qemu/include/qom/object.h
<<
>>
Prefs
   1/*
   2 * QEMU Object Model
   3 *
   4 * Copyright IBM, Corp. 2011
   5 *
   6 * Authors:
   7 *  Anthony Liguori   <aliguori@us.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef QEMU_OBJECT_H
  15#define QEMU_OBJECT_H
  16
  17#include <glib.h>
  18#include <stdint.h>
  19#include <stdbool.h>
  20#include "qemu/queue.h"
  21
  22struct Visitor;
  23struct Error;
  24
  25struct TypeImpl;
  26typedef struct TypeImpl *Type;
  27
  28typedef struct ObjectClass ObjectClass;
  29typedef struct Object Object;
  30
  31typedef struct TypeInfo TypeInfo;
  32
  33typedef struct InterfaceClass InterfaceClass;
  34typedef struct InterfaceInfo InterfaceInfo;
  35
  36#define TYPE_OBJECT "object"
  37
  38/**
  39 * SECTION:object.h
  40 * @title:Base Object Type System
  41 * @short_description: interfaces for creating new types and objects
  42 *
  43 * The QEMU Object Model provides a framework for registering user creatable
  44 * types and instantiating objects from those types.  QOM provides the following
  45 * features:
  46 *
  47 *  - System for dynamically registering types
  48 *  - Support for single-inheritance of types
  49 *  - Multiple inheritance of stateless interfaces
  50 *
  51 * <example>
  52 *   <title>Creating a minimal type</title>
  53 *   <programlisting>
  54 * #include "qdev.h"
  55 *
  56 * #define TYPE_MY_DEVICE "my-device"
  57 *
  58 * // No new virtual functions: we can reuse the typedef for the
  59 * // superclass.
  60 * typedef DeviceClass MyDeviceClass;
  61 * typedef struct MyDevice
  62 * {
  63 *     DeviceState parent;
  64 *
  65 *     int reg0, reg1, reg2;
  66 * } MyDevice;
  67 *
  68 * static const TypeInfo my_device_info = {
  69 *     .name = TYPE_MY_DEVICE,
  70 *     .parent = TYPE_DEVICE,
  71 *     .instance_size = sizeof(MyDevice),
  72 * };
  73 *
  74 * static void my_device_register_types(void)
  75 * {
  76 *     type_register_static(&my_device_info);
  77 * }
  78 *
  79 * type_init(my_device_register_types)
  80 *   </programlisting>
  81 * </example>
  82 *
  83 * In the above example, we create a simple type that is described by #TypeInfo.
  84 * #TypeInfo describes information about the type including what it inherits
  85 * from, the instance and class size, and constructor/destructor hooks.
  86 *
  87 * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
  88 * are instantiated dynamically but there is only ever one instance for any
  89 * given type.  The #ObjectClass typically holds a table of function pointers
  90 * for the virtual methods implemented by this type.
  91 *
  92 * Using object_new(), a new #Object derivative will be instantiated.  You can
  93 * cast an #Object to a subclass (or base-class) type using
  94 * object_dynamic_cast().  You typically want to define macro wrappers around
  95 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
  96 * specific type:
  97 *
  98 * <example>
  99 *   <title>Typecasting macros</title>
 100 *   <programlisting>
 101 *    #define MY_DEVICE_GET_CLASS(obj) \
 102 *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
 103 *    #define MY_DEVICE_CLASS(klass) \
 104 *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
 105 *    #define MY_DEVICE(obj) \
 106 *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
 107 *   </programlisting>
 108 * </example>
 109 *
 110 * # Class Initialization #
 111 *
 112 * Before an object is initialized, the class for the object must be
 113 * initialized.  There is only one class object for all instance objects
 114 * that is created lazily.
 115 *
 116 * Classes are initialized by first initializing any parent classes (if
 117 * necessary).  After the parent class object has initialized, it will be
 118 * copied into the current class object and any additional storage in the
 119 * class object is zero filled.
 120 *
 121 * The effect of this is that classes automatically inherit any virtual
 122 * function pointers that the parent class has already initialized.  All
 123 * other fields will be zero filled.
