qemu/target-mips/cpu.h
<<
>>
Prefs
   1#if !defined (__MIPS_CPU_H__)
   2#define __MIPS_CPU_H__
   3
   4//#define DEBUG_OP
   5
   6#define TARGET_HAS_ICE 1
   7
   8#define ELF_MACHINE     EM_MIPS
   9
  10#define CPUArchState struct CPUMIPSState
  11
  12#include "config.h"
  13#include "qemu-common.h"
  14#include "mips-defs.h"
  15#include "cpu-defs.h"
  16#include "softfloat.h"
  17
  18struct CPUMIPSState;
  19
  20typedef struct r4k_tlb_t r4k_tlb_t;
  21struct r4k_tlb_t {
  22    target_ulong VPN;
  23    uint32_t PageMask;
  24    uint_fast8_t ASID;
  25    uint_fast16_t G:1;
  26    uint_fast16_t C0:3;
  27    uint_fast16_t C1:3;
  28    uint_fast16_t V0:1;
  29    uint_fast16_t V1:1;
  30    uint_fast16_t D0:1;
  31    uint_fast16_t D1:1;
  32    target_ulong PFN[2];
  33};
  34
  35#if !defined(CONFIG_USER_ONLY)
  36typedef struct CPUMIPSTLBContext CPUMIPSTLBContext;
  37struct CPUMIPSTLBContext {
  38    uint32_t nb_tlb;
  39    uint32_t tlb_in_use;
  40    int (*map_address) (struct CPUMIPSState *env, hwaddr *physical, int *prot, target_ulong address, int rw, int access_type);
  41    void (*helper_tlbwi)(struct CPUMIPSState *env);
  42    void (*helper_tlbwr)(struct CPUMIPSState *env);
  43    void (*helper_tlbp)(struct CPUMIPSState *env);
  44    void (*helper_tlbr)(struct CPUMIPSState *env);
  45    union {
  46        struct {
  47            r4k_tlb_t tlb[MIPS_TLB_MAX];
  48        } r4k;
  49    } mmu;
  50};
  51#endif
  52
  53typedef union fpr_t fpr_t;
  54union fpr_t {
  55    float64  fd;   /* ieee double precision */
  56    float32  fs[2];/* ieee single precision */
  57    uint64_t d;    /* binary double fixed-point */
  58    uint32_t w[2]; /* binary single fixed-point */
  59};
  60/* define FP_ENDIAN_IDX to access the same location
  61 * in the fpr_t union regardless of the host endianness
  62 */
  63#if defined(HOST_WORDS_BIGENDIAN)
  64#  define FP_ENDIAN_IDX 1
  65#else
  66#  define FP_ENDIAN_IDX 0
  67#endif
  68
  69typedef struct CPUMIPSFPUContext CPUMIPSFPUContext;
  70struct CPUMIPSFPUContext {
  71    /* Floating point registers */
  72    fpr_t fpr[32];
  73    float_status fp_status;
  74    /* fpu implementation/revision register (fir) */
  75    uint32_t fcr0;
  76#define FCR0_F64 22
  77#define FCR0_L 21
  78#define FCR0_W 20
  79#define FCR0_3D 19
  80#define FCR0_PS 18
  81#define FCR0_D 17
  82#define FCR0_S 16
  83#define FCR0_PRID 8
  84#define FCR0_REV 0
  85    /* fcsr */
  86    uint32_t fcr31;
  87#define SET_FP_COND(num,env)     do { ((env).fcr31) |= ((num) ? (1 << ((num) + 24)) : (1 << 23)); } while(0)
  88#define CLEAR_FP_COND(num,env)   do { ((env).fcr31) &= ~((num) ? (1 << ((num) + 24)) : (1 << 23)); } while(0)
  89#define GET_FP_COND(env)         ((((env).fcr31 >> 24) & 0xfe) | (((env).fcr31 >> 23) & 0x1))
  90#define GET_FP_CAUSE(reg)        (((reg) >> 12) & 0x3f)
  91#define GET_FP_ENABLE(reg)       (((reg) >>  7) & 0x1f)
  92#define GET_FP_FLAGS(reg)        (((reg) >>  2) & 0x1f)
  93#define SET_FP_CAUSE(reg,v)      do { (reg) = ((reg) & ~(0x3f << 12)) | ((v & 0x3f) << 12); } while(0)
  94#define SET_FP_ENABLE(reg,v)     do { (reg) = ((reg) & ~(0x1f <<  7)) | ((v & 0x1f) << 7); } while(0)
  95#define SET_FP_FLAGS(reg,v)      do { (reg) = ((reg) & ~(0x1f <<  2)) | ((v & 0x1f) << 2); } while(0)
