qemu/hw/spapr_pci.c
<<
>>
Prefs
   1/*
   2 * QEMU sPAPR PCI host originated from Uninorth PCI host
   3 *
   4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
   5 * Copyright (C) 2011 David Gibson, IBM Corporation.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25#include "hw.h"
  26#include "pci/pci.h"
  27#include "pci/msi.h"
  28#include "pci/msix.h"
  29#include "pci/pci_host.h"
  30#include "hw/spapr.h"
  31#include "hw/spapr_pci.h"
  32#include "exec/address-spaces.h"
  33#include <libfdt.h>
  34#include "trace.h"
  35
  36#include "hw/pci/pci_bus.h"
  37
  38/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
  39#define RTAS_QUERY_FN           0
  40#define RTAS_CHANGE_FN          1
  41#define RTAS_RESET_FN           2
  42#define RTAS_CHANGE_MSI_FN      3
  43#define RTAS_CHANGE_MSIX_FN     4
  44
  45/* Interrupt types to return on RTAS_CHANGE_* */
  46#define RTAS_TYPE_MSI           1
  47#define RTAS_TYPE_MSIX          2
  48
  49static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
  50{
  51    sPAPRPHBState *sphb;
  52
  53    QLIST_FOREACH(sphb, &spapr->phbs, list) {
  54        if (sphb->buid != buid) {
  55            continue;
  56        }
  57        return sphb;
  58    }
  59
  60    return NULL;
  61}
  62
  63static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
  64                           uint32_t config_addr)
  65{
  66    sPAPRPHBState *sphb = find_phb(spapr, buid);
  67    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
  68    BusState *bus = BUS(phb->bus);
  69    BusChild *kid;
  70    int devfn = (config_addr >> 8) & 0xFF;
  71
  72    if (!phb) {
  73        return NULL;
  74    }
  75
  76    QTAILQ_FOREACH(kid, &bus->children, sibling) {
  77        PCIDevice *dev = (PCIDevice *)kid->child;
  78        if (dev->devfn == devfn) {
  79            return dev;
  80        }
  81    }
  82
  83    return NULL;
  84}
  85
  86static uint32_t rtas_pci_cfgaddr(uint32_t arg)
  87{
  88    /* This handles the encoding of extended config space addresses */
  89    return ((arg >> 20) & 0xf00) | (arg & 0xff);
  90}
  91
  92static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
  93                                   uint32_t addr, uint32_t size,
  94                                   target_ulong rets)
  95{
  96    PCIDevice *pci_dev;
  97    uint32_t val;
  98
  99    if ((size != 1) && (size != 2) && (size != 4)) {
 100        /* access must be 1, 2 or 4 bytes */
 101        rtas_st(rets, 0, -1);
 102        return;
 103    }
 104
 105    pci_dev = find_dev(spapr, buid, addr);
 106    addr = rtas_pci_cfgaddr(addr);
 107
 108    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 109        /* Access must be to a valid device, within bounds and
 110         * naturally aligned */
 111        rtas_st(rets, 0, -1);
 112        return;
 113    }
 114
 115    val = pci_host_config_read_common(pci_dev, addr,
 116                                      pci_config_size(pci_dev), size);
 117
 118    rtas_st(rets, 0, 0);
 119    rtas_st(rets, 1, val);
 120}
 121
 122static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
 123                                     uint32_t token, uint32_t nargs,
 124                                     target_ulong args,
 125                                     uint32_t nret, target_ulong rets)
 126{
 127    uint64_t buid;
 128    uint32_t size, addr;
 129
 130    if ((nargs != 4) || (nret != 2)) {
 131        rtas_st(rets, 0, -1);
 132        return;
 133    }
 134
 135    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
 136    size = rtas_ld(args, 3);
 137    addr = rtas_ld(args, 0);
 138
 139    finish_read_pci_config(spapr, buid, addr, size, rets);
 140}
 141
