qemu/bsd-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include <signal.h>
   5#include <string.h>
   6
   7#include "cpu.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#include <stdlib.h>
  12#endif /* DEBUG_REMAP */
  13
  14#include "exec/user/abitypes.h"
  15
  16enum BSDType {
  17    target_freebsd,
  18    target_netbsd,
  19    target_openbsd,
  20};
  21extern enum BSDType bsd_type;
  22
  23#include "syscall_defs.h"
  24#include "syscall.h"
  25#include "target_signal.h"
  26#include "exec/gdbstub.h"
  27
  28#if defined(CONFIG_USE_NPTL)
  29#define THREAD __thread
  30#else
  31#define THREAD
  32#endif
  33
  34/* This struct is used to hold certain information about the image.
  35 * Basically, it replicates in user space what would be certain
  36 * task_struct fields in the kernel
  37 */
  38struct image_info {
  39    abi_ulong load_addr;
  40    abi_ulong start_code;
  41    abi_ulong end_code;
  42    abi_ulong start_data;
  43    abi_ulong end_data;
  44    abi_ulong start_brk;
  45    abi_ulong brk;
  46    abi_ulong start_mmap;
  47    abi_ulong mmap;
  48    abi_ulong rss;
  49    abi_ulong start_stack;
  50    abi_ulong entry;
  51    abi_ulong code_offset;
  52    abi_ulong data_offset;
  53    int       personality;
  54};
  55
  56#define MAX_SIGQUEUE_SIZE 1024
  57
  58struct sigqueue {
  59    struct sigqueue *next;
  60    //target_siginfo_t info;
  61};
  62
  63struct emulated_sigtable {
  64    int pending; /* true if signal is pending */
  65    struct sigqueue *first;
  66    struct sigqueue info; /* in order to always have memory for the
  67                             first signal, we put it here */
  68};
  69
  70/* NOTE: we force a big alignment so that the stack stored after is
  71   aligned too */
  72typedef struct TaskState {
  73    struct TaskState *next;
  74    int used; /* non zero if used */
  75    struct image_info *info;
  76
  77    struct emulated_sigtable sigtab[TARGET_NSIG];
  78    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
  79    struct sigqueue *first_free; /* first free siginfo queue entry */
  80    int signal_pending; /* non zero if a signal may be pending */
  81
  82    uint8_t stack[0];
  83} __attribute__((aligned(16))) TaskState;
  84
  85void init_task_state(TaskState *ts);
  86extern const char *qemu_uname_release;
  87#if defined(CONFIG_USE_GUEST_BASE)
  88extern unsigned long mmap_min_addr;
  89#endif
  90
  91/* ??? See if we can avoid exposing so much of the loader internals.  */
  92/*
  93 * MAX_ARG_PAGES defines the number of pages allocated for arguments
  94 * and envelope for the new program. 32 should suffice, this gives
  95 * a maximum env+arg of 128kB w/4KB pages!
  96 */
  97#define MAX_ARG_PAGES 32
  98
  99/*
 100 * This structure is used to hold the arguments that are
 101 * used when loading binaries.