  96#define UPDATE_FP_FLAGS(reg,v)   do { (reg) |= ((v & 0x1f) << 2); } while(0)
  97#define FP_INEXACT        1
  98#define FP_UNDERFLOW      2
  99#define FP_OVERFLOW       4
 100#define FP_DIV0           8
 101#define FP_INVALID        16
 102#define FP_UNIMPLEMENTED  32
 103};
 104
 105#define NB_MMU_MODES 3
 106
 107typedef struct CPUMIPSMVPContext CPUMIPSMVPContext;
 108struct CPUMIPSMVPContext {
 109    int32_t CP0_MVPControl;
 110#define CP0MVPCo_CPA    3
 111#define CP0MVPCo_STLB   2
 112#define CP0MVPCo_VPC    1
 113#define CP0MVPCo_EVP    0
 114    int32_t CP0_MVPConf0;
 115#define CP0MVPC0_M      31
 116#define CP0MVPC0_TLBS   29
 117#define CP0MVPC0_GS     28
 118#define CP0MVPC0_PCP    27
 119#define CP0MVPC0_PTLBE  16
 120#define CP0MVPC0_TCA    15
 121#define CP0MVPC0_PVPE   10
 122#define CP0MVPC0_PTC    0
 123    int32_t CP0_MVPConf1;
 124#define CP0MVPC1_CIM    31
 125#define CP0MVPC1_CIF    30
 126#define CP0MVPC1_PCX    20
 127#define CP0MVPC1_PCP2   10
 128#define CP0MVPC1_PCP1   0
 129};
 130
 131typedef struct mips_def_t mips_def_t;
 132
 133#define MIPS_SHADOW_SET_MAX 16
 134#define MIPS_TC_MAX 5
 135#define MIPS_FPU_MAX 1
 136#define MIPS_DSP_ACC 4
 137
 138typedef struct TCState TCState;
 139struct TCState {
 140    target_ulong gpr[32];
 141    target_ulong PC;
 142    target_ulong HI[MIPS_DSP_ACC];
 143    target_ulong LO[MIPS_DSP_ACC];
 144    target_ulong ACX[MIPS_DSP_ACC];
 145    target_ulong DSPControl;
 146    int32_t CP0_TCStatus;
 147#define CP0TCSt_TCU3    31
 148#define CP0TCSt_TCU2    30
 149#define CP0TCSt_TCU1    29
 150#define CP0TCSt_TCU0    28
 151#define CP0TCSt_TMX     27
 152#define CP0TCSt_RNST    23
 153#define CP0TCSt_TDS     21
 154#define CP0TCSt_DT      20
 155#define CP0TCSt_DA      15
 156#define CP0TCSt_A       13
 157#define CP0TCSt_TKSU    11
 158#define CP0TCSt_IXMT    10
 159#define CP0TCSt_TASID   0
 160    int32_t CP0_TCBind;
 161#define CP0TCBd_CurTC   21
 162#define CP0TCBd_TBE     17
 163#define CP0TCBd_CurVPE  0
 164    target_ulong CP0_TCHalt;
 165    target_ulong CP0_TCContext;
 166    target_ulong CP0_TCSchedule;
 167    target_ulong CP0_TCScheFBack;
 168    int32_t CP0_Debug_tcstatus;
 169};
 170
 171typedef struct CPUMIPSState CPUMIPSState;
 172struct CPUMIPSState {
 173    TCState active_tc;
 174    CPUMIPSFPUContext active_fpu;
 175
 176    uint32_t current_tc;
 177    uint32_t current_fpu;
 178
 179    uint32_t SEGBITS;
 180    uint32_t PABITS;
 181    target_ulong SEGMask;
 182    target_ulong PAMask;
 183
 184    int32_t CP0_Index;
 185    /* CP0_MVP* are per MVP registers. */
 186    int32_t CP0_Random;
 187    int32_t CP0_VPEControl;
 188#define CP0VPECo_YSI    21
 189#define CP0VPECo_GSI    20
 190#define CP0VPECo_EXCPT  16
 191#define CP0VPECo_TE     15
 192#define CP0VPECo_TargTC 0
 193    int32_t CP0_VPEConf0;
 194#define CP0VPEC0_M      31
 195#define CP0VPEC0_XTC    21
 196#define CP0VPEC0_TCS    19
 197#define CP0VPEC0_SCS    18
 198#define CP0VPEC0_DSC    17
 199#define CP0VPEC0_ICS    16
 200#define CP0VPEC0_MVP    1
 201#define CP0VPEC0_VPA    0
 202    int32_t CP0_VPEConf1;
 203#define CP0VPEC1_NCX    20
 204#define CP0VPEC1_NCP2   10
 205#define CP0VPEC1_NCP1   0
 206    target_ulong CP0_YQMask;