 142static void rtas_read_pci_config(sPAPREnvironment *spapr,
 143                                 uint32_t token, uint32_t nargs,
 144                                 target_ulong args,
 145                                 uint32_t nret, target_ulong rets)
 146{
 147    uint32_t size, addr;
 148
 149    if ((nargs != 2) || (nret != 2)) {
 150        rtas_st(rets, 0, -1);
 151        return;
 152    }
 153
 154    size = rtas_ld(args, 1);
 155    addr = rtas_ld(args, 0);
 156
 157    finish_read_pci_config(spapr, 0, addr, size, rets);
 158}
 159
 160static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
 161                                    uint32_t addr, uint32_t size,
 162                                    uint32_t val, target_ulong rets)
 163{
 164    PCIDevice *pci_dev;
 165
 166    if ((size != 1) && (size != 2) && (size != 4)) {
 167        /* access must be 1, 2 or 4 bytes */
 168        rtas_st(rets, 0, -1);
 169        return;
 170    }
 171
 172    pci_dev = find_dev(spapr, buid, addr);
 173    addr = rtas_pci_cfgaddr(addr);
 174
 175    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 176        /* Access must be to a valid device, within bounds and
 177         * naturally aligned */
 178        rtas_st(rets, 0, -1);
 179        return;
 180    }
 181
 182    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
 183                                 val, size);
 184
 185    rtas_st(rets, 0, 0);
 186}
 187
 188static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
 189                                      uint32_t token, uint32_t nargs,
 190                                      target_ulong args,
 191                                      uint32_t nret, target_ulong rets)
 192{
 193    uint64_t buid;
 194    uint32_t val, size, addr;
 195
 196    if ((nargs != 5) || (nret != 1)) {
 197        rtas_st(rets, 0, -1);
 198        return;
 199    }
 200
 201    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
 202    val = rtas_ld(args, 4);
 203    size = rtas_ld(args, 3);
 204    addr = rtas_ld(args, 0);
 205
 206    finish_write_pci_config(spapr, buid, addr, size, val, rets);
 207}
 208
 209static void rtas_write_pci_config(sPAPREnvironment *spapr,
 210                                  uint32_t token, uint32_t nargs,
 211                                  target_ulong args,
 212                                  uint32_t nret, target_ulong rets)
 213{
 214    uint32_t val, size, addr;
 215
 216    if ((nargs != 3) || (nret != 1)) {
 217        rtas_st(rets, 0, -1);
 218        return;
 219    }
 220
 221
 222    val = rtas_ld(args, 2);
 223    size = rtas_ld(args, 1);
 224    addr = rtas_ld(args, 0);
 225
 226    finish_write_pci_config(spapr, 0, addr, size, val, rets);
 227}
 228
 229/*
 230 * Find an entry with config_addr or returns the empty one if not found AND
 231 * alloc_new is set.
 232 * At the moment the msi_table entries are never released so there is
 233 * no point to look till the end of the list if we need to find the free entry.
 234 */
 235static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
 236                             bool alloc_new)
 237{
 238    int i;
 239
 240    for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
 241        if (!phb->msi_table[i].nvec) {
 242            break;
 243        }
 244        if (phb->msi_table[i].config_addr == config_addr) {
 245            return i;
 246        }
 247    }
 248    if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
 249        trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
 250        return i;
 251    }
 252
 253    return -1;
 254}
 255
 256/*
 257 * Set MSI/MSIX message data.
 258 * This is required for msi_notify()/msix_notify() which
 259 * will write at the addresses via spapr_msi_write().
