qemu/hw/ppc.c
<<
>>
Prefs
   1/*
   2 * QEMU generic PowerPC hardware System Emulator
   3 *
   4 * Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw.h"
  25#include "ppc.h"
  26#include "qemu/timer.h"
  27#include "sysemu/sysemu.h"
  28#include "nvram.h"
  29#include "qemu/log.h"
  30#include "loader.h"
  31#include "sysemu/kvm.h"
  32#include "kvm_ppc.h"
  33
  34//#define PPC_DEBUG_IRQ
  35//#define PPC_DEBUG_TB
  36
  37#ifdef PPC_DEBUG_IRQ
  38#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
  39#else
  40#  define LOG_IRQ(...) do { } while (0)
  41#endif
  42
  43
  44#ifdef PPC_DEBUG_TB
  45#  define LOG_TB(...) qemu_log(__VA_ARGS__)
  46#else
  47#  define LOG_TB(...) do { } while (0)
  48#endif
  49
  50static void cpu_ppc_tb_stop (CPUPPCState *env);
  51static void cpu_ppc_tb_start (CPUPPCState *env);
  52
  53void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
  54{
  55    CPUPPCState *env = &cpu->env;
  56    unsigned int old_pending = env->pending_interrupts;
  57
  58    if (level) {
  59        env->pending_interrupts |= 1 << n_IRQ;
  60        cpu_interrupt(env, CPU_INTERRUPT_HARD);
  61    } else {
  62        env->pending_interrupts &= ~(1 << n_IRQ);
  63        if (env->pending_interrupts == 0)
  64            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
  65    }
  66
  67    if (old_pending != env->pending_interrupts) {
  68#ifdef CONFIG_KVM
  69        kvmppc_set_interrupt(cpu, n_IRQ, level);
  70#endif
  71    }
  72
  73    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
  74                "req %08x\n", __func__, env, n_IRQ, level,
  75                env->pending_interrupts, env->interrupt_request);
  76}
  77
  78/* PowerPC 6xx / 7xx internal IRQ controller */
  79static void ppc6xx_set_irq(void *opaque, int pin, int level)
  80{
  81    PowerPCCPU *cpu = opaque;
  82    CPUPPCState *env = &cpu->env;
  83    int cur_level;
  84
  85    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
  86                env, pin, level);
  87    cur_level = (env->irq_input_state >> pin) & 1;
  88    /* Don't generate spurious events */
  89    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
  90        switch (pin) {
  91        case PPC6xx_INPUT_TBEN:
  92            /* Level sensitive - active high */
  93            LOG_IRQ("%s: %s the time base\n",
  94                        __func__, level ? "start" : "stop");
  95            if (level) {
  96                cpu_ppc_tb_start(env);
  97            } else {
  98                cpu_ppc_tb_stop(env);
  99            }
 100        case PPC6xx_INPUT_INT:
 101            /* Level sensitive - active high */
 102            LOG_IRQ("%s: set the external IRQ state to %d\n",
 103                        __func__, level);
 104            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 105            break;
 106        case PPC6xx_INPUT_SMI:
 107            /* Level sensitive - active high */
 108            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
 109                        __func__, level);
 110            ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
 111            break;
 112        case PPC6xx_INPUT_MCP:
 113            /* Negative edge sensitive */
 114            /* XXX: TODO: actual reaction may depends on HID0 status
 115             *            603/604/740/750: check HID0[EMCP]
 116             */
 117            if (cur_level == 1 && level == 0) {
 118                LOG_IRQ("%s: raise machine check state\n",
 119                            __func__);
 120                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
 121            }
 122            break;
 123        case PPC6xx_INPUT_CKSTP_IN:
 124            /* Level sensitive - active low */
 125            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
 126            /* XXX: Note that the only way to restart the CPU is to reset it */
 127            if (level) {
 128                LOG_IRQ("%s: stop the CPU\n", __func__);
 129                env->halted = 1;
 130            }
 131            break;
 132        case PPC6xx_INPUT_HRESET:
 133            /* Level sensitive - active low */
 134            if (level) {
 135                LOG_IRQ("%s: reset the CPU\n", __func__);
 136                cpu_interrupt(env, CPU_INTERRUPT_RESET);
 137            }
 138            break;
 139        case PPC6xx_INPUT_SRESET:
 140            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
 141                        __func__, level);
 142            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
 143            break;
 144        default:
 145            /* Unknown pin - do nothing */
 146            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 147            return;
 148        }
 149        if (level)
 150            env->irq_input_state |= 1 << pin;
 151        else
 152            env->irq_input_state &= ~(1 << pin);
 153    }
 154}
 155
 156void ppc6xx_irq_init(CPUPPCState *env)
 157{
 158    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 159
 160    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
 161                                                  PPC6xx_INPUT_NB);
 162}
 163
 164#if defined(TARGET_PPC64)
 165/* PowerPC 970 internal IRQ controller */
 166static void ppc970_set_irq(void *opaque, int pin, int level)
 167{
 168    PowerPCCPU *cpu = opaque;
 169    CPUPPCState *env = &cpu->env;
 170    int cur_level;
 171
 172    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 173                env, pin, level);
 174    cur_level = (env->irq_input_state >> pin) & 1;
 175    /* Don't generate spurious events */
 176    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 177        switch (pin) {
 178        case PPC970_INPUT_INT:
 179            /* Level sensitive - active high */
 180            LOG_IRQ("%s: set the external IRQ state to %d\n",
 181                        __func__, level);
 182            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 183            break;
 184        case PPC970_INPUT_THINT:
 185            /* Level sensitive - active high */