 207    target_ulong CP0_VPESchedule;
 208    target_ulong CP0_VPEScheFBack;
 209    int32_t CP0_VPEOpt;
 210#define CP0VPEOpt_IWX7  15
 211#define CP0VPEOpt_IWX6  14
 212#define CP0VPEOpt_IWX5  13
 213#define CP0VPEOpt_IWX4  12
 214#define CP0VPEOpt_IWX3  11
 215#define CP0VPEOpt_IWX2  10
 216#define CP0VPEOpt_IWX1  9
 217#define CP0VPEOpt_IWX0  8
 218#define CP0VPEOpt_DWX7  7
 219#define CP0VPEOpt_DWX6  6
 220#define CP0VPEOpt_DWX5  5
 221#define CP0VPEOpt_DWX4  4
 222#define CP0VPEOpt_DWX3  3
 223#define CP0VPEOpt_DWX2  2
 224#define CP0VPEOpt_DWX1  1
 225#define CP0VPEOpt_DWX0  0
 226    target_ulong CP0_EntryLo0;
 227    target_ulong CP0_EntryLo1;
 228    target_ulong CP0_Context;
 229    int32_t CP0_PageMask;
 230    int32_t CP0_PageGrain;
 231    int32_t CP0_Wired;
 232    int32_t CP0_SRSConf0_rw_bitmask;
 233    int32_t CP0_SRSConf0;
 234#define CP0SRSC0_M      31
 235#define CP0SRSC0_SRS3   20
 236#define CP0SRSC0_SRS2   10
 237#define CP0SRSC0_SRS1   0
 238    int32_t CP0_SRSConf1_rw_bitmask;
 239    int32_t CP0_SRSConf1;
 240#define CP0SRSC1_M      31
 241#define CP0SRSC1_SRS6   20
 242#define CP0SRSC1_SRS5   10
 243#define CP0SRSC1_SRS4   0
 244    int32_t CP0_SRSConf2_rw_bitmask;
 245    int32_t CP0_SRSConf2;
 246#define CP0SRSC2_M      31
 247#define CP0SRSC2_SRS9   20
 248#define CP0SRSC2_SRS8   10
 249#define CP0SRSC2_SRS7   0
 250    int32_t CP0_SRSConf3_rw_bitmask;
 251    int32_t CP0_SRSConf3;
 252#define CP0SRSC3_M      31
 253#define CP0SRSC3_SRS12  20
 254#define CP0SRSC3_SRS11  10
 255#define CP0SRSC3_SRS10  0
 256    int32_t CP0_SRSConf4_rw_bitmask;
 257    int32_t CP0_SRSConf4;
 258#define CP0SRSC4_SRS15  20
 259#define CP0SRSC4_SRS14  10
 260#define CP0SRSC4_SRS13  0
 261    int32_t CP0_HWREna;
 262    target_ulong CP0_BadVAddr;
 263    int32_t CP0_Count;
 264    target_ulong CP0_EntryHi;
 265    int32_t CP0_Compare;
 266    int32_t CP0_Status;
 267#define CP0St_CU3   31
 268#define CP0St_CU2   30
 269#define CP0St_CU1   29
 270#define CP0St_CU0   28
 271#define CP0St_RP    27
 272#define CP0St_FR    26
 273#define CP0St_RE    25
 274#define CP0St_MX    24
 275#define CP0St_PX    23
 276#define CP0St_BEV   22
 277#define CP0St_TS    21
 278#define CP0St_SR    20
 279#define CP0St_NMI   19
 280#define CP0St_IM    8
 281#define CP0St_KX    7
 282#define CP0St_SX    6
 283#define CP0St_UX    5
 284#define CP0St_KSU   3
 285#define CP0St_ERL   2
 286#define CP0St_EXL   1
 287#define CP0St_IE    0
 288    int32_t CP0_IntCtl;
 289#define CP0IntCtl_IPTI 29
 290#define CP0IntCtl_IPPC1 26
 291#define CP0IntCtl_VS 5
 292    int32_t CP0_SRSCtl;
 293#define CP0SRSCtl_HSS 26
 294#define CP0SRSCtl_EICSS 18
 295#define CP0SRSCtl_ESS 12
 296#define CP0SRSCtl_PSS 6
 297#define CP0SRSCtl_CSS 0
 298    int32_t CP0_SRSMap;
 299#define CP0SRSMap_SSV7 28
 300#define CP0SRSMap_SSV6 24
 301#define CP0SRSMap_SSV5 20
 302#define CP0SRSMap_SSV4 16
 303#define CP0SRSMap_SSV3 12
 304#define CP0SRSMap_SSV2 8
 305#define CP0SRSMap_SSV1 4
 306#define CP0SRSMap_SSV0 0
 307    int32_t CP0_Cause;
 308#define CP0Ca_BD   31
 309#define CP0Ca_TI   30
 310#define CP0Ca_CE   28
 311#define CP0Ca_DC   27
 312#define CP0Ca_PCI  26
 313#define CP0Ca_IV   23
 314#define CP0Ca_WP   22
 315#define CP0Ca_IP    8
 316#define CP0Ca_IP_mask 0x0000FF00