 260 */
 261static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr,
 262                             bool msix, unsigned req_num)
 263{
 264    unsigned i;
 265    MSIMessage msg = { .address = addr, .data = 0 };
 266
 267    if (!msix) {
 268        msi_set_message(pdev, msg);
 269        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
 270        return;
 271    }
 272
 273    for (i = 0; i < req_num; ++i) {
 274        msg.address = addr | (i << 2);
 275        msix_set_message(pdev, i, msg);
 276        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
 277    }
 278}
 279
 280static void rtas_ibm_change_msi(sPAPREnvironment *spapr,
 281                                uint32_t token, uint32_t nargs,
 282                                target_ulong args, uint32_t nret,
 283                                target_ulong rets)
 284{
 285    uint32_t config_addr = rtas_ld(args, 0);
 286    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
 287    unsigned int func = rtas_ld(args, 3);
 288    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
 289    unsigned int seq_num = rtas_ld(args, 5);
 290    unsigned int ret_intr_type;
 291    int ndev, irq;
 292    sPAPRPHBState *phb = NULL;
 293    PCIDevice *pdev = NULL;
 294
 295    switch (func) {
 296    case RTAS_CHANGE_MSI_FN:
 297    case RTAS_CHANGE_FN:
 298        ret_intr_type = RTAS_TYPE_MSI;
 299        break;
 300    case RTAS_CHANGE_MSIX_FN:
 301        ret_intr_type = RTAS_TYPE_MSIX;
 302        break;
 303    default:
 304        fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
 305        rtas_st(rets, 0, -3); /* Parameter error */
 306        return;
 307    }
 308
 309    /* Fins sPAPRPHBState */
 310    phb = find_phb(spapr, buid);
 311    if (phb) {
 312        pdev = find_dev(spapr, buid, config_addr);
 313    }
 314    if (!phb || !pdev) {
 315        rtas_st(rets, 0, -3); /* Parameter error */
 316        return;
 317    }
 318
 319    /* Releasing MSIs */
 320    if (!req_num) {
 321        ndev = spapr_msicfg_find(phb, config_addr, false);
 322        if (ndev < 0) {
 323            trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
 324            rtas_st(rets, 0, -1); /* Hardware error */
 325            return;
 326        }
 327        trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
 328        rtas_st(rets, 0, 0);
 329        rtas_st(rets, 1, 0);
 330        return;
 331    }
 332
 333    /* Enabling MSI */
 334
 335    /* Find a device number in the map to add or reuse the existing one */
 336    ndev = spapr_msicfg_find(phb, config_addr, true);
 337    if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
 338        fprintf(stderr, "No free entry for a new MSI device\n");
 339        rtas_st(rets, 0, -1); /* Hardware error */
 340        return;
 341    }
 342    trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
 343
 344    /* Check if there is an old config and MSI number has not changed */
 345    if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
 346        /* Unexpected behaviour */
 347        fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
 348        rtas_st(rets, 0, -1); /* Hardware error */
 349        return;
 350    }
 351
 352    /* There is no cached config, allocate MSIs */
 353    if (!phb->msi_table[ndev].nvec) {
 354        irq = spapr_allocate_irq_block(req_num, false);
 355        if (irq < 0) {
 356            fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
 357            rtas_st(rets, 0, -1); /* Hardware error */
 358            return;
 359        }
 360        phb->msi_table[ndev].irq = irq;
 361        phb->msi_table[ndev].nvec = req_num;
 362        phb->msi_table[ndev].config_addr = config_addr;
 363    }
 364
 365    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
 366    spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
 367                     ret_intr_type == RTAS_TYPE_MSIX, req_num);
 368
 369    rtas_st(rets, 0, 0);
 370    rtas_st(rets, 1, req_num);
 371    rtas_st(rets, 2, ++seq_num);
 372    rtas_st(rets, 3, ret_intr_type);
 373
 374    trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
 375}
 376
 377static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr,
 378                                                   uint32_t token,
 379                                                   uint32_t nargs,
 380                                                   target_ulong args,
 381                                                   uint32_t nret,
 382                                                   target_ulong rets)
 383{
 384    uint32_t config_addr = rtas_ld(args, 0);
 385    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
 386    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
 387    int ndev;
 388    sPAPRPHBState *phb = NULL;
 389
 390    /* Fins sPAPRPHBState */
 391    phb = find_phb(spapr, buid);
 392    if (!phb) {
 393        rtas_st(rets, 0, -3); /* Parameter error */
 394        return;
 395    }
 396
 397    /* Find device descriptor and start IRQ */
 398    ndev = spapr_msicfg_find(phb, config_addr, false);
 399    if (ndev < 0) {
 400        trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
 401        rtas_st(rets, 0, -1); /* Hardware error */
 402        return;
 403    }
 404
 405    intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
 406    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
 407                                                           intr_src_num);
 408
 409    rtas_st(rets, 0, 0);
 410    rtas_st(rets, 1, intr_src_num);
 411    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
 412}
 413
 414static int pci_spapr_swizzle(int slot, int pin)
 415{
 416    return (slot + pin) % PCI_NUM_PINS;
 417}
 418
 419static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
 420{
 421    /*
 422     * Here we need to convert pci_dev + irq_num to some unique value
 423     * which is less than number of IRQs on the specific bus (4).  We
 424     * use standard PCI swizzling, that is (slot number + pin number)
 425     * % 4.