 186            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
 187                        level);
 188            ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
 189            break;
 190        case PPC970_INPUT_MCP:
 191            /* Negative edge sensitive */
 192            /* XXX: TODO: actual reaction may depends on HID0 status
 193             *            603/604/740/750: check HID0[EMCP]
 194             */
 195            if (cur_level == 1 && level == 0) {
 196                LOG_IRQ("%s: raise machine check state\n",
 197                            __func__);
 198                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
 199            }
 200            break;
 201        case PPC970_INPUT_CKSTP:
 202            /* Level sensitive - active low */
 203            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
 204            if (level) {
 205                LOG_IRQ("%s: stop the CPU\n", __func__);
 206                env->halted = 1;
 207            } else {
 208                LOG_IRQ("%s: restart the CPU\n", __func__);
 209                env->halted = 0;
 210                qemu_cpu_kick(CPU(cpu));
 211            }
 212            break;
 213        case PPC970_INPUT_HRESET:
 214            /* Level sensitive - active low */
 215            if (level) {
 216                cpu_interrupt(env, CPU_INTERRUPT_RESET);
 217            }
 218            break;
 219        case PPC970_INPUT_SRESET:
 220            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
 221                        __func__, level);
 222            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
 223            break;
 224        case PPC970_INPUT_TBEN:
 225            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
 226                        level);
 227            /* XXX: TODO */
 228            break;
 229        default:
 230            /* Unknown pin - do nothing */
 231            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 232            return;
 233        }
 234        if (level)
 235            env->irq_input_state |= 1 << pin;
 236        else
 237            env->irq_input_state &= ~(1 << pin);
 238    }
 239}
 240
 241void ppc970_irq_init(CPUPPCState *env)
 242{
 243    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 244
 245    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
 246                                                  PPC970_INPUT_NB);
 247}
 248
 249/* POWER7 internal IRQ controller */
 250static void power7_set_irq(void *opaque, int pin, int level)
 251{
 252    PowerPCCPU *cpu = opaque;
 253    CPUPPCState *env = &cpu->env;
 254
 255    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 256                env, pin, level);
 257
 258    switch (pin) {
 259    case POWER7_INPUT_INT:
 260        /* Level sensitive - active high */
 261        LOG_IRQ("%s: set the external IRQ state to %d\n",
 262                __func__, level);
 263        ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 264        break;
 265    default:
 266        /* Unknown pin - do nothing */
 267        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 268        return;
 269    }
 270    if (level) {
 271        env->irq_input_state |= 1 << pin;
 272    } else {
 273        env->irq_input_state &= ~(1 << pin);
 274    }
 275}
 276
 277void ppcPOWER7_irq_init(CPUPPCState *env)
 278{
 279    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 280
 281    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
 282                                                  POWER7_INPUT_NB);
 283}
 284#endif /* defined(TARGET_PPC64) */
 285
 286/* PowerPC 40x internal IRQ controller */
 287static void ppc40x_set_irq(void *opaque, int pin, int level)
 288{
 289    PowerPCCPU *cpu = opaque;
 290    CPUPPCState *env = &cpu->env;
 291    int cur_level;
 292
 293    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 294                env, pin, level);
 295    cur_level = (env->irq_input_state >> pin) & 1;
 296    /* Don't generate spurious events */
 297    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 298        switch (pin) {
 299        case PPC40x_INPUT_RESET_SYS:
 300            if (level) {
 301                LOG_IRQ("%s: reset the PowerPC system\n",
 302                            __func__);
 303                ppc40x_system_reset(env);
 304            }
 305            break;
 306        case PPC40x_INPUT_RESET_CHIP:
 307            if (level) {
 308                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
 309                ppc40x_chip_reset(env);
 310            }
 311            break;
 312        case PPC40x_INPUT_RESET_CORE:
 313            /* XXX: TODO: update DBSR[MRR] */
 314            if (level) {
 315                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
 316                ppc40x_core_reset(env);
 317            }
 318            break;
 319        case PPC40x_INPUT_CINT:
 320            /* Level sensitive - active high */
 321            LOG_IRQ("%s: set the critical IRQ state to %d\n",
 322                        __func__, level);
 323            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
 324            break;
 325        case PPC40x_INPUT_INT:
 326            /* Level sensitive - active high */
 327            LOG_IRQ("%s: set the external IRQ state to %d\n",
 328                        __func__, level);
 329            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 330            break;
 331        case PPC40x_INPUT_HALT:
 332            /* Level sensitive - active low */
 333            if (level) {
 334                LOG_IRQ("%s: stop the CPU\n", __func__);
 335                env->halted = 1;
 336            } else {
 337                LOG_IRQ("%s: restart the CPU\n", __func__);
 338                env->halted = 0;
 339                qemu_cpu_kick(CPU(cpu));
 340            }
 341            break;
 342        case PPC40x_INPUT_DEBUG:
 343            /* Level sensitive - active high */
 344            LOG_IRQ("%s: set the debug pin state to %d\n",