 317#define CP0Ca_EC    2
 318    target_ulong CP0_EPC;
 319    int32_t CP0_PRid;
 320    int32_t CP0_EBase;
 321    int32_t CP0_Config0;
 322#define CP0C0_M    31
 323#define CP0C0_K23  28
 324#define CP0C0_KU   25
 325#define CP0C0_MDU  20
 326#define CP0C0_MM   17
 327#define CP0C0_BM   16
 328#define CP0C0_BE   15
 329#define CP0C0_AT   13
 330#define CP0C0_AR   10
 331#define CP0C0_MT   7
 332#define CP0C0_VI   3
 333#define CP0C0_K0   0
 334    int32_t CP0_Config1;
 335#define CP0C1_M    31
 336#define CP0C1_MMU  25
 337#define CP0C1_IS   22
 338#define CP0C1_IL   19
 339#define CP0C1_IA   16
 340#define CP0C1_DS   13
 341#define CP0C1_DL   10
 342#define CP0C1_DA   7
 343#define CP0C1_C2   6
 344#define CP0C1_MD   5
 345#define CP0C1_PC   4
 346#define CP0C1_WR   3
 347#define CP0C1_CA   2
 348#define CP0C1_EP   1
 349#define CP0C1_FP   0
 350    int32_t CP0_Config2;
 351#define CP0C2_M    31
 352#define CP0C2_TU   28
 353#define CP0C2_TS   24
 354#define CP0C2_TL   20
 355#define CP0C2_TA   16
 356#define CP0C2_SU   12
 357#define CP0C2_SS   8
 358#define CP0C2_SL   4
 359#define CP0C2_SA   0
 360    int32_t CP0_Config3;
 361#define CP0C3_M    31
 362#define CP0C3_ISA_ON_EXC 16
 363#define CP0C3_DSPP 10
 364#define CP0C3_LPA  7
 365#define CP0C3_VEIC 6
 366#define CP0C3_VInt 5
 367#define CP0C3_SP   4
 368#define CP0C3_MT   2
 369#define CP0C3_SM   1
 370#define CP0C3_TL   0
 371    int32_t CP0_Config6;
 372    int32_t CP0_Config7;
 373    /* XXX: Maybe make LLAddr per-TC? */
 374    target_ulong lladdr;
 375    target_ulong llval;
 376    target_ulong llnewval;
 377    target_ulong llreg;
 378    target_ulong CP0_LLAddr_rw_bitmask;
 379    int CP0_LLAddr_shift;
 380    target_ulong CP0_WatchLo[8];
 381    int32_t CP0_WatchHi[8];
 382    target_ulong CP0_XContext;
 383    int32_t CP0_Framemask;
 384    int32_t CP0_Debug;
 385#define CP0DB_DBD  31
 386#define CP0DB_DM   30
 387#define CP0DB_LSNM 28
 388#define CP0DB_Doze 27
 389#define CP0DB_Halt 26
 390#define CP0DB_CNT  25
 391#define CP0DB_IBEP 24
 392#define CP0DB_DBEP 21
 393#define CP0DB_IEXI 20
 394#define CP0DB_VER  15
 395#define CP0DB_DEC  10
 396#define CP0DB_SSt  8
 397#define CP0DB_DINT 5
 398#define CP0DB_DIB  4
 399#define CP0DB_DDBS 3
 400#define CP0DB_DDBL 2
 401#define CP0DB_DBp  1
 402#define CP0DB_DSS  0
 403    target_ulong CP0_DEPC;
 404    int32_t CP0_Performance0;
 405    int32_t CP0_TagLo;
 406    int32_t CP0_DataLo;
 407    int32_t CP0_TagHi;
 408    int32_t CP0_DataHi;
 409    target_ulong CP0_ErrorEPC;
 410    int32_t CP0_DESAVE;
 411    /* We waste some space so we can handle shadow registers like TCs. */
 412    TCState tcs[MIPS_SHADOW_SET_MAX];
 413    CPUMIPSFPUContext fpus[MIPS_FPU_MAX];
 414    /* QEMU */
 415    int error_code;
 416    uint32_t hflags;    /* CPU State */
 417    /* TMASK defines different execution modes */
 418#define MIPS_HFLAG_TMASK  0xC07FF
 419#define MIPS_HFLAG_MODE   0x00007 /* execution modes                    */
 420    /* The KSU flags must be the lowest bits in hflags. The flag order
 421       must be the same as defined for CP0 Status. This allows to use
 422       the bits as the value of mmu_idx. */
 423#define MIPS_HFLAG_KSU    0x00003 /* kernel/supervisor/user mode mask   */