 426     */
 427    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
 428}
 429
 430static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
 431{
 432    /*
 433     * Here we use the number returned by pci_spapr_map_irq to find a
 434     * corresponding qemu_irq.
 435     */
 436    sPAPRPHBState *phb = opaque;
 437
 438    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
 439    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
 440}
 441
 442static uint64_t spapr_io_read(void *opaque, hwaddr addr,
 443                              unsigned size)
 444{
 445    switch (size) {
 446    case 1:
 447        return cpu_inb(addr);
 448    case 2:
 449        return cpu_inw(addr);
 450    case 4:
 451        return cpu_inl(addr);
 452    }
 453    assert(0);
 454}
 455
 456static void spapr_io_write(void *opaque, hwaddr addr,
 457                           uint64_t data, unsigned size)
 458{
 459    switch (size) {
 460    case 1:
 461        cpu_outb(addr, data);
 462        return;
 463    case 2:
 464        cpu_outw(addr, data);
 465        return;
 466    case 4:
 467        cpu_outl(addr, data);
 468        return;
 469    }
 470    assert(0);
 471}
 472
 473static const MemoryRegionOps spapr_io_ops = {
 474    .endianness = DEVICE_LITTLE_ENDIAN,
 475    .read = spapr_io_read,
 476    .write = spapr_io_write
 477};
 478
 479/*
 480 * MSI/MSIX memory region implementation.
 481 * The handler handles both MSI and MSIX.
 482 * For MSI-X, the vector number is encoded as a part of the address,
 483 * data is set to 0.
 484 * For MSI, the vector number is encoded in least bits in data.
 485 */
 486static void spapr_msi_write(void *opaque, hwaddr addr,
 487                            uint64_t data, unsigned size)
 488{
 489    sPAPRPHBState *phb = opaque;
 490    int ndev = addr >> 16;
 491    int vec = ((addr & 0xFFFF) >> 2) | data;
 492    uint32_t irq = phb->msi_table[ndev].irq + vec;
 493
 494    trace_spapr_pci_msi_write(addr, data, irq);
 495
 496    qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
 497}
 498
 499static const MemoryRegionOps spapr_msi_ops = {
 500    /* There is no .read as the read result is undefined by PCI spec */
 501    .read = NULL,
 502    .write = spapr_msi_write,
 503    .endianness = DEVICE_LITTLE_ENDIAN
 504};
 505
 506/*
 507 * PHB PCI device
 508 */
 509static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
 510                                            int devfn)
 511{
 512    sPAPRPHBState *phb = opaque;
 513
 514    return phb->dma;
 515}
 516
 517static int spapr_phb_init(SysBusDevice *s)
 518{
 519    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
 520    PCIHostState *phb = PCI_HOST_BRIDGE(s);
 521    char *namebuf;
 522    int i;
 523    PCIBus *bus;
 524
 525    if (sphb->index != -1) {
 526        hwaddr windows_base;
 527
 528        if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
 529            || (sphb->mem_win_addr != -1)
 530            || (sphb->io_win_addr != -1)
 531            || (sphb->msi_win_addr != -1)) {
 532            fprintf(stderr, "Either \"index\" or other parameters must"
 533                    " be specified for PAPR PHB, not both\n");
 534            return -1;
 535        }
 536
 537        sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
 538        sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
 539
 540        windows_base = SPAPR_PCI_WINDOW_BASE
 541            + sphb->index * SPAPR_PCI_WINDOW_SPACING;
 542        sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
 543        sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
 544        sphb->msi_win_addr = windows_base + SPAPR_PCI_MSI_WIN_OFF;
 545    }
 546
 547    if (sphb->buid == -1) {
 548        fprintf(stderr, "BUID not specified for PHB\n");
 549        return -1;
 550    }
 551
 552    if (sphb->dma_liobn == -1) {
 553        fprintf(stderr, "LIOBN not specified for PHB\n");
 554        return -1;
 555    }
 556
 557    if (sphb->mem_win_addr == -1) {
 558        fprintf(stderr, "Memory window address not specified for PHB\n");
 559        return -1;
 560    }
 561
 562    if (sphb->io_win_addr == -1) {
 563        fprintf(stderr, "IO window address not specified for PHB\n");
 564        return -1;
 565    }
 566
 567    if (sphb->msi_win_addr == -1) {
 568        fprintf(stderr, "MSI window address not specified for PHB\n");
 569        return -1;
 570    }
 571
 572    if (find_phb(spapr, sphb->buid)) {
 573        fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
 574        return -1;
 575    }
 576
 577    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
 578    if (!sphb->busname) {
 579        sphb->busname = sphb->dtbusname;
 580    }
 581
 582    namebuf = alloca(strlen(sphb->dtbusname) + 32);
 583
 584    /* Initialize memory regions */
 585    sprintf(namebuf, "%s.mmio", sphb->dtbusname);
 586    memory_region_init(&sphb->memspace, namebuf, INT64_MAX);