 345                        __func__, level);
 346            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
 347            break;
 348        default:
 349            /* Unknown pin - do nothing */
 350            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 351            return;
 352        }
 353        if (level)
 354            env->irq_input_state |= 1 << pin;
 355        else
 356            env->irq_input_state &= ~(1 << pin);
 357    }
 358}
 359
 360void ppc40x_irq_init(CPUPPCState *env)
 361{
 362    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 363
 364    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
 365                                                  cpu, PPC40x_INPUT_NB);
 366}
 367
 368/* PowerPC E500 internal IRQ controller */
 369static void ppce500_set_irq(void *opaque, int pin, int level)
 370{
 371    PowerPCCPU *cpu = opaque;
 372    CPUPPCState *env = &cpu->env;
 373    int cur_level;
 374
 375    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 376                env, pin, level);
 377    cur_level = (env->irq_input_state >> pin) & 1;
 378    /* Don't generate spurious events */
 379    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 380        switch (pin) {
 381        case PPCE500_INPUT_MCK:
 382            if (level) {
 383                LOG_IRQ("%s: reset the PowerPC system\n",
 384                            __func__);
 385                qemu_system_reset_request();
 386            }
 387            break;
 388        case PPCE500_INPUT_RESET_CORE:
 389            if (level) {
 390                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
 391                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
 392            }
 393            break;
 394        case PPCE500_INPUT_CINT:
 395            /* Level sensitive - active high */
 396            LOG_IRQ("%s: set the critical IRQ state to %d\n",
 397                        __func__, level);
 398            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
 399            break;
 400        case PPCE500_INPUT_INT:
 401            /* Level sensitive - active high */
 402            LOG_IRQ("%s: set the core IRQ state to %d\n",
 403                        __func__, level);
 404            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 405            break;
 406        case PPCE500_INPUT_DEBUG:
 407            /* Level sensitive - active high */
 408            LOG_IRQ("%s: set the debug pin state to %d\n",
 409                        __func__, level);
 410            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
 411            break;
 412        default:
 413            /* Unknown pin - do nothing */
 414            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 415            return;
 416        }
 417        if (level)
 418            env->irq_input_state |= 1 << pin;
 419        else
 420            env->irq_input_state &= ~(1 << pin);
 421    }
 422}
 423
 424void ppce500_irq_init(CPUPPCState *env)
 425{
 426    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 427
 428    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
 429                                                  cpu, PPCE500_INPUT_NB);
 430}
 431
 432/* Enable or Disable the E500 EPR capability */
 433void ppce500_set_mpic_proxy(bool enabled)
 434{
 435    CPUPPCState *env;
 436
 437    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 438        PowerPCCPU *cpu = ppc_env_get_cpu(env);
 439        CPUState *cs = CPU(cpu);
 440
 441        env->mpic_proxy = enabled;
 442        if (kvm_enabled()) {
 443            kvmppc_set_mpic_proxy(POWERPC_CPU(cs), enabled);
 444        }
 445    }
 446}
 447
 448/*****************************************************************************/
 449/* PowerPC time base and decrementer emulation */
 450
 451uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
 452{
 453    /* TB time in tb periods */
 454    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
 455}
 456
 457uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
 458{
 459    ppc_tb_t *tb_env = env->tb_env;
 460    uint64_t tb;
 461
 462    if (kvm_enabled()) {
 463        return env->spr[SPR_TBL];
 464    }
 465
 466    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
 467    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 468
 469    return tb;
 470}
 471
 472static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
 473{
 474    ppc_tb_t *tb_env = env->tb_env;
 475    uint64_t tb;
 476
 477    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
 478    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 479
 480    return tb >> 32;
 481}
 482
 483uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
 484{
 485    if (kvm_enabled()) {
 486        return env->spr[SPR_TBU];
 487    }
 488
 489    return _cpu_ppc_load_tbu(env);
 490}
 491
 492static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
 493                                    int64_t *tb_offsetp, uint64_t value)
 494{
 495    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
 496    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
 497                __func__, value, *tb_offsetp);
 498}
 499
 500void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
 501{
 502    ppc_tb_t *tb_env = env->tb_env;
 503    uint64_t tb;
 504
 505    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
 506    tb &= 0xFFFFFFFF00000000ULL;
 507    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
 508                     &tb_env->tb_offset, tb | (uint64_t)value);
 509}
 510
 511static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
 512{
 513    ppc_tb_t *tb_env = env->tb_env;
 514    uint64_t tb;
 515
 516    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
 517    tb &= 0x00000000FFFFFFFFULL;
 518    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
 519                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
 520}
 521
 522void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
 523{
 524    _cpu_ppc_store_tbu(env, value);