 124 *
 125 * Once all of the parent classes have been initialized, #TypeInfo::class_init
 126 * is called to let the class being instantiated provide default initialize for
 127 * its virtual functions.  Here is how the above example might be modified
 128 * to introduce an overridden virtual function:
 129 *
 130 * <example>
 131 *   <title>Overriding a virtual function</title>
 132 *   <programlisting>
 133 * #include "qdev.h"
 134 *
 135 * void my_device_class_init(ObjectClass *klass, void *class_data)
 136 * {
 137 *     DeviceClass *dc = DEVICE_CLASS(klass);
 138 *     dc->reset = my_device_reset;
 139 * }
 140 *
 141 * static const TypeInfo my_device_info = {
 142 *     .name = TYPE_MY_DEVICE,
 143 *     .parent = TYPE_DEVICE,
 144 *     .instance_size = sizeof(MyDevice),
 145 *     .class_init = my_device_class_init,
 146 * };
 147 *   </programlisting>
 148 * </example>
 149 *
 150 * Introducing new virtual methods requires a class to define its own
 151 * struct and to add a .class_size member to the #TypeInfo.  Each method
 152 * will also have a wrapper function to call it easily:
 153 *
 154 * <example>
 155 *   <title>Defining an abstract class</title>
 156 *   <programlisting>
 157 * #include "qdev.h"
 158 *
 159 * typedef struct MyDeviceClass
 160 * {
 161 *     DeviceClass parent;
 162 *
 163 *     void (*frobnicate) (MyDevice *obj);
 164 * } MyDeviceClass;
 165 *
 166 * static const TypeInfo my_device_info = {
 167 *     .name = TYPE_MY_DEVICE,
 168 *     .parent = TYPE_DEVICE,
 169 *     .instance_size = sizeof(MyDevice),
 170 *     .abstract = true, // or set a default in my_device_class_init
 171 *     .class_size = sizeof(MyDeviceClass),
 172 * };
 173 *
 174 * void my_device_frobnicate(MyDevice *obj)
 175 * {
 176 *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
 177 *
 178 *     klass->frobnicate(obj);
 179 * }
 180 *   </programlisting>
 181 * </example>
 182 *
 183 * # Interfaces #
 184 *
 185 * Interfaces allow a limited form of multiple inheritance.  Instances are
 186 * similar to normal types except for the fact that are only defined by
 187 * their classes and never carry any state.  You can dynamically cast an object
 188 * to one of its #Interface types and vice versa.
 189 *
 190 * # Methods #
 191 *
 192 * A <emphasis>method</emphasis> is a function within the namespace scope of
 193 * a class. It usually operates on the object instance by passing it as a
 194 * strongly-typed first argument.
 195 * If it does not operate on an object instance, it is dubbed
 196 * <emphasis>class method</emphasis>.
 197 *
 198 * Methods cannot be overloaded. That is, the #ObjectClass and method name
 199 * uniquely identity the function to be called; the signature does not vary
 200 * except for trailing varargs.
 201 *
 202 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
 203 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
 204 * via OBJECT_GET_CLASS() accessing the overridden function.
 205 * The original function is not automatically invoked. It is the responsability
 206 * of the overriding class to determine whether and when to invoke the method
 207 * being overridden.
 208 *
 209 * To invoke the method being overridden, the preferred solution is to store
 210 * the original value in the overriding class before overriding the method.
 211 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
 212 * respectively; this frees the overriding class from hardcoding its parent
 213 * class, which someone might choose to change at some point.
 214 *
 215 * <example>
 216 *   <title>Overriding a virtual method</title>
 217 *   <programlisting>
 218 * typedef struct MyState MyState;
 219 *
 220 * typedef void (*MyDoSomething)(MyState *obj);
 221 *
 222 * typedef struct MyClass {
 223 *     ObjectClass parent_class;
 224 *
 225 *     MyDoSomething do_something;
 226 * } MyClass;
 227 *
 228 * static void my_do_something(MyState *obj)
 229 * {
 230 *     // do something
 231 * }
 232 *
 233 * static void my_class_init(ObjectClass *oc, void *data)
 234 * {
 235 *     MyClass *mc = MY_CLASS(oc);
 236 *
 237 *     mc->do_something = my_do_something;
 238 * }
 239 *
 240 * static const TypeInfo my_type_info = {
 241 *     .name = TYPE_MY,
 242 *     .parent = TYPE_OBJECT,
 243 *     .instance_size = sizeof(MyState),
 244 *     .class_size = sizeof(MyClass),
 245 *     .class_init = my_class_init,
 246 * };
 247 *
 248 * typedef struct DerivedClass {
 249 *     MyClass parent_class;
 250 *
 251 *     MyDoSomething parent_do_something;
 252 * } MyClass;
 253 *
 254 * static void derived_do_something(MyState *obj)
 255 * {
 256 *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
 257 *
 258 *     // do something here
 259 *     dc->parent_do_something(obj);
 260 *     // do something else here
 261 * }
 262 *
 263 * static void derived_class_init(ObjectClass *oc, void *data)
 264 * {
 265 *     MyClass *mc = MY_CLASS(oc);
 266 *     DerivedClass *dc = DERIVED_CLASS(oc);
 267 *
 268 *     dc->parent_do_something = mc->do_something;
 269 *     mc->do_something = derived_do_something;
 270 * }
 271 *
 272 * static const TypeInfo derived_type_info = {
 273 *     .name = TYPE_DERIVED,
 274 *     .parent = TYPE_MY,
 275 *     .class_size = sizeof(DerivedClass),
 276 *     .class_init = my_class_init,
 277 * };
 278 *   </programlisting>
 279 * </example>
 280 *
 281 * Alternatively, object_class_by_name() can be used to obtain the class and
 282 * its non-overridden methods for a specific type. This would correspond to
 283 * |[ MyClass::method(...) ]| in C++.