 424#define MIPS_HFLAG_UM     0x00002 /* user mode flag                     */
 425#define MIPS_HFLAG_SM     0x00001 /* supervisor mode flag               */
 426#define MIPS_HFLAG_KM     0x00000 /* kernel mode flag                   */
 427#define MIPS_HFLAG_DM     0x00004 /* Debug mode                         */
 428#define MIPS_HFLAG_64     0x00008 /* 64-bit instructions enabled        */
 429#define MIPS_HFLAG_CP0    0x00010 /* CP0 enabled                        */
 430#define MIPS_HFLAG_FPU    0x00020 /* FPU enabled                        */
 431#define MIPS_HFLAG_F64    0x00040 /* 64-bit FPU enabled                 */
 432    /* True if the MIPS IV COP1X instructions can be used.  This also
 433       controls the non-COP1X instructions RECIP.S, RECIP.D, RSQRT.S
 434       and RSQRT.D.  */
 435#define MIPS_HFLAG_COP1X  0x00080 /* COP1X instructions enabled         */
 436#define MIPS_HFLAG_RE     0x00100 /* Reversed endianness                */
 437#define MIPS_HFLAG_UX     0x00200 /* 64-bit user mode                   */
 438#define MIPS_HFLAG_M16    0x00400 /* MIPS16 mode flag                   */
 439#define MIPS_HFLAG_M16_SHIFT 10
 440    /* If translation is interrupted between the branch instruction and
 441     * the delay slot, record what type of branch it is so that we can
 442     * resume translation properly.  It might be possible to reduce
 443     * this from three bits to two.  */
 444#define MIPS_HFLAG_BMASK_BASE  0x03800
 445#define MIPS_HFLAG_B      0x00800 /* Unconditional branch               */
 446#define MIPS_HFLAG_BC     0x01000 /* Conditional branch                 */
 447#define MIPS_HFLAG_BL     0x01800 /* Likely branch                      */
 448#define MIPS_HFLAG_BR     0x02000 /* branch to register (can't link TB) */
 449    /* Extra flags about the current pending branch.  */
 450#define MIPS_HFLAG_BMASK_EXT 0x3C000
 451#define MIPS_HFLAG_B16    0x04000 /* branch instruction was 16 bits     */
 452#define MIPS_HFLAG_BDS16  0x08000 /* branch requires 16-bit delay slot  */
 453#define MIPS_HFLAG_BDS32  0x10000 /* branch requires 32-bit delay slot  */
 454#define MIPS_HFLAG_BX     0x20000 /* branch exchanges execution mode    */
 455#define MIPS_HFLAG_BMASK  (MIPS_HFLAG_BMASK_BASE | MIPS_HFLAG_BMASK_EXT)
 456    /* MIPS DSP resources access. */
 457#define MIPS_HFLAG_DSP   0x40000  /* Enable access to MIPS DSP resources. */
 458#define MIPS_HFLAG_DSPR2 0x80000  /* Enable access to MIPS DSPR2 resources. */
 459    target_ulong btarget;        /* Jump / branch target               */
 460    target_ulong bcond;          /* Branch condition (if needed)       */
 461
 462    int SYNCI_Step; /* Address step size for SYNCI */
 463    int CCRes; /* Cycle count resolution/divisor */
 464    uint32_t CP0_Status_rw_bitmask; /* Read/write bits in CP0_Status */
 465    uint32_t CP0_TCStatus_rw_bitmask; /* Read/write bits in CP0_TCStatus */
 466    int insn_flags; /* Supported instruction set */
 467
 468    target_ulong tls_value; /* For usermode emulation */
 469
 470    CPU_COMMON
 471
 472    CPUMIPSMVPContext *mvp;
 473#if !defined(CONFIG_USER_ONLY)
 474    CPUMIPSTLBContext *tlb;
 475#endif
 476
 477    const mips_def_t *cpu_model;
 478    void *irq[8];
 479    struct QEMUTimer *timer; /* Internal timer */
 480};
 481
