qemu/linux-user/vm86.c
<<
>>
Prefs
   1/*
   2 *  vm86 linux syscall support
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 *  This program is free software; you can redistribute it and/or modify
   7 *  it under the terms of the GNU General Public License as published by
   8 *  the Free Software Foundation; either version 2 of the License, or
   9 *  (at your option) any later version.
  10 *
  11 *  This program is distributed in the hope that it will be useful,
  12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 *  GNU General Public License for more details.
  15 *
  16 *  You should have received a copy of the GNU General Public License
  17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include <stdlib.h>
  20#include <stdio.h>
  21#include <stdarg.h>
  22#include <string.h>
  23#include <errno.h>
  24#include <unistd.h>
  25
  26#include "qemu.h"
  27
  28//#define DEBUG_VM86
  29
  30#ifdef DEBUG_VM86
  31#  define LOG_VM86(...) qemu_log(__VA_ARGS__);
  32#else
  33#  define LOG_VM86(...) do { } while (0)
  34#endif
  35
  36
  37#define set_flags(X,new,mask) \
  38((X) = ((X) & ~(mask)) | ((new) & (mask)))
  39
  40#define SAFE_MASK       (0xDD5)
  41#define RETURN_MASK     (0xDFF)
  42
  43static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
  44{
  45    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
  46}
  47
  48static inline void vm_putw(uint32_t segptr, unsigned int reg16, unsigned int val)
  49{
  50    stw(segptr + (reg16 & 0xffff), val);
  51}
  52
  53static inline void vm_putl(uint32_t segptr, unsigned int reg16, unsigned int val)
  54{
  55    stl(segptr + (reg16 & 0xffff), val);
  56}
  57
  58static inline unsigned int vm_getb(uint32_t segptr, unsigned int reg16)
  59{
  60    return ldub(segptr + (reg16 & 0xffff));
  61}
  62
  63static inline unsigned int vm_getw(uint32_t segptr, unsigned int reg16)
  64{
  65    return lduw(segptr + (reg16 & 0xffff));
  66}
  67
  68static inline unsigned int vm_getl(uint32_t segptr, unsigned int reg16)
  69{
  70    return ldl(segptr + (reg16 & 0xffff));
  71}
  72
  73void save_v86_state(CPUX86State *env)
  74{
  75    TaskState *ts = env->opaque;
  76    struct target_vm86plus_struct * target_v86;
  77
  78    if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
  79        /* FIXME - should return an error */
  80        return;
  81    /* put the VM86 registers in the userspace register structure */
  82    target_v86->regs.eax = tswap32(env->regs[R_EAX]);
  83    target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
  84    target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
  85    target_v86->regs.edx = tswap32(env->regs[R_EDX]);
  86    target_v86->regs.esi = tswap32(env->regs[R_ESI]);
  87    target_v86->regs.edi = tswap32(env->regs[R_EDI]);
  88    target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
  89    target_v86->regs.esp = tswap32(env->regs[R_ESP]);
  90    target_v86->regs.eip = tswap32(env->eip);
  91    target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
  92    target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
  93    target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
  94    target_v86->regs.es = tswap16(env->segs[R_ES].selector);
  95    target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
  96    target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
  97    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
  98    target_v86->regs.eflags = tswap32(env->eflags);
  99    unlock_user_struct(target_v86, ts->target_v86, 1);
 100    LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
 101             env->eflags, env->segs[R_CS].selector, env->eip);
 102
 103    /* restore 32 bit registers */
 104    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
 105    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
 106    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
 107    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
 108    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
 109    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
 110    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
 111    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
 112    env->eflags = ts->vm86_saved_regs.eflags;
 113    env->eip = ts->vm86_saved_regs.eip;
 114
 115    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
 116    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