 525}
 526
 527uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
 528{
 529    ppc_tb_t *tb_env = env->tb_env;
 530    uint64_t tb;
 531
 532    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
 533    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 534
 535    return tb;
 536}
 537
 538uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
 539{
 540    ppc_tb_t *tb_env = env->tb_env;
 541    uint64_t tb;
 542
 543    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
 544    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 545
 546    return tb >> 32;
 547}
 548
 549void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
 550{
 551    ppc_tb_t *tb_env = env->tb_env;
 552    uint64_t tb;
 553
 554    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
 555    tb &= 0xFFFFFFFF00000000ULL;
 556    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
 557                     &tb_env->atb_offset, tb | (uint64_t)value);
 558}
 559
 560void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
 561{
 562    ppc_tb_t *tb_env = env->tb_env;
 563    uint64_t tb;
 564
 565    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
 566    tb &= 0x00000000FFFFFFFFULL;
 567    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
 568                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
 569}
 570
 571static void cpu_ppc_tb_stop (CPUPPCState *env)
 572{
 573    ppc_tb_t *tb_env = env->tb_env;
 574    uint64_t tb, atb, vmclk;
 575
 576    /* If the time base is already frozen, do nothing */
 577    if (tb_env->tb_freq != 0) {
 578        vmclk = qemu_get_clock_ns(vm_clock);
 579        /* Get the time base */
 580        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
 581        /* Get the alternate time base */
 582        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
 583        /* Store the time base value (ie compute the current offset) */
 584        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
 585        /* Store the alternate time base value (compute the current offset) */
 586        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
 587        /* Set the time base frequency to zero */
 588        tb_env->tb_freq = 0;
 589        /* Now, the time bases are frozen to tb_offset / atb_offset value */
 590    }
 591}
 592
 593static void cpu_ppc_tb_start (CPUPPCState *env)
 594{
 595    ppc_tb_t *tb_env = env->tb_env;
 596    uint64_t tb, atb, vmclk;
 597
 598    /* If the time base is not frozen, do nothing */
 599    if (tb_env->tb_freq == 0) {
 600        vmclk = qemu_get_clock_ns(vm_clock);
 601        /* Get the time base from tb_offset */
 602        tb = tb_env->tb_offset;
 603        /* Get the alternate time base from atb_offset */
 604        atb = tb_env->atb_offset;
 605        /* Restore the tb frequency from the decrementer frequency */
 606        tb_env->tb_freq = tb_env->decr_freq;
 607        /* Store the time base value */
 608        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
 609        /* Store the alternate time base value */
 610        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
 611    }
 612}
 613
 614static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
 615{
 616    ppc_tb_t *tb_env = env->tb_env;
 617    uint32_t decr;
 618    int64_t diff;
 619
 620    diff = next - qemu_get_clock_ns(vm_clock);
 621    if (diff >= 0) {
 622        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
 623    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
 624        decr = 0;
 625    }  else {
 626        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
 627    }
 628    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
 629
 630    return decr;
 631}
 632
 633uint32_t cpu_ppc_load_decr (CPUPPCState *env)
 634{
 635    ppc_tb_t *tb_env = env->tb_env;
 636
 637    if (kvm_enabled()) {
 638        return env->spr[SPR_DECR];
 639    }
 640
 641    return _cpu_ppc_load_decr(env, tb_env->decr_next);
 642}
 643
 644uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
 645{
 646    ppc_tb_t *tb_env = env->tb_env;
 647
 648    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
 649}
 650
 651uint64_t cpu_ppc_load_purr (CPUPPCState *env)
 652{
 653    ppc_tb_t *tb_env = env->tb_env;
 654    uint64_t diff;
 655
 656    diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
 657
 658    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
 659}
 660
 661/* When decrementer expires,
 662 * all we need to do is generate or queue a CPU exception
 663 */
 664static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
 665{
 666    /* Raise it */
 667    LOG_TB("raise decrementer exception\n");
 668    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
 669}
 670
 671static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
 672{
 673    /* Raise it */
 674    LOG_TB("raise decrementer exception\n");
 675    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
 676}
 677
 678static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
 679                                 struct QEMUTimer *timer,
 680                                 void (*raise_excp)(PowerPCCPU *),
 681                                 uint32_t decr, uint32_t value,
 682                                 int is_excp)
 683{
 684    CPUPPCState *env = &cpu->env;
 685    ppc_tb_t *tb_env = env->tb_env;
 686    uint64_t now, next;
 687
 688    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
 689                decr, value);
 690
 691    if (kvm_enabled()) {
 692        /* KVM handles decrementer exceptions, we don't need our own timer */
 693        return;
 694    }
 695
 696    now = qemu_get_clock_ns(vm_clock);
 697    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
 698    if (is_excp) {
 699        next += *nextp - now;
 700    }
 701    if (next == now) {
 702        next++;
 703    }
 704    *nextp = next;
 705    /* Adjust timer */
 706    qemu_mod_timer(timer, next);
 707
 708    /* If we set a negative value and the decrementer was positive, raise an
 709     * exception.