 284 *
 285 * The first example of such a QOM method was #CPUClass.reset,
 286 * another example is #DeviceClass.realize.
 287 */
 288
 289
 290/**
 291 * ObjectPropertyAccessor:
 292 * @obj: the object that owns the property
 293 * @v: the visitor that contains the property data
 294 * @opaque: the object property opaque
 295 * @name: the name of the property
 296 * @errp: a pointer to an Error that is filled if getting/setting fails.
 297 *
 298 * Called when trying to get/set a property.
 299 */
 300typedef void (ObjectPropertyAccessor)(Object *obj,
 301                                      struct Visitor *v,
 302                                      void *opaque,
 303                                      const char *name,
 304                                      struct Error **errp);
 305
 306/**
 307 * ObjectPropertyRelease:
 308 * @obj: the object that owns the property
 309 * @name: the name of the property
 310 * @opaque: the opaque registered with the property
 311 *
 312 * Called when a property is removed from a object.
 313 */
 314typedef void (ObjectPropertyRelease)(Object *obj,
 315                                     const char *name,
 316                                     void *opaque);
 317
 318typedef struct ObjectProperty
 319{
 320    gchar *name;
 321    gchar *type;
 322    ObjectPropertyAccessor *get;
 323    ObjectPropertyAccessor *set;
 324    ObjectPropertyRelease *release;
 325    void *opaque;
 326
 327    QTAILQ_ENTRY(ObjectProperty) node;
 328} ObjectProperty;
 329
 330/**
 331 * ObjectUnparent:
 332 * @obj: the object that is being removed from the composition tree
 333 *
 334 * Called when an object is being removed from the QOM composition tree.
 335 * The function should remove any backlinks from children objects to @obj.
 336 */
 337typedef void (ObjectUnparent)(Object *obj);
 338
 339/**
 340 * ObjectFree:
 341 * @obj: the object being freed
 342 *
 343 * Called when an object's last reference is removed.
 344 */
 345typedef void (ObjectFree)(void *obj);
 346
 347/**
 348 * ObjectClass:
 349 *
 350 * The base for all classes.  The only thing that #ObjectClass contains is an
 351 * integer type handle.
 352 */
 353struct ObjectClass
 354{
 355    /*< private >*/
 356    Type type;
 357    GSList *interfaces;
 358
 359    ObjectUnparent *unparent;
 360};
 361
 362/**
 363 * Object:
 364 *
 365 * The base for all objects.  The first member of this object is a pointer to
 366 * a #ObjectClass.  Since C guarantees that the first member of a structure
 367 * always begins at byte 0 of that structure, as long as any sub-object places
 368 * its parent as the first member, we can cast directly to a #Object.
 369 *
 370 * As a result, #Object contains a reference to the objects type as its
 371 * first member.  This allows identification of the real type of the object at
 372 * run time.
 373 *
 374 * #Object also contains a list of #Interfaces that this object
 375 * implements.
 376 */
 377struct Object
 378{
 379    /*< private >*/
 380    ObjectClass *class;
 381    ObjectFree *free;
 382    QTAILQ_HEAD(, ObjectProperty) properties;
 383    uint32_t ref;
 384    Object *parent;
 385};
 386
 387/**
 388 * TypeInfo:
 389 * @name: The name of the type.
 390 * @parent: The name of the parent type.
 391 * @instance_size: The size of the object (derivative of #Object).  If
 392 *   @instance_size is 0, then the size of the object will be the size of the
 393 *   parent object.
 394 * @instance_init: This function is called to initialize an object.  The parent
 395 *   class will have already been initialized so the type is only responsible
 396 *   for initializing its own members.
 397 * @instance_finalize: This function is called during object destruction.  This
 398 *   is called before the parent @instance_finalize function has been called.
 399 *   An object should only free the members that are unique to its type in this
 400 *   function.
 401 * @abstract: If this field is true, then the class is considered abstract and
 402 *   cannot be directly instantiated.
 403 * @class_size: The size of the class object (derivative of #ObjectClass)
 404 *   for this object.  If @class_size is 0, then the size of the class will be
 405 *   assumed to be the size of the parent class.  This allows a type to avoid
 406 *   implementing an explicit class type if they are not adding additional
 407 *   virtual functions.
 408 * @class_init: This function is called after all parent class initialization
 409 *   has occurred to allow a class to set its default virtual method pointers.
 410 *   This is also the function to use to override virtual methods from a parent
 411 *   class.
