size_t qemu_note_size = 0;
 423    int elf_desc_size = 0;
 424    int qemu_desc_size = 0;
 425    int note_head_size;
 426
 427    if (class == ELFCLASS32) {
 428        note_head_size = sizeof(Elf32_Nhdr);
 429    } else {
 430        note_head_size = sizeof(Elf64_Nhdr);
 431    }
 432
 433    if (machine == EM_386) {
 434        elf_desc_size = sizeof(x86_elf_prstatus);
 435    }
 436#ifdef TARGET_X86_64
 437    else {
 438        elf_desc_size = sizeof(x86_64_elf_prstatus);
 439    }
 440#endif
 441    qemu_desc_size = sizeof(QEMUCPUState);
 442
 443    elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
 444                     (elf_desc_size + 3) / 4) * 4;
 445    qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
 446                      (qemu_desc_size + 3) / 4) * 4;
 447
 448    return (elf_note_size + qemu_note_size) * nr_cpus;
 449}
 450