 482#include "cpu-qom.h"
 483
 484#if !defined(CONFIG_USER_ONLY)
 485int no_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
 486                        target_ulong address, int rw, int access_type);
 487int fixed_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
 488                           target_ulong address, int rw, int access_type);
 489int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
 490                     target_ulong address, int rw, int access_type);
 491void r4k_helper_tlbwi(CPUMIPSState *env);
 492void r4k_helper_tlbwr(CPUMIPSState *env);
 493void r4k_helper_tlbp(CPUMIPSState *env);
 494void r4k_helper_tlbr(CPUMIPSState *env);
 495
 496void cpu_unassigned_access(CPUMIPSState *env, hwaddr addr,
 497                           int is_write, int is_exec, int unused, int size);
 498#endif
 499
 500void mips_cpu_list (FILE *f, fprintf_function cpu_fprintf);
 501
 502#define cpu_exec cpu_mips_exec
 503#define cpu_gen_code cpu_mips_gen_code
 504#define cpu_signal_handler cpu_mips_signal_handler
 505#define cpu_list mips_cpu_list
 506
 507#define CPU_SAVE_VERSION 3
 508
 509/* MMU modes definitions. We carefully match the indices with our
 510   hflags layout. */
 511#define MMU_MODE0_SUFFIX _kernel
 512#define MMU_MODE1_SUFFIX _super
 513#define MMU_MODE2_SUFFIX _user
 514#define MMU_USER_IDX 2
 515static inline int cpu_mmu_index (CPUMIPSState *env)
 516{
 517    return env->hflags & MIPS_HFLAG_KSU;
 518}
 519
 520static inline void cpu_clone_regs(CPUMIPSState *env, target_ulong newsp)
 521{
 522    if (newsp)
 523        env->active_tc.gpr[29] = newsp;
 524    env->active_tc.gpr[7] = 0;
 525    env->active_tc.gpr[2] = 0;
 526}
 527
 528static inline int cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
 529{
 530    int32_t pending;
 531    int32_t status;
 532    int r;
 533
 534    if (!(env->CP0_Status & (1 << CP0St_IE)) ||
 535        (env->CP0_Status & (1 << CP0St_EXL)) ||
 536        (env->CP0_Status & (1 << CP0St_ERL)) ||
 537        /* Note that the TCStatus IXMT field is initialized to zero,
 538           and only MT capable cores can set it to one. So we don't
 539           need to check for MT capabilities here.  */
 540        (env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT)) ||
 541        (env->hflags & MIPS_HFLAG_DM)) {
 542        /* Interrupts are disabled */
 543        return 0;
 544    }
 545
 546    pending = env->CP0_Cause & CP0Ca_IP_mask;
 547    status = env->CP0_Status & CP0Ca_IP_mask;
 548
 549    if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
 550        /* A MIPS configured with a vectorizing external interrupt controller
 551           will feed a vector into the Cause pending lines. The core treats
 552           the status lines as a vector level, not as indiviual masks.  */
 553        r = pending > status;
 554    } else {
 555        /* A MIPS configured with compatibility or VInt (Vectored Interrupts)
 556           treats the pending lines as individual interrupt lines, the status
 557           lines are individual masks.  */
 558        r = pending & status;
 559    }
 560    return r;
 561}
 562
 563#include "cpu-all.h"
 564
 565/* Memory access type :
 566 * may be needed for precise access rights control and precise exceptions.