 412 * @class_base_init: This function is called for all base classes after all
 413 *   parent class initialization has occurred, but before the class itself
 414 *   is initialized.  This is the function to use to undo the effects of
 415 *   memcpy from the parent class to the descendents.
 416 * @class_finalize: This function is called during class destruction and is
 417 *   meant to release and dynamic parameters allocated by @class_init.
 418 * @class_data: Data to pass to the @class_init, @class_base_init and
 419 *   @class_finalize functions.  This can be useful when building dynamic
 420 *   classes.
 421 * @interfaces: The list of interfaces associated with this type.  This
 422 *   should point to a static array that's terminated with a zero filled
 423 *   element.
 424 */
 425struct TypeInfo
 426{
 427    const char *name;
 428    const char *parent;
 429
 430    size_t instance_size;
 431    void (*instance_init)(Object *obj);
 432    void (*instance_finalize)(Object *obj);
 433
 434    bool abstract;
 435    size_t class_size;
 436
 437    void (*class_init)(ObjectClass *klass, void *data);
 438    void (*class_base_init)(ObjectClass *klass, void *data);
 439    void (*class_finalize)(ObjectClass *klass, void *data);
 440    void *class_data;
 441
 442    InterfaceInfo *interfaces;
 443};
 444
 445/**
 446 * OBJECT:
 447 * @obj: A derivative of #Object
 448 *
 449 * Converts an object to a #Object.  Since all objects are #Objects,
 450 * this function will always succeed.
 451 */
 452#define OBJECT(obj) \
 453    ((Object *)(obj))
 454
 455/**
 456 * OBJECT_CLASS:
 457 * @class: A derivative of #ObjectClass.
 458 *
 459 * Converts a class to an #ObjectClass.  Since all objects are #Objects,
 460 * this function will always succeed.
 461 */
 462#define OBJECT_CLASS(class) \
 463    ((ObjectClass *)(class))
 464
 465/**
 466 * OBJECT_CHECK:
 467 * @type: The C type to use for the return value.
 468 * @obj: A derivative of @type to cast.
 469 * @name: The QOM typename of @type
 470 *
 471 * A type safe version of @object_dynamic_cast_assert.  Typically each class
 472 * will define a macro based on this type to perform type safe dynamic_casts to
 473 * this object type.
 474 *
 475 * If an invalid object is passed to this function, a run time assert will be
 476 * generated.
 477 */
 478#define OBJECT_CHECK(type, obj, name) \
 479    ((type *)object_dynamic_cast_assert(OBJECT(obj), (name)))
 480
 481/**
 482 * OBJECT_CLASS_CHECK:
 483 * @class: The C type to use for the return value.
 484 * @obj: A derivative of @type to cast.
 485 * @name: the QOM typename of @class.
 486 *
 487 * A type safe version of @object_class_dynamic_cast_assert.  This macro is
 488 * typically wrapped by each type to perform type safe casts of a class to a
 489 * specific class type.
 490 */
 491#define OBJECT_CLASS_CHECK(class, obj, name) \
 492    ((class *)object_class_dynamic_cast_assert(OBJECT_CLASS(obj), (name)))
 493
 494/**
 495 * OBJECT_GET_CLASS:
 496 * @class: The C type to use for the return value.
 497 * @obj: The object to obtain the class for.
 498 * @name: The QOM typename of @obj.
 499 *
 500 * This function will return a specific class for a given object.  Its generally
 501 * used by each type to provide a type safe macro to get a specific class type
 502 * from an object.
 503 */
 504#define OBJECT_GET_CLASS(class, obj, name) \
 505    OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
 506
 507/**
 508 * InterfaceInfo:
 509 * @type: The name of the interface.
 510 *
 511 * The information associated with an interface.
 512 */
 513struct InterfaceInfo {
 514    const char *type;
 515};
 516
 517/**
 518 * InterfaceClass:
 519 * @parent_class: the base class
 520 *
 521 * The class for all interfaces.  Subclasses of this class should only add
 522 * virtual methods.
 523 */
 524struct InterfaceClass
 525{
 526    ObjectClass parent_class;
 527    /*< private >*/
 528    ObjectClass *concrete_class;
 529};
 530
 531#define TYPE_INTERFACE "interface"
 532
 533/**
 534 * INTERFACE_CLASS:
 535 * @klass: class to cast from
 536 * Returns: An #InterfaceClass or raise an error if cast is invalid
 537 */
 538#define INTERFACE_CLASS(klass) \
 539    OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
 540
 541/**
 542 * INTERFACE_CHECK:
 543 * @interface: the type to return
 544 * @obj: the object to convert to an interface
 545 * @name: the interface type name
 546 *
 547 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
 548 */
 549#define INTERFACE_CHECK(interface, obj, name) \
 550    ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name)))
 551
 552/**
 553 * object_new:
 554 * @typename: The name of the type of the object to instantiate.