 710     */
 711    if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
 712        && (value & 0x80000000)
 713        && !(decr & 0x80000000)) {
 714        (*raise_excp)(cpu);
 715    }
 716}
 717
 718static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
 719                                       uint32_t value, int is_excp)
 720{
 721    ppc_tb_t *tb_env = cpu->env.tb_env;
 722
 723    __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
 724                         &cpu_ppc_decr_excp, decr, value, is_excp);
 725}
 726
 727void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
 728{
 729    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 730
 731    _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
 732}
 733
 734static void cpu_ppc_decr_cb(void *opaque)
 735{
 736    PowerPCCPU *cpu = opaque;
 737
 738    _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
 739}
 740
 741static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
 742                                        uint32_t value, int is_excp)
 743{
 744    ppc_tb_t *tb_env = cpu->env.tb_env;
 745
 746    if (tb_env->hdecr_timer != NULL) {
 747        __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
 748                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
 749    }
 750}
 751
 752void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
 753{
 754    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 755
 756    _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
 757}
 758
 759static void cpu_ppc_hdecr_cb(void *opaque)
 760{
 761    PowerPCCPU *cpu = opaque;
 762
 763    _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
 764}
 765
 766static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
 767{
 768    ppc_tb_t *tb_env = cpu->env.tb_env;
 769
 770    tb_env->purr_load = value;
 771    tb_env->purr_start = qemu_get_clock_ns(vm_clock);
 772}
 773
 774static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
 775{
 776    CPUPPCState *env = opaque;
 777    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 778    ppc_tb_t *tb_env = env->tb_env;
 779
 780    tb_env->tb_freq = freq;
 781    tb_env->decr_freq = freq;
 782    /* There is a bug in Linux 2.4 kernels:
 783     * if a decrementer exception is pending when it enables msr_ee at startup,
 784     * it's not ready to handle it...
 785     */
 786    _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
 787    _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
 788    cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
 789}
 790
 791/* Set up (once) timebase frequency (in Hz) */
 792clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
 793{
 794    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 795    ppc_tb_t *tb_env;
 796
 797    tb_env = g_malloc0(sizeof(ppc_tb_t));
 798    env->tb_env = tb_env;
 799    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
 800    /* Create new timer */
 801    tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, cpu);
 802    if (0) {
 803        /* XXX: find a suitable condition to enable the hypervisor decrementer
 804         */
 805        tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb,
 806                                                cpu);
 807    } else {
 808        tb_env->hdecr_timer = NULL;
 809    }
 810    cpu_ppc_set_tb_clk(env, freq);
 811
 812    return &cpu_ppc_set_tb_clk;
 813}
 814
 815/* Specific helpers for POWER & PowerPC 601 RTC */
 816#if 0
 817static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
 818{
 819    return cpu_ppc_tb_init(env, 7812500);
 820}
 821#endif
 822
 823void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
 824{
 825    _cpu_ppc_store_tbu(env, value);
 826}
 827
 828uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
 829{
 830    return _cpu_ppc_load_tbu(env);
 831}
 832
 833void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
 834{
 835    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
 836}
 837
 838uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
 839{
 840    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
 841}
 842
 843/*****************************************************************************/
 844/* PowerPC 40x timers */
 845
 846/* PIT, FIT & WDT */
 847typedef struct ppc40x_timer_t ppc40x_timer_t;
 848struct ppc40x_timer_t {
 849    uint64_t pit_reload;  /* PIT auto-reload value        */
 850    uint64_t fit_next;    /* Tick for next FIT interrupt  */
 851    struct QEMUTimer *fit_timer;
 852    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
 853    struct QEMUTimer *wdt_timer;
 854
 855    /* 405 have the PIT, 440 have a DECR.  */
 856    unsigned int decr_excp;
 857};
 858
 859/* Fixed interval timer */
 860static void cpu_4xx_fit_cb (void *opaque)
 861{
 862    PowerPCCPU *cpu;
 863    CPUPPCState *env;
 864    ppc_tb_t *tb_env;
 865    ppc40x_timer_t *ppc40x_timer;
 866    uint64_t now, next;
 867
 868    env = opaque;
 869    cpu = ppc_env_get_cpu(env);
 870    tb_env = env->tb_env;
 871    ppc40x_timer = tb_env->opaque;