 102 */
 103struct linux_binprm {
 104        char buf[128];
 105        void *page[MAX_ARG_PAGES];
 106        abi_ulong p;
 107        int fd;
 108        int e_uid, e_gid;
 109        int argc, envc;
 110        char **argv;
 111        char **envp;
 112        char * filename;        /* Name of binary */
 113};
 114
 115void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 116abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 117                              abi_ulong stringp, int push_ptr);
 118int loader_exec(const char * filename, char ** argv, char ** envp,
 119             struct target_pt_regs * regs, struct image_info *infop);
 120
 121int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
 122                    struct image_info * info);
 123int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
 124                    struct image_info * info);
 125
 126abi_long memcpy_to_target(abi_ulong dest, const void *src,
 127                          unsigned long len);
 128void target_set_brk(abi_ulong new_brk);
 129abi_long do_brk(abi_ulong new_brk);
 130void syscall_init(void);
 131abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
 132                            abi_long arg2, abi_long arg3, abi_long arg4,
 133                            abi_long arg5, abi_long arg6, abi_long arg7,
 134                            abi_long arg8);
 135abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
 136                           abi_long arg2, abi_long arg3, abi_long arg4,
 137                           abi_long arg5, abi_long arg6);
 138abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
 139                            abi_long arg2, abi_long arg3, abi_long arg4,
 140                            abi_long arg5, abi_long arg6);
 141void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 142extern THREAD CPUArchState *thread_env;
 143void cpu_loop(CPUArchState *env);
 144char *target_strerror(int err);
 145int get_osversion(void);
 146void fork_start(void);
 147void fork_end(int child);
 148
 149#include "qemu/log.h"
 150
 151/* strace.c */
 152void
 153print_freebsd_syscall(int num,
 154                      abi_long arg1, abi_long arg2, abi_long arg3,
 155                      abi_long arg4, abi_long arg5, abi_long arg6);
 156void print_freebsd_syscall_ret(int num, abi_long ret);
 157void
 158print_netbsd_syscall(int num,
 159                     abi_long arg1, abi_long arg2, abi_long arg3,
 160                     abi_long arg4, abi_long arg5, abi_long arg6);
 161void print_netbsd_syscall_ret(int num, abi_long ret);
 162void
 163print_openbsd_syscall(int num,
 164                      abi_long arg1, abi_long arg2, abi_long arg3,
 165                      abi_long arg4, abi_long arg5, abi_long arg6);
 166void print_openbsd_syscall_ret(int num, abi_long ret);
 167extern int do_strace;
 168
 169/* signal.c */
 170void process_pending_signals(CPUArchState *cpu_env);
 171void signal_init(void);
 172//int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
 173//void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 174//void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 175long do_sigreturn(CPUArchState *env);
 176long do_rt_sigreturn(CPUArchState *env);
 177abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 178
 179/* mmap.c */
 180int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 181abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 182                     int flags, int fd, abi_ulong offset);
 183int target_munmap(abi_ulong start, abi_ulong len);
 184abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 185                       abi_ulong new_size, unsigned long flags,
 186                       abi_ulong new_addr);
 187int target_msync(abi_ulong start, abi_ulong len, int flags);
 188extern unsigned long last_brk;
 189void mmap_lock(void);
 190void mmap_unlock(void);
 191void cpu_list_lock(void);
 192void cpu_list_unlock(void);
 193#if defined(CONFIG_USE_NPTL)
 194void mmap_fork_start(void);
 195void mmap_fork_end(int child);
 196#endif
 197
 198/* main.c */
 199extern unsigned long x86_stack_size;
 200
 201/* user access */
 202
 203#define VERIFY_READ 0
 204#define VERIFY_WRITE 1 /* implies read access */
 205
 206static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 207{
 208    return page_check_range((target_ulong)addr, size,
 209                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 210}
 211
 212/* NOTE __get_user and __put_user use host pointers and don't check access. */
 213/* These are usually used to access struct data members once the
 214 * struct has been locked - usually with lock_user_struct().
 215 */
 216#define __put_user(x, hptr)\
 217({\
 218    int size = sizeof(*hptr);\
 219    switch(size) {\
 220    case 1:\
 221        *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
 222        break;\
 223    case 2:\
 224        *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
 225        break;\
 226    case 4:\
 227        *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
 228        break;\
 229    case 8:\
 230        *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
 231        break;\
 232    default:\
 233        abort();\
 234    }\
 235    0;\
 236})
 237
 238#define __get_user(x, hptr) \
 239({\
 240    int size = sizeof(*hptr);\
 241    switch(size) {\
 242    case 1:\
 243        x = (typeof(*hptr))*(uint8_t *)(hptr);\
 244        break;\
 245    case 2:\
 246        x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
 247        break;\
 248    case 4:\
 249        x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
 250        break;\
 251    case 8:\
 252        x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
 253        break;\
 254    default:\
 255        /* avoid warning */\
 256        x = 0;\
 257        abort();\
 258    }\
 259    0;\
 260})
 261
 262/* put_user()/get_user() take a guest address and check access */
 263/* These are usually used to access an atomic data type, such as an int,
 264 * that has been passed by address.  These internally perform locking
 265 * and unlocking on the data type.