 587
 588    sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
 589    memory_region_init_alias(&sphb->memwindow, namebuf, &sphb->memspace,
 590                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
 591    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
 592                                &sphb->memwindow);
 593
 594    /* On ppc, we only have MMIO no specific IO space from the CPU
 595     * perspective.  In theory we ought to be able to embed the PCI IO
 596     * memory region direction in the system memory space.  However,
 597     * if any of the IO BAR subregions use the old_portio mechanism,
 598     * that won't be processed properly unless accessed from the
 599     * system io address space.  This hack to bounce things via
 600     * system_io works around the problem until all the users of
 601     * old_portion are updated */
 602    sprintf(namebuf, "%s.io", sphb->dtbusname);
 603    memory_region_init(&sphb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
 604    /* FIXME: fix to support multiple PHBs */
 605    memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
 606
 607    sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
 608    memory_region_init_io(&sphb->iowindow, &spapr_io_ops, sphb,
 609                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
 610    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
 611                                &sphb->iowindow);
 612
 613    /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
 614     * we need to allocate some memory to catch those writes coming
 615     * from msi_notify()/msix_notify() */
 616    if (msi_supported) {
 617        sprintf(namebuf, "%s.msi", sphb->dtbusname);
 618        memory_region_init_io(&sphb->msiwindow, &spapr_msi_ops, sphb,
 619                              namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
 620        memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
 621                                    &sphb->msiwindow);
 622    }
 623
 624    bus = pci_register_bus(DEVICE(s), sphb->busname,
 625                           pci_spapr_set_irq, pci_spapr_map_irq, sphb,
 626                           &sphb->memspace, &sphb->iospace,
 627                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
 628    phb->bus = bus;
 629
 630    sphb->dma_window_start = 0;
 631    sphb->dma_window_size = 0x40000000;
 632    sphb->dma = spapr_tce_new_dma_context(sphb->dma_liobn, sphb->dma_window_size);
 633    if (!sphb->dma) {
 634        fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
 635        return -1;
 636    }
 637    pci_setup_iommu(bus, spapr_pci_dma_context_fn, sphb);
 638
 639    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
 640
 641    /* Initialize the LSI table */
 642    for (i = 0; i < PCI_NUM_PINS; i++) {
 643        uint32_t irq;
 644
 645        irq = spapr_allocate_lsi(0);
 646        if (!irq) {
 647            return -1;
 648        }
 649
 650        sphb->lsi_table[i].irq = irq;
 651    }
 652
 653    return 0;
 654}
 655
 656static void spapr_phb_reset(DeviceState *qdev)
 657{
 658    SysBusDevice *s = SYS_BUS_DEVICE(qdev);
 659    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
 660
 661    /* Reset the IOMMU state */
 662    spapr_tce_reset(sphb->dma);
 663}
 664
 665static Property spapr_phb_properties[] = {
 666    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
 667    DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
 668    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
 669    DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
 670    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
 671    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
 672                      SPAPR_PCI_MMIO_WIN_SIZE),
 673    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
 674    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
 675                      SPAPR_PCI_IO_WIN_SIZE),
 676    DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, -1),
 677    DEFINE_PROP_END_OF_LIST(),
 678};
 679
 680static void spapr_phb_class_init(ObjectClass *klass, void *data)
 681{
 682    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
 683    DeviceClass *dc = DEVICE_CLASS(klass);
 684
 685    sdc->init = spapr_phb_init;
 686    dc->props = spapr_phb_properties;
 687    dc->reset = spapr_phb_reset;
 688}
 689
 690static const TypeInfo spapr_phb_info = {
 691    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
 692    .parent        = TYPE_PCI_HOST_BRIDGE,
 693    .instance_size = sizeof(sPAPRPHBState),
 694    .class_init    = spapr_phb_class_init,
 695};
 696
 697PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index,
 698                               const char *busname)
 699{
 700    DeviceState *dev;
 701
 702    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
 703    qdev_prop_set_uint32(dev, "index", index);