 567 */
 568enum {
 569    /* 1 bit to define user level / supervisor access */
 570    ACCESS_USER  = 0x00,
 571    ACCESS_SUPER = 0x01,
 572    /* 1 bit to indicate direction */
 573    ACCESS_STORE = 0x02,
 574    /* Type of instruction that generated the access */
 575    ACCESS_CODE  = 0x10, /* Code fetch access                */
 576    ACCESS_INT   = 0x20, /* Integer load/store access        */
 577    ACCESS_FLOAT = 0x30, /* floating point load/store access */
 578};
 579
 580/* Exceptions */
 581enum {
 582    EXCP_NONE          = -1,
 583    EXCP_RESET         = 0,
 584    EXCP_SRESET,
 585    EXCP_DSS,
 586    EXCP_DINT,
 587    EXCP_DDBL,
 588    EXCP_DDBS,
 589    EXCP_NMI,
 590    EXCP_MCHECK,
 591    EXCP_EXT_INTERRUPT, /* 8 */
 592    EXCP_DFWATCH,
 593    EXCP_DIB,
 594    EXCP_IWATCH,
 595    EXCP_AdEL,
 596    EXCP_AdES,
 597    EXCP_TLBF,
 598    EXCP_IBE,
 599    EXCP_DBp, /* 16 */
 600    EXCP_SYSCALL,
 601    EXCP_BREAK,
 602    EXCP_CpU,
 603    EXCP_RI,
 604    EXCP_OVERFLOW,
 605    EXCP_TRAP,
 606    EXCP_FPE,
 607    EXCP_DWATCH, /* 24 */
 608    EXCP_LTLBL,
 609    EXCP_TLBL,
 610    EXCP_TLBS,
 611    EXCP_DBE,
 612    EXCP_THREAD,
 613    EXCP_MDMX,
 614    EXCP_C2E,
 615    EXCP_CACHE, /* 32 */
 616    EXCP_DSPDIS,
 617
 618    EXCP_LAST = EXCP_DSPDIS,
 619};
 620/* Dummy exception for conditional stores.  */
 621#define EXCP_SC 0x100
 622
 623/*
 624 * This is an interrnally generated WAKE request line.
 625 * It is driven by the CPU itself. Raised when the MT
 626 * block wants to wake a VPE from an inactive state and
 627 * cleared when VPE goes from active to inactive.
 628 */
 629#define CPU_INTERRUPT_WAKE CPU_INTERRUPT_TGT_INT_0
 630
 631int cpu_mips_exec(CPUMIPSState *s);
 632MIPSCPU *cpu_mips_init(const char *cpu_model);
 633int cpu_mips_signal_handler(int host_signum, void *pinfo, void *puc);
 634
 635static inline CPUMIPSState *cpu_init(const char *cpu_model)
 636{
 637    MIPSCPU *cpu = cpu_mips_init(cpu_model);
 638    if (cpu == NULL) {
 639        return NULL;
 640    }
 641    return &cpu->env;
 642}
 643
 644/* TODO QOM'ify CPU reset and remove */
 645void cpu_state_reset(CPUMIPSState *s);
 646
 647/* mips_timer.c */
 648uint32_t cpu_mips_get_random (CPUMIPSState *env);
 649uint32_t cpu_mips_get_count (CPUMIPSState *env);
 650void cpu_mips_store_count (CPUMIPSState *env, uint32_t value);
 651void cpu_mips_store_compare (CPUMIPSState *env, uint32_t value);
 652void cpu_mips_start_count(CPUMIPSState *env);
 653void cpu_mips_stop_count(CPUMIPSState *env);
 654
 655/* mips_int.c */
 656void cpu_mips_soft_irq(CPUMIPSState *env, int irq, int level);
 657
 658/* helper.c */
 659int cpu_mips_handle_mmu_fault (CPUMIPSState *env, target_ulong address, int rw,
 660                               int mmu_idx);
 661#define cpu_handle_mmu_fault cpu_mips_handle_mmu_fault
 662void do_interrupt (CPUMIPSState *env);
 663#if !defined(CONFIG_USER_ONLY)
 664void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra);
 665hwaddr cpu_mips_translate_address (CPUMIPSState *env, target_ulong address,
 666                                               int rw);
 667#endif
 668
 669static inline void cpu_get_tb_cpu_state(CPUMIPSState *env, target_ulong *pc,
 670                                        target_ulong *cs_base, int *flags)
 671{
 672    *pc = env->active_tc.PC;
 673    *cs_base = 0;
 674    *flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
 675}
 676
 677static inline void cpu_set_tls(CPUMIPSState *env, target_ulong newtls)
 678{
 679    env->tls_value = newtls;
 680}
 681
 682static inline int mips_vpe_active(CPUMIPSState *env)
 683{
 684    int active = 1;
 685
 686    /* Check that the VPE is enabled.  */
 687    if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
 688        active = 0;
 689    }
 690    /* Check that the VPE is activated.  */
 691    if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
 692        active = 0;
 693    }
 694
 695    /* Now verify that there are active thread contexts in the VPE.