 266 */
 267#define put_user(x, gaddr, target_type)                                 \
 268({                                                                      \
 269    abi_ulong __gaddr = (gaddr);                                        \
 270    target_type *__hptr;                                                \
 271    abi_long __ret;                                                     \
 272    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 273        __ret = __put_user((x), __hptr);                                \
 274        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 275    } else                                                              \
 276        __ret = -TARGET_EFAULT;                                         \
 277    __ret;                                                              \
 278})
 279
 280#define get_user(x, gaddr, target_type)                                 \
 281({                                                                      \
 282    abi_ulong __gaddr = (gaddr);                                        \
 283    target_type *__hptr;                                                \
 284    abi_long __ret;                                                     \
 285    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 286        __ret = __get_user((x), __hptr);                                \
 287        unlock_user(__hptr, __gaddr, 0);                                \
 288    } else {                                                            \
 289        /* avoid warning */                                             \
 290        (x) = 0;                                                        \
 291        __ret = -TARGET_EFAULT;                                         \
 292    }                                                                   \
 293    __ret;                                                              \
 294})
 295
 296#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 297#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 298#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 299#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 300#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 301#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 302#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 303#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 304#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 305#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 306
 307#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 308#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 309#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 310#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 311#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 312#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 313#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 314#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 315#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 316#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 317
 318/* copy_from_user() and copy_to_user() are usually used to copy data
 319 * buffers between the target and host.  These internally perform
 320 * locking/unlocking of the memory.
 321 */
 322abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 323abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 324
 325/* Functions for accessing guest memory.  The tget and tput functions
 326   read/write single values, byteswapping as necessary.  The lock_user
 327   gets a pointer to a contiguous area of guest memory, but does not perform
 328   and byteswapping.  lock_user may return either a pointer to the guest
 329   memory, or a temporary buffer.  */
 330
 331/* Lock an area of guest memory into the host.  If copy is true then the
 332   host area will have the same contents as the guest.  */
 333static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 334{
 335    if (!access_ok(type, guest_addr, len))
 336        return NULL;
 337#ifdef DEBUG_REMAP
 338    {
 339        void *addr;
 340        addr = malloc(len);
 341        if (copy)
 342            memcpy(addr, g2h(guest_addr), len);
 343        else
 344            memset(addr, 0, len);
 345        return addr;
 346    }
 347#else
 348    return g2h(guest_addr);
 349#endif
 350}
 351
 352/* Unlock an area of guest memory.  The first LEN bytes must be
 353   flushed back to guest memory. host_ptr = NULL is explicitly
 354   allowed and does nothing. */
 355static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 356                               long len)
 357{
 358
 359#ifdef DEBUG_REMAP
 360    if (!host_ptr)
 361        return;
 362    if (host_ptr == g2h(guest_addr))
 363        return;
 364    if (len > 0)
 365        memcpy(g2h(guest_addr), host_ptr, len);
 366    free(host_ptr);
 367#endif
 368}
 369
 370/* Return the length of a string in target memory or -TARGET_EFAULT if
 371   access error. */
 372abi_long target_strlen(abi_ulong gaddr);
 373
 374/* Like lock_user but for null terminated strings.  */
 375static inline void *lock_user_string(abi_ulong guest_addr)
 376{
 377    abi_long len;
 378    len = target_strlen(guest_addr);
 379    if (len < 0)
 380        return NULL;
 381    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 382}
 383
 384/* Helper macros for locking/ulocking a target struct.  */
 385#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 386    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 387#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 388    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 389
 390#if defined(CONFIG_USE_NPTL)
 391#include <pthread.h>
 392#endif
 393
 394#endif /* QEMU_H */
 395