 555 *
 556 * This function will initialize a new object using heap allocated memory.
 557 * The returned object has a reference count of 1, and will be freed when
 558 * the last reference is dropped.
 559 *
 560 * Returns: The newly allocated and instantiated object.
 561 */
 562Object *object_new(const char *typename);
 563
 564/**
 565 * object_new_with_type:
 566 * @type: The type of the object to instantiate.
 567 *
 568 * This function will initialize a new object using heap allocated memory.
 569 * The returned object has a reference count of 1, and will be freed when
 570 * the last reference is dropped.
 571 *
 572 * Returns: The newly allocated and instantiated object.
 573 */
 574Object *object_new_with_type(Type type);
 575
 576/**
 577 * object_initialize_with_type:
 578 * @obj: A pointer to the memory to be used for the object.
 579 * @type: The type of the object to instantiate.
 580 *
 581 * This function will initialize an object.  The memory for the object should
 582 * have already been allocated.  The returned object has a reference count of 1,
 583 * and will be finalized when the last reference is dropped.
 584 */
 585void object_initialize_with_type(void *data, Type type);
 586
 587/**
 588 * object_initialize:
 589 * @obj: A pointer to the memory to be used for the object.
 590 * @typename: The name of the type of the object to instantiate.
 591 *
 592 * This function will initialize an object.  The memory for the object should
 593 * have already been allocated.  The returned object has a reference count of 1,
 594 * and will be finalized when the last reference is dropped.
 595 */
 596void object_initialize(void *obj, const char *typename);
 597
 598/**
 599 * object_dynamic_cast:
 600 * @obj: The object to cast.
 601 * @typename: The @typename to cast to.
 602 *
 603 * This function will determine if @obj is-a @typename.  @obj can refer to an
 604 * object or an interface associated with an object.
 605 *
 606 * Returns: This function returns @obj on success or #NULL on failure.
 607 */
 608Object *object_dynamic_cast(Object *obj, const char *typename);
 609
 610/**
 611 * object_dynamic_cast_assert:
 612 *
 613 * See object_dynamic_cast() for a description of the parameters of this
 614 * function.  The only difference in behavior is that this function asserts
 615 * instead of returning #NULL on failure.
 616 */
 617Object *object_dynamic_cast_assert(Object *obj, const char *typename);
 618
 619/**
 620 * object_get_class:
 621 * @obj: A derivative of #Object
 622 *
 623 * Returns: The #ObjectClass of the type associated with @obj.
 624 */
 625ObjectClass *object_get_class(Object *obj);
 626
 627/**
 628 * object_get_typename:
 629 * @obj: A derivative of #Object.
 630 *
 631 * Returns: The QOM typename of @obj.
 632 */
 633const char *object_get_typename(Object *obj);
 634
 635/**
 636 * type_register_static:
 637 * @info: The #TypeInfo of the new type.
 638 *
 639 * @info and all of the strings it points to should exist for the life time
 640 * that the type is registered.
 641 *
 642 * Returns: 0 on failure, the new #Type on success.
 643 */
 644Type type_register_static(const TypeInfo *info);
 645
 646/**
 647 * type_register:
 648 * @info: The #TypeInfo of the new type
 649 *
 650 * Unlike type_register_static(), this call does not require @info or its
 651 * string members to continue to exist after the call returns.
 652 *
 653 * Returns: 0 on failure, the new #Type on success.
 654 */
 655Type type_register(const TypeInfo *info);
 656
 657/**
 658 * object_class_dynamic_cast_assert:
 659 * @klass: The #ObjectClass to attempt to cast.
 660 * @typename: The QOM typename of the class to cast to.
 661 *
 662 * Returns: This function always returns @klass and asserts on failure.
 663 */
 664ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
 665                                              const char *typename);
 666
 667ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
 668                                       const char *typename);
 669
 670/**
 671 * object_class_get_parent:
 672 * @klass: The class to obtain the parent for.
 673 *
 674 * Returns: The parent for @klass or %NULL if none.
 675 */
 676ObjectClass *object_class_get_parent(ObjectClass *klass);
 677
 678/**
 679 * object_class_get_name:
 680 * @klass: The class to obtain the QOM typename for.
 681 *
 682 * Returns: The QOM typename for @klass.
 683 */
 684const char *object_class_get_name(ObjectClass *klass);
 685
 686/**
 687 * object_class_is_abstract:
 688 * @klass: The class to obtain the abstractness for.
 689 *
 690 * Returns: %true if @klass is abstract, %false otherwise.
 691 */
 692bool object_class_is_abstract(ObjectClass *klass);
 693
 694/**
 695 * object_class_by_name:
 696 * @typename: The QOM typename to obtain the class for.