 872    now = qemu_get_clock_ns(vm_clock);
 873    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
 874    case 0:
 875        next = 1 << 9;
 876        break;
 877    case 1:
 878        next = 1 << 13;
 879        break;
 880    case 2:
 881        next = 1 << 17;
 882        break;
 883    case 3:
 884        next = 1 << 21;
 885        break;
 886    default:
 887        /* Cannot occur, but makes gcc happy */
 888        return;
 889    }
 890    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
 891    if (next == now)
 892        next++;
 893    qemu_mod_timer(ppc40x_timer->fit_timer, next);
 894    env->spr[SPR_40x_TSR] |= 1 << 26;
 895    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
 896        ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
 897    }
 898    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
 899           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
 900           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
 901}
 902
 903/* Programmable interval timer */
 904static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
 905{
 906    ppc40x_timer_t *ppc40x_timer;
 907    uint64_t now, next;
 908
 909    ppc40x_timer = tb_env->opaque;
 910    if (ppc40x_timer->pit_reload <= 1 ||
 911        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
 912        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
 913        /* Stop PIT */
 914        LOG_TB("%s: stop PIT\n", __func__);
 915        qemu_del_timer(tb_env->decr_timer);
 916    } else {
 917        LOG_TB("%s: start PIT %016" PRIx64 "\n",
 918                    __func__, ppc40x_timer->pit_reload);
 919        now = qemu_get_clock_ns(vm_clock);
 920        next = now + muldiv64(ppc40x_timer->pit_reload,
 921                              get_ticks_per_sec(), tb_env->decr_freq);
 922        if (is_excp)
 923            next += tb_env->decr_next - now;
 924        if (next == now)
 925            next++;
 926        qemu_mod_timer(tb_env->decr_timer, next);
 927        tb_env->decr_next = next;
 928    }
 929}
 930
 931static void cpu_4xx_pit_cb (void *opaque)
 932{
 933    PowerPCCPU *cpu;
 934    CPUPPCState *env;
 935    ppc_tb_t *tb_env;
 936    ppc40x_timer_t *ppc40x_timer;
 937
 938    env = opaque;
 939    cpu = ppc_env_get_cpu(env);
 940    tb_env = env->tb_env;
 941    ppc40x_timer = tb_env->opaque;
 942    env->spr[SPR_40x_TSR] |= 1 << 27;
 943    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
 944        ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
 945    }
 946    start_stop_pit(env, tb_env, 1);
 947    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
 948           "%016" PRIx64 "\n", __func__,
 949           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
 950           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
 951           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
 952           ppc40x_timer->pit_reload);
 953}
 954
 955/* Watchdog timer */
 956static void cpu_4xx_wdt_cb (void *opaque)
 957{
 958    PowerPCCPU *cpu;
 959    CPUPPCState *env;
 960    ppc_tb_t *tb_env;
 961    ppc40x_timer_t *ppc40x_timer;
 962    uint64_t now, next;
 963
 964    env = opaque;
 965    cpu = ppc_env_get_cpu(env);
 966    tb_env = env->tb_env;
 967    ppc40x_timer = tb_env->opaque;
 968    now = qemu_get_clock_ns(vm_clock);
 969    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
 970    case 0:
 971        next = 1 << 17;
 972        break;
 973    case 1:
 974        next = 1 << 21;
 975        break;
 976    case 2:
 977        next = 1 << 25;
 978        break;
 979    case 3:
 980        next = 1 << 29;
 981        break;
 982    default:
 983        /* Cannot occur, but makes gcc happy */
 984        return;
 985    }
 986    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
 987    if (next == now)
 988        next++;
 989    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
 990           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
 991    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
 992    case 0x0:
 993    case 0x1:
 994        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
 995        ppc40x_timer->wdt_next = next;
 996        env->spr[SPR_40x_TSR] |= 1 << 31;
 997        break;
 998    case 0x2:
 999        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1000        ppc40x_timer->wdt_next = next;
1001        env->spr[SPR_40x_TSR] |= 1 << 30;
1002        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1003            ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1004        }
1005        break;
1006    case 0x3:
1007        env->spr[SPR_40x_TSR] &= ~0x30000000;
1008        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1009        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1010        case 0x0:
1011            /* No reset */
1012            break;
1013        case 0x1: /* Core reset */
1014            ppc40x_core_reset(env);
1015            break;
1016        case 0x2: /* Chip reset */
1017            ppc40x_chip_reset(env);