 704    qdev_prop_set_string(dev, "busname", busname);
 705    qdev_init_nofail(dev);
 706
 707    return PCI_HOST_BRIDGE(dev);
 708}
 709
 710/* Macros to operate with address in OF binding to PCI */
 711#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
 712#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
 713#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
 714#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
 715#define b_ss(x)         b_x((x), 24, 2) /* the space code */
 716#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
 717#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
 718#define b_fff(x)        b_x((x), 8, 3)  /* function number */
 719#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
 720
 721int spapr_populate_pci_dt(sPAPRPHBState *phb,
 722                          uint32_t xics_phandle,
 723                          void *fdt)
 724{
 725    int bus_off, i, j;
 726    char nodename[256];
 727    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
 728    struct {
 729        uint32_t hi;
 730        uint64_t child;
 731        uint64_t parent;
 732        uint64_t size;
 733    } QEMU_PACKED ranges[] = {
 734        {
 735            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
 736            cpu_to_be64(phb->io_win_addr),
 737            cpu_to_be64(memory_region_size(&phb->iospace)),
 738        },
 739        {
 740            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
 741            cpu_to_be64(phb->mem_win_addr),
 742            cpu_to_be64(memory_region_size(&phb->memwindow)),
 743        },
 744    };
 745    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
 746    uint32_t interrupt_map_mask[] = {
 747        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
 748    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
 749
 750    /* Start populating the FDT */
 751    sprintf(nodename, "pci@%" PRIx64, phb->buid);
 752    bus_off = fdt_add_subnode(fdt, 0, nodename);
 753    if (bus_off < 0) {
 754        return bus_off;
 755    }
 756
 757#define _FDT(exp) \
 758    do { \
 759        int ret = (exp);                                           \
 760        if (ret < 0) {                                             \
 761            return ret;                                            \
 762        }                                                          \
 763    } while (0)
 764
 765    /* Write PHB properties */
 766    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
 767    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
 768    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
 769    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
 770    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
 771    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
 772    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
 773    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
 774    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
 775    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
 776
 777    /* Build the interrupt-map, this must matches what is done
 778     * in pci_spapr_map_irq
 779     */
 780    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
 781                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
 782    for (i = 0; i < PCI_SLOT_MAX; i++) {
 783        for (j = 0; j < PCI_NUM_PINS; j++) {
 784            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
 785            int lsi_num = pci_spapr_swizzle(i, j);
 786
 787            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
 788            irqmap[1] = 0;
 789            irqmap[2] = 0;
 790            irqmap[3] = cpu_to_be32(j+1);
 791            irqmap[4] = cpu_to_be32(xics_phandle);
 792            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
 793            irqmap[6] = cpu_to_be32(0x8);
 794        }
 795    }
 796    /* Write interrupt map */
 797    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
 798                     sizeof(interrupt_map)));
 799
 800    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
 801                 phb->dma_liobn, phb->dma_window_start,
 802                 phb->dma_window_size);
 803
 804    return 0;
 805}
 806
 807void spapr_pci_rtas_init(void)
 808{
 809    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
 810    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
 811    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
 812    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
 813    if (msi_supported) {
 814        spapr_rtas_register("ibm,query-interrupt-source-number",
 815                            rtas_ibm_query_interrupt_source_number);
 816        spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
 817    }
 818}
 819
 820static void spapr_pci_register_types(void)
 821{
 822    type_register_static(&spapr_phb_info);
 823}
 824
 825type_init(spapr_pci_register_types)
 826