 697 *
 698 * Returns: The class for @typename or %NULL if not found.
 699 */
 700ObjectClass *object_class_by_name(const char *typename);
 701
 702void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
 703                          const char *implements_type, bool include_abstract,
 704                          void *opaque);
 705
 706/**
 707 * object_class_get_list:
 708 * @implements_type: The type to filter for, including its derivatives.
 709 * @include_abstract: Whether to include abstract classes.
 710 *
 711 * Returns: A singly-linked list of the classes in reverse hashtable order.
 712 */
 713GSList *object_class_get_list(const char *implements_type,
 714                              bool include_abstract);
 715
 716/**
 717 * object_ref:
 718 * @obj: the object
 719 *
 720 * Increase the reference count of a object.  A object cannot be freed as long
 721 * as its reference count is greater than zero.
 722 */
 723void object_ref(Object *obj);
 724
 725/**
 726 * qdef_unref:
 727 * @obj: the object
 728 *
 729 * Decrease the reference count of a object.  A object cannot be freed as long
 730 * as its reference count is greater than zero.
 731 */
 732void object_unref(Object *obj);
 733
 734/**
 735 * object_property_add:
 736 * @obj: the object to add a property to
 737 * @name: the name of the property.  This can contain any character except for
 738 *  a forward slash.  In general, you should use hyphens '-' instead of
 739 *  underscores '_' when naming properties.
 740 * @type: the type name of the property.  This namespace is pretty loosely
 741 *   defined.  Sub namespaces are constructed by using a prefix and then
 742 *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
 743 *   'link' namespace would be 'link<virtio-net-pci>'.
 744 * @get: The getter to be called to read a property.  If this is NULL, then
 745 *   the property cannot be read.
 746 * @set: the setter to be called to write a property.  If this is NULL,
 747 *   then the property cannot be written.
 748 * @release: called when the property is removed from the object.  This is
 749 *   meant to allow a property to free its opaque upon object
 750 *   destruction.  This may be NULL.
 751 * @opaque: an opaque pointer to pass to the callbacks for the property
 752 * @errp: returns an error if this function fails
 753 */
 754void object_property_add(Object *obj, const char *name, const char *type,
 755                         ObjectPropertyAccessor *get,
 756                         ObjectPropertyAccessor *set,
 757                         ObjectPropertyRelease *release,
 758                         void *opaque, struct Error **errp);
 759
 760void object_property_del(Object *obj, const char *name, struct Error **errp);
 761
 762/**
 763 * object_property_find:
 764 * @obj: the object
 765 * @name: the name of the property
 766 * @errp: returns an error if this function fails
 767 *
 768 * Look up a property for an object and return its #ObjectProperty if found.
 769 */
 770ObjectProperty *object_property_find(Object *obj, const char *name,
 771                                     struct Error **errp);
 772
 773void object_unparent(Object *obj);
 774
 775/**
 776 * object_property_get:
 777 * @obj: the object
 778 * @v: the visitor that will receive the property value.  This should be an
 779 *   Output visitor and the data will be written with @name as the name.
 780 * @name: the name of the property
 781 * @errp: returns an error if this function fails
 782 *
 783 * Reads a property from a object.
 784 */
 785void object_property_get(Object *obj, struct Visitor *v, const char *name,
 786                         struct Error **errp);
 787
 788/**
 789 * object_property_set_str:
 790 * @value: the value to be written to the property
 791 * @name: the name of the property
 792 * @errp: returns an error if this function fails
 793 *
 794 * Writes a string value to a property.
 795 */
 796void object_property_set_str(Object *obj, const char *value,
 797                             const char *name, struct Error **errp);
 798
 799/**
 800 * object_property_get_str:
 801 * @obj: the object
 802 * @name: the name of the property
 803 * @errp: returns an error if this function fails
 804 *
 805 * Returns: the value of the property, converted to a C string, or NULL if
 806 * an error occurs (including when the property value is not a string).
 807 * The caller should free the string.
 808 */
 809char *object_property_get_str(Object *obj, const char *name,
 810                              struct Error **errp);
 811
 812/**
 813 * object_property_set_link:
 814 * @value: the value to be written to the property
 815 * @name: the name of the property
 816 * @errp: returns an error if this function fails
 817 *
 818 * Writes an object's canonical path to a property.
 819 */
 820void object_property_set_link(Object *obj, Object *value,
 821                              const char *name, struct Error **errp);
 822
 823/**
 824 * object_property_get_link:
 825 * @obj: the object
 826 * @name: the name of the property
 827 * @errp: returns an error if this function fails
 828 *
 829 * Returns: the value of the property, resolved from a path to an Object,
 830 * or NULL if an error occurs (including when the property value is not a
 831 * string or not a valid object path).