 696
 697       This assumes the CPU model will internally reschedule threads
 698       if the active one goes to sleep. If there are no threads available
 699       the active one will be in a sleeping state, and we can turn off
 700       the entire VPE.  */
 701    if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
 702        /* TC is not activated.  */
 703        active = 0;
 704    }
 705    if (env->active_tc.CP0_TCHalt & 1) {
 706        /* TC is in halt state.  */
 707        active = 0;
 708    }
 709
 710    return active;
 711}
 712
 713static inline bool cpu_has_work(CPUState *cpu)
 714{
 715    CPUMIPSState *env = &MIPS_CPU(cpu)->env;
 716    bool has_work = false;
 717
 718    /* It is implementation dependent if non-enabled interrupts
 719       wake-up the CPU, however most of the implementations only
 720       check for interrupts that can be taken. */
 721    if ((env->interrupt_request & CPU_INTERRUPT_HARD) &&
 722        cpu_mips_hw_interrupts_pending(env)) {
 723        has_work = true;
 724    }
 725
 726    /* MIPS-MT has the ability to halt the CPU.  */
 727    if (env->CP0_Config3 & (1 << CP0C3_MT)) {
 728        /* The QEMU model will issue an _WAKE request whenever the CPUs
 729           should be woken up.  */
 730        if (env->interrupt_request & CPU_INTERRUPT_WAKE) {
 731            has_work = true;
 732        }
 733
 734        if (!mips_vpe_active(env)) {
 735            has_work = false;
 736        }
 737    }
 738    return has_work;
 739}
 740
 741#include "exec-all.h"
 742
 743static inline void cpu_pc_from_tb(CPUMIPSState *env, TranslationBlock *tb)
 744{
 745    env->active_tc.PC = tb->pc;
 746    env->hflags &= ~MIPS_HFLAG_BMASK;
 747    env->hflags |= tb->flags & MIPS_HFLAG_BMASK;
 748}
 749
 750static inline void compute_hflags(CPUMIPSState *env)
 751{
 752    env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
 753                     MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
 754                     MIPS_HFLAG_UX);
 755    if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
 756        !(env->CP0_Status & (1 << CP0St_ERL)) &&
 757        !(env->hflags & MIPS_HFLAG_DM)) {
 758        env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
 759    }
 760#if defined(TARGET_MIPS64)
 761    if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
 762        (env->CP0_Status & (1 << CP0St_PX)) ||
 763        (env->CP0_Status & (1 << CP0St_UX))) {
 764        env->hflags |= MIPS_HFLAG_64;
 765    }
 766    if (env->CP0_Status & (1 << CP0St_UX)) {
 767        env->hflags |= MIPS_HFLAG_UX;
 768    }
 769#endif
 770    if ((env->CP0_Status & (1 << CP0St_CU0)) ||
 771        !(env->hflags & MIPS_HFLAG_KSU)) {
 772        env->hflags |= MIPS_HFLAG_CP0;
 773    }
 774    if (env->CP0_Status & (1 << CP0St_CU1)) {
 775        env->hflags |= MIPS_HFLAG_FPU;
 776    }
 777    if (env->CP0_Status & (1 << CP0St_FR)) {
 778        env->hflags |= MIPS_HFLAG_F64;
 779    }
 780    if (env->insn_flags & ASE_DSPR2) {
 781        /* Enables access MIPS DSP resources, now our cpu is DSP ASER2,
 782           so enable to access DSPR2 resources. */
 783        if (env->CP0_Status & (1 << CP0St_MX)) {
 784            env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSPR2;
 785        }
 786
 787    } else if (env->insn_flags & ASE_DSP) {
 788        /* Enables access MIPS DSP resources, now our cpu is DSP ASE,
 789           so enable to access DSP resources. */
 790        if (env->CP0_Status & (1 << CP0St_MX)) {
 791            env->hflags |= MIPS_HFLAG_DSP;
 792        }
 793
 794    }
 795    if (env->insn_flags & ISA_MIPS32R2) {
 796        if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
 797            env->hflags |= MIPS_HFLAG_COP1X;
 798        }
 799    } else if (env->insn_flags & ISA_MIPS32) {
 800        if (env->hflags & MIPS_HFLAG_64) {
 801            env->hflags |= MIPS_HFLAG_COP1X;
 802        }
 803    } else if (env->insn_flags & ISA_MIPS4) {
 804        /* All supported MIPS IV CPUs use the XX (CU3) to enable
 805           and disable the MIPS IV extensions to the MIPS III ISA.
 806           Some other MIPS IV CPUs ignore the bit, so the check here
 807           would be too restrictive for them.  */
 808        if (env->CP0_Status & (1 << CP0St_CU3)) {
 809            env->hflags |= MIPS_HFLAG_COP1X;
 810        }
 811    }
 812}
 813
 814#endif /* !defined (__MIPS_CPU_H__) */
 815