1018            break;
1019        case 0x3: /* System reset */
1020            ppc40x_system_reset(env);
1021            break;
1022        }
1023    }
1024}
1025
1026void store_40x_pit (CPUPPCState *env, target_ulong val)
1027{
1028    ppc_tb_t *tb_env;
1029    ppc40x_timer_t *ppc40x_timer;
1030
1031    tb_env = env->tb_env;
1032    ppc40x_timer = tb_env->opaque;
1033    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1034    ppc40x_timer->pit_reload = val;
1035    start_stop_pit(env, tb_env, 0);
1036}
1037
1038target_ulong load_40x_pit (CPUPPCState *env)
1039{
1040    return cpu_ppc_load_decr(env);
1041}
1042
1043static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1044{
1045    CPUPPCState *env = opaque;
1046    ppc_tb_t *tb_env = env->tb_env;
1047
1048    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1049                freq);
1050    tb_env->tb_freq = freq;
1051    tb_env->decr_freq = freq;
1052    /* XXX: we should also update all timers */
1053}
1054
1055clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1056                                  unsigned int decr_excp)
1057{
1058    ppc_tb_t *tb_env;
1059    ppc40x_timer_t *ppc40x_timer;
1060
1061    tb_env = g_malloc0(sizeof(ppc_tb_t));
1062    env->tb_env = tb_env;
1063    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1064    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1065    tb_env->tb_freq = freq;
1066    tb_env->decr_freq = freq;
1067    tb_env->opaque = ppc40x_timer;
1068    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1069    if (ppc40x_timer != NULL) {
1070        /* We use decr timer for PIT */
1071        tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1072        ppc40x_timer->fit_timer =
1073            qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1074        ppc40x_timer->wdt_timer =
1075            qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1076        ppc40x_timer->decr_excp = decr_excp;
1077    }
1078
1079    return &ppc_40x_set_tb_clk;
1080}
1081
1082/*****************************************************************************/
1083/* Embedded PowerPC Device Control Registers */
1084typedef struct ppc_dcrn_t ppc_dcrn_t;
1085struct ppc_dcrn_t {
1086    dcr_read_cb dcr_read;
1087    dcr_write_cb dcr_write;
1088    void *opaque;
1089};
1090
1091/* XXX: on 460, DCR addresses are 32 bits wide,
1092 *      using DCRIPR to get the 22 upper bits of the DCR address
1093 */
1094#define DCRN_NB 1024
1095struct ppc_dcr_t {
1096    ppc_dcrn_t dcrn[DCRN_NB];
1097    int (*read_error)(int dcrn);
1098    int (*write_error)(int dcrn);
1099};
1100
1101int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1102{
1103    ppc_dcrn_t *dcr;
1104
1105    if (dcrn < 0 || dcrn >= DCRN_NB)
1106        goto error;
1107    dcr = &dcr_env->dcrn[dcrn];
1108    if (dcr->dcr_read == NULL)
1109        goto error;
1110    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1111
1112    return 0;
1113
1114 error:
1115    if (dcr_env->read_error != NULL)
1116        return (*dcr_env->read_error)(dcrn);
1117
1118    return -1;
1119}
1120
1121int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1122{
1123    ppc_dcrn_t *dcr;
1124
1125    if (dcrn < 0 || dcrn >= DCRN_NB)
1126        goto error;
1127    dcr = &dcr_env->dcrn[dcrn];
1128    if (dcr->dcr_write == NULL)
1129        goto error;
1130    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1131
1132    return 0;
1133
1134 error:
1135    if (dcr_env->write_error != NULL)
1136        return (*dcr_env->write_error)(dcrn);
1137
1138    return -1;
1139}
1140
1141int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1142                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1143{
1144    ppc_dcr_t *dcr_env;
1145    ppc_dcrn_t *dcr;
1146
1147    dcr_env = env->dcr_env;
1148    if (dcr_env == NULL)
1149        return -1;
1150    if (dcrn < 0 || dcrn >= DCRN_NB)
1151        return -1;
1152    dcr = &dcr_env->dcrn[dcrn];
1153    if (dcr->opaque != NULL ||
1154        dcr->dcr_read != NULL ||
1155        dcr->dcr_write != NULL)
1156        return -1;
1157    dcr->opaque = opaque;
1158    dcr->dcr_read = dcr_read;
1159    dcr->dcr_write = dcr_write;
1160
1161    return 0;
1162}
1163
1164int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1165                  int (*write_error)(int dcrn))
1166{
1167    ppc_dcr_t *dcr_env;
1168
1169    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1170    dcr_env->read_error = read_error;
1171    dcr_env->write_error = write_error;
1172    env->dcr_env = dcr_env;
1173
1174    return 0;
1175}
1176
1177/*****************************************************************************/
1178/* Debug port */
1179void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1180{
1181    addr &= 0xF;
1182    switch (addr) {
1183    case 0:
1184        printf("%c", val);
1185        break;
1186    case 1:
1187        printf("\n");
1188        fflush(stdout);
1189        break;
1190    case 2:
1191        printf("Set loglevel to %04" PRIx32 "\n", val);
1192        cpu_set_log(val | 0x100);