 832 */
 833Object *object_property_get_link(Object *obj, const char *name,
 834                                 struct Error **errp);
 835
 836/**
 837 * object_property_set_bool:
 838 * @value: the value to be written to the property
 839 * @name: the name of the property
 840 * @errp: returns an error if this function fails
 841 *
 842 * Writes a bool value to a property.
 843 */
 844void object_property_set_bool(Object *obj, bool value,
 845                              const char *name, struct Error **errp);
 846
 847/**
 848 * object_property_get_bool:
 849 * @obj: the object
 850 * @name: the name of the property
 851 * @errp: returns an error if this function fails
 852 *
 853 * Returns: the value of the property, converted to a boolean, or NULL if
 854 * an error occurs (including when the property value is not a bool).
 855 */
 856bool object_property_get_bool(Object *obj, const char *name,
 857                              struct Error **errp);
 858
 859/**
 860 * object_property_set_int:
 861 * @value: the value to be written to the property
 862 * @name: the name of the property
 863 * @errp: returns an error if this function fails
 864 *
 865 * Writes an integer value to a property.
 866 */
 867void object_property_set_int(Object *obj, int64_t value,
 868                             const char *name, struct Error **errp);
 869
 870/**
 871 * object_property_get_int:
 872 * @obj: the object
 873 * @name: the name of the property
 874 * @errp: returns an error if this function fails
 875 *
 876 * Returns: the value of the property, converted to an integer, or NULL if
 877 * an error occurs (including when the property value is not an integer).
 878 */
 879int64_t object_property_get_int(Object *obj, const char *name,
 880                                struct Error **errp);
 881
 882/**
 883 * object_property_set:
 884 * @obj: the object
 885 * @v: the visitor that will be used to write the property value.  This should
 886 *   be an Input visitor and the data will be first read with @name as the
 887 *   name and then written as the property value.
 888 * @name: the name of the property
 889 * @errp: returns an error if this function fails
 890 *
 891 * Writes a property to a object.
 892 */
 893void object_property_set(Object *obj, struct Visitor *v, const char *name,
 894                         struct Error **errp);
 895
 896/**
 897 * object_property_parse:
 898 * @obj: the object
 899 * @string: the string that will be used to parse the property value.
 900 * @name: the name of the property
 901 * @errp: returns an error if this function fails
 902 *
 903 * Parses a string and writes the result into a property of an object.
 904 */
 905void object_property_parse(Object *obj, const char *string,
 906                           const char *name, struct Error **errp);
 907
 908/**
 909 * object_property_print:
 910 * @obj: the object
 911 * @name: the name of the property
 912 * @errp: returns an error if this function fails
 913 *
 914 * Returns a string representation of the value of the property.  The
 915 * caller shall free the string.
 916 */
 917char *object_property_print(Object *obj, const char *name,
 918                            struct Error **errp);
 919
 920/**
 921 * object_property_get_type:
 922 * @obj: the object
 923 * @name: the name of the property
 924 * @errp: returns an error if this function fails
 925 *
 926 * Returns:  The type name of the property.
 927 */
 928const char *object_property_get_type(Object *obj, const char *name,
 929                                     struct Error **errp);
 930
 931/**
 932 * object_get_root:
 933 *
 934 * Returns: the root object of the composition tree
 935 */
 936Object *object_get_root(void);
 937
 938/**
 939 * object_get_canonical_path:
 940 *
 941 * Returns: The canonical path for a object.  This is the path within the
 942 * composition tree starting from the root.
 943 */
 944gchar *object_get_canonical_path(Object *obj);
 945
 946/**
 947 * object_resolve_path:
 948 * @path: the path to resolve
 949 * @ambiguous: returns true if the path resolution failed because of an
 950 *   ambiguous match
 951 *
 952 * There are two types of supported paths--absolute paths and partial paths.
 953 * 
 954 * Absolute paths are derived from the root object and can follow child<> or
 955 * link<> properties.  Since they can follow link<> properties, they can be
 956 * arbitrarily long.  Absolute paths look like absolute filenames and are
 957 * prefixed with a leading slash.
 958 * 
 959 * Partial paths look like relative filenames.  They do not begin with a
 960 * prefix.  The matching rules for partial paths are subtle but designed to make
 961 * specifying objects easy.  At each level of the composition tree, the partial
 962 * path is matched as an absolute path.  The first match is not returned.  At
 963 * least two matches are searched for.  A successful result is only returned if
 964 * only one match is found.  If more than one match is found, a flag is
 965 * returned to indicate that the match was ambiguous.
 966 *
 967 * Returns: The matched object or NULL on path lookup failure.
 968 */
 969Object *object_resolve_path(const char *path, bool *ambiguous);
 970
 971/**
 972 * object_resolve_path_type:
 973 * @path: the path to resolve
 974 * @typename: the type to look for.