 117    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
 118    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
 119    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
 120    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
 121}
 122
 123/* return from vm86 mode to 32 bit. The vm86() syscall will return
 124   'retval' */
 125static inline void return_to_32bit(CPUX86State *env, int retval)
 126{
 127    LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
 128    save_v86_state(env);
 129    env->regs[R_EAX] = retval;
 130}
 131
 132static inline int set_IF(CPUX86State *env)
 133{
 134    TaskState *ts = env->opaque;
 135
 136    ts->v86flags |= VIF_MASK;
 137    if (ts->v86flags & VIP_MASK) {
 138        return_to_32bit(env, TARGET_VM86_STI);
 139        return 1;
 140    }
 141    return 0;
 142}
 143
 144static inline void clear_IF(CPUX86State *env)
 145{
 146    TaskState *ts = env->opaque;
 147
 148    ts->v86flags &= ~VIF_MASK;
 149}
 150
 151static inline void clear_TF(CPUX86State *env)
 152{
 153    env->eflags &= ~TF_MASK;
 154}
 155
 156static inline void clear_AC(CPUX86State *env)
 157{
 158    env->eflags &= ~AC_MASK;
 159}
 160
 161static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
 162{
 163    TaskState *ts = env->opaque;
 164
 165    set_flags(ts->v86flags, eflags, ts->v86mask);
 166    set_flags(env->eflags, eflags, SAFE_MASK);
 167    if (eflags & IF_MASK)
 168        return set_IF(env);
 169    else
 170        clear_IF(env);
 171    return 0;
 172}
 173
 174static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
 175{
 176    TaskState *ts = env->opaque;
 177
 178    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
 179    set_flags(env->eflags, flags, SAFE_MASK);
 180    if (flags & IF_MASK)
 181        return set_IF(env);
 182    else
 183        clear_IF(env);
 184    return 0;
 185}
 186
 187static inline unsigned int get_vflags(CPUX86State *env)
 188{
 189    TaskState *ts = env->opaque;
 190    unsigned int flags;
 191
 192    flags = env->eflags & RETURN_MASK;
 193    if (ts->v86flags & VIF_MASK)
 194        flags |= IF_MASK;
 195    flags |= IOPL_MASK;
 196    return flags | (ts->v86flags & ts->v86mask);
 197}
 198
 199#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
 200
 201/* handle VM86 interrupt (NOTE: the CPU core currently does not
 202   support TSS interrupt revectoring, so this code is always executed) */
 203static void do_int(CPUX86State *env, int intno)
 204{
 205    TaskState *ts = env->opaque;
 206    uint32_t int_addr, segoffs, ssp;
 207    unsigned int sp;
 208
 209    if (env->segs[R_CS].selector == TARGET_BIOSSEG)
 210        goto cannot_handle;
 211    if (is_revectored(intno, &ts->vm86plus.int_revectored))
 212        goto cannot_handle;
 213    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
 214                                       &ts->vm86plus.int21_revectored))
 215        goto cannot_handle;
 216    int_addr = (intno << 2);
 217    segoffs = ldl(int_addr);
 218    if ((segoffs >> 16) == TARGET_BIOSSEG)
 219        goto cannot_handle;
 220    LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
 221             intno, segoffs >> 16, segoffs & 0xffff);
 222    /* save old state */
 223    ssp = env->segs[R_SS].selector << 4;
 224    sp = env->regs[R_ESP] & 0xffff;
 225    vm_putw(ssp, sp - 2, get_vflags(env));
 226    vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
 227    vm_putw(ssp, sp - 6, env->eip);
 228    ADD16(env->regs[R_ESP], -6);
 229    /* goto interrupt handler */
 230    env->eip = segoffs & 0xffff;
 231    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
 232    clear_TF(env);
 233    clear_IF(env);
 234    clear_AC(env);
 235    return;
 236 cannot_handle:
 237    LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
 238    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
 239}
 240
 241void handle_vm86_trap(CPUX86State *env, int trapno)
 242{
 243    if (trapno == 1 || trapno == 3) {
 244        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
 245    } else {
 246        do_int(env, trapno);
 247    }
 248}
 249
 250#define CHECK_IF_IN_TRAP() \
 251      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
 252          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
 253                newflags |= TF_MASK
 254
 255#define VM86_FAULT_RETURN \
 256        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
 257            (ts->v86flags & (IF_MASK | VIF_MASK))) \