1193        break;
1194    }
1195}
1196
1197/*****************************************************************************/
1198/* NVRAM helpers */
1199static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1200{
1201    return (*nvram->read_fn)(nvram->opaque, addr);
1202}
1203
1204static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1205{
1206    (*nvram->write_fn)(nvram->opaque, addr, val);
1207}
1208
1209static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1210{
1211    nvram_write(nvram, addr, value);
1212}
1213
1214static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1215{
1216    return nvram_read(nvram, addr);
1217}
1218
1219static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1220{
1221    nvram_write(nvram, addr, value >> 8);
1222    nvram_write(nvram, addr + 1, value & 0xFF);
1223}
1224
1225static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1226{
1227    uint16_t tmp;
1228
1229    tmp = nvram_read(nvram, addr) << 8;
1230    tmp |= nvram_read(nvram, addr + 1);
1231
1232    return tmp;
1233}
1234
1235static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1236{
1237    nvram_write(nvram, addr, value >> 24);
1238    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1239    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1240    nvram_write(nvram, addr + 3, value & 0xFF);
1241}
1242
1243uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1244{
1245    uint32_t tmp;
1246
1247    tmp = nvram_read(nvram, addr) << 24;
1248    tmp |= nvram_read(nvram, addr + 1) << 16;
1249    tmp |= nvram_read(nvram, addr + 2) << 8;
1250    tmp |= nvram_read(nvram, addr + 3);
1251
1252    return tmp;
1253}
1254
1255static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1256                             uint32_t max)
1257{
1258    int i;
1259
1260    for (i = 0; i < max && str[i] != '\0'; i++) {
1261        nvram_write(nvram, addr + i, str[i]);
1262    }
1263    nvram_write(nvram, addr + i, str[i]);
1264    nvram_write(nvram, addr + max - 1, '\0');
1265}
1266
1267int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1268{
1269    int i;
1270
1271    memset(dst, 0, max);
1272    for (i = 0; i < max; i++) {
1273        dst[i] = NVRAM_get_byte(nvram, addr + i);
1274        if (dst[i] == '\0')
1275            break;
1276    }
1277
1278    return i;
1279}
1280
1281static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1282{
1283    uint16_t tmp;
1284    uint16_t pd, pd1, pd2;
1285
1286    tmp = prev >> 8;
1287    pd = prev ^ value;
1288    pd1 = pd & 0x000F;
1289    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1290    tmp ^= (pd1 << 3) | (pd1 << 8);
1291    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1292
1293    return tmp;
1294}
1295
1296static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1297{
1298    uint32_t i;
1299    uint16_t crc = 0xFFFF;
1300    int odd;
1301
1302    odd = count & 1;
1303    count &= ~1;
1304    for (i = 0; i != count; i++) {
1305        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1306    }
1307    if (odd) {
1308        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1309    }
1310
1311    return crc;
1312}
1313
1314#define CMDLINE_ADDR 0x017ff000
1315
1316int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1317                          const char *arch,
1318                          uint32_t RAM_size, int boot_device,
1319                          uint32_t kernel_image, uint32_t kernel_size,
1320                          const char *cmdline,
1321                          uint32_t initrd_image, uint32_t initrd_size,
1322                          uint32_t NVRAM_image,
1323                          int width, int height, int depth)
1324{
1325    uint16_t crc;
1326
1327    /* Set parameters for Open Hack'Ware BIOS */
1328    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1329    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1330    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1331    NVRAM_set_string(nvram, 0x20, arch, 16);
1332    NVRAM_set_lword(nvram,  0x30, RAM_size);
1333    NVRAM_set_byte(nvram,   0x34, boot_device);
1334    NVRAM_set_lword(nvram,  0x38, kernel_image);
1335    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1336    if (cmdline) {
1337        /* XXX: put the cmdline in NVRAM too ? */
1338        pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1339        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1340        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1341    } else {
1342        NVRAM_set_lword(nvram,  0x40, 0);
1343        NVRAM_set_lword(nvram,  0x44, 0);
1344    }
1345    NVRAM_set_lword(nvram,  0x48, initrd_image);
1346    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1347    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1348
1349    NVRAM_set_word(nvram,   0x54, width);
1350    NVRAM_set_word(nvram,   0x56, height);
1351    NVRAM_set_word(nvram,   0x58, depth);
1352    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1353    NVRAM_set_word(nvram,   0xFC, crc);
1354
1355    return 0;
1356}
1357