 975 * @ambiguous: returns true if the path resolution failed because of an
 976 *   ambiguous match
 977 *
 978 * This is similar to object_resolve_path.  However, when looking for a
 979 * partial path only matches that implement the given type are considered.
 980 * This restricts the search and avoids spuriously flagging matches as
 981 * ambiguous.
 982 *
 983 * For both partial and absolute paths, the return value goes through
 984 * a dynamic cast to @typename.  This is important if either the link,
 985 * or the typename itself are of interface types.
 986 *
 987 * Returns: The matched object or NULL on path lookup failure.
 988 */
 989Object *object_resolve_path_type(const char *path, const char *typename,
 990                                 bool *ambiguous);
 991
 992/**
 993 * object_resolve_path_component:
 994 * @parent: the object in which to resolve the path
 995 * @part: the component to resolve.
 996 *
 997 * This is similar to object_resolve_path with an absolute path, but it
 998 * only resolves one element (@part) and takes the others from @parent.
 999 *
1000 * Returns: The resolved object or NULL on path lookup failure.
1001 */
1002Object *object_resolve_path_component(Object *parent, const gchar *part);
1003
1004/**
1005 * object_property_add_child:
1006 * @obj: the object to add a property to
1007 * @name: the name of the property
1008 * @child: the child object
1009 * @errp: if an error occurs, a pointer to an area to store the area
1010 *
1011 * Child properties form the composition tree.  All objects need to be a child
1012 * of another object.  Objects can only be a child of one object.
1013 *
1014 * There is no way for a child to determine what its parent is.  It is not
1015 * a bidirectional relationship.  This is by design.
1016 *
1017 * The value of a child property as a C string will be the child object's
1018 * canonical path. It can be retrieved using object_property_get_str().
1019 * The child object itself can be retrieved using object_property_get_link().
1020 */
1021void object_property_add_child(Object *obj, const char *name,
1022                               Object *child, struct Error **errp);
1023
1024/**
1025 * object_property_add_link:
1026 * @obj: the object to add a property to
1027 * @name: the name of the property
1028 * @type: the qobj type of the link
1029 * @child: a pointer to where the link object reference is stored
1030 * @errp: if an error occurs, a pointer to an area to store the area
1031 *
1032 * Links establish relationships between objects.  Links are unidirectional
1033 * although two links can be combined to form a bidirectional relationship
1034 * between objects.
1035 *
1036 * Links form the graph in the object model.
1037 *
1038 * Ownership of the pointer that @child points to is transferred to the
1039 * link property.  The reference count for <code>*@child</code> is
1040 * managed by the property from after the function returns till the
1041 * property is deleted with object_property_del().
1042 */
1043void object_property_add_link(Object *obj, const char *name,
1044                              const char *type, Object **child,
1045                              struct Error **errp);
1046
1047/**
1048 * object_property_add_str:
1049 * @obj: the object to add a property to
1050 * @name: the name of the property
1051 * @get: the getter or NULL if the property is write-only.  This function must
1052 *   return a string to be freed by g_free().
1053 * @set: the setter or NULL if the property is read-only
1054 * @errp: if an error occurs, a pointer to an area to store the error
1055 *
1056 * Add a string property using getters/setters.  This function will add a
1057 * property of type 'string'.
1058 */
1059void object_property_add_str(Object *obj, const char *name,
1060                             char *(*get)(Object *, struct Error **),
1061                             void (*set)(Object *, const char *, struct Error **),
1062                             struct Error **errp);
1063
1064/**
1065 * object_property_add_bool:
1066 * @obj: the object to add a property to
1067 * @name: the name of the property
1068 * @get: the getter or NULL if the property is write-only.
1069 * @set: the setter or NULL if the property is read-only
1070 * @errp: if an error occurs, a pointer to an area to store the error
1071 *
1072 * Add a bool property using getters/setters.  This function will add a
1073 * property of type 'bool'.
1074 */
1075void object_property_add_bool(Object *obj, const char *name,
1076                              bool (*get)(Object *, struct Error **),
1077                              void (*set)(Object *, bool, struct Error **),
1078                              struct Error **errp);
1079
1080/**
1081 * object_child_foreach:
1082 * @obj: the object whose children will be navigated
1083 * @fn: the iterator function to be called
1084 * @opaque: an opaque value that will be passed to the iterator
1085 *
1086 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1087 * non-zero.
1088 *
1089 * Returns: The last value returned by @fn, or 0 if there is no child.
1090 */
1091int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1092                         void *opaque);
1093
1094/**
1095 * container_get:
1096 * @root: root of the #path, e.g., object_get_root()
1097 * @path: path to the container
1098 *
1099 * Return a container object whose path is @path.  Create more containers
1100 * along the path if necessary.
1101 *
1102 * Returns: the container object.
1103 */
1104Object *container_get(Object *root, const char *path);
1105
1106
1107#endif
1108