 258            return_to_32bit(env, TARGET_VM86_PICRETURN); \
 259        return
 260
 261void handle_vm86_fault(CPUX86State *env)
 262{
 263    TaskState *ts = env->opaque;
 264    uint32_t csp, ssp;
 265    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
 266    int data32, pref_done;
 267
 268    csp = env->segs[R_CS].selector << 4;
 269    ip = env->eip & 0xffff;
 270
 271    ssp = env->segs[R_SS].selector << 4;
 272    sp = env->regs[R_ESP] & 0xffff;
 273
 274    LOG_VM86("VM86 exception %04x:%08x\n",
 275             env->segs[R_CS].selector, env->eip);
 276
 277    data32 = 0;
 278    pref_done = 0;
 279    do {
 280        opcode = vm_getb(csp, ip);
 281        ADD16(ip, 1);
 282        switch (opcode) {
 283        case 0x66:      /* 32-bit data */     data32=1; break;
 284        case 0x67:      /* 32-bit address */  break;
 285        case 0x2e:      /* CS */              break;
 286        case 0x3e:      /* DS */              break;
 287        case 0x26:      /* ES */              break;
 288        case 0x36:      /* SS */              break;
 289        case 0x65:      /* GS */              break;
 290        case 0x64:      /* FS */              break;
 291        case 0xf2:      /* repnz */           break;
 292        case 0xf3:      /* rep */             break;
 293        default: pref_done = 1;
 294        }
 295    } while (!pref_done);
 296
 297    /* VM86 mode */
 298    switch(opcode) {
 299    case 0x9c: /* pushf */
 300        if (data32) {
 301            vm_putl(ssp, sp - 4, get_vflags(env));
 302            ADD16(env->regs[R_ESP], -4);
 303        } else {
 304            vm_putw(ssp, sp - 2, get_vflags(env));
 305            ADD16(env->regs[R_ESP], -2);
 306        }
 307        env->eip = ip;
 308        VM86_FAULT_RETURN;
 309
 310    case 0x9d: /* popf */
 311        if (data32) {
 312            newflags = vm_getl(ssp, sp);
 313            ADD16(env->regs[R_ESP], 4);
 314        } else {
 315            newflags = vm_getw(ssp, sp);
 316            ADD16(env->regs[R_ESP], 2);
 317        }
 318        env->eip = ip;
 319        CHECK_IF_IN_TRAP();
 320        if (data32) {
 321            if (set_vflags_long(newflags, env))
 322                return;
 323        } else {
 324            if (set_vflags_short(newflags, env))
 325                return;
 326        }
 327        VM86_FAULT_RETURN;
 328
 329    case 0xcd: /* int */
 330        intno = vm_getb(csp, ip);
 331        ADD16(ip, 1);
 332        env->eip = ip;
 333        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
 334            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
 335                  (intno &7)) & 1) {
 336                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
 337                return;
 338            }
 339        }
 340        do_int(env, intno);
 341        break;
 342
 343    case 0xcf: /* iret */
 344        if (data32) {
 345            newip = vm_getl(ssp, sp) & 0xffff;
 346            newcs = vm_getl(ssp, sp + 4) & 0xffff;
 347            newflags = vm_getl(ssp, sp + 8);
 348            ADD16(env->regs[R_ESP], 12);
 349        } else {
 350            newip = vm_getw(ssp, sp);
 351            newcs = vm_getw(ssp, sp + 2);
 352            newflags = vm_getw(ssp, sp + 4);
 353            ADD16(env->regs[R_ESP], 6);
 354        }
 355        env->eip = newip;
 356        cpu_x86_load_seg(env, R_CS, newcs);
 357        CHECK_IF_IN_TRAP();
 358        if (data32) {
 359            if (set_vflags_long(newflags, env))
 360                return;
 361        } else {
 362            if (set_vflags_short(newflags, env))
 363                return;
 364        }
 365        VM86_FAULT_RETURN;
 366
 367    case 0xfa: /* cli */
 368        env->eip = ip;
 369        clear_IF(env);
 370        VM86_FAULT_RETURN;
 371
 372    case 0xfb: /* sti */
 373        env->eip = ip;
 374        if (set_IF(env))
 375            return;
 376        VM86_FAULT_RETURN;
 377
 378    default:
 379        /* real VM86 GPF exception */
 380        return_to_32bit(env, TARGET_VM86_UNKNOWN);
 381        break;
 382    }
 383}
 384
 385int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
 386{
 387    TaskState *ts = env->opaque;
 388    struct target_vm86plus_struct * target_v86;
 389    int ret;
 390
 391    switch (subfunction) {
 392    case TARGET_VM86_REQUEST_IRQ:
 393    case TARGET_VM86_FREE_IRQ:
 394    case TARGET_VM86_GET_IRQ_BITS:
 395    case TARGET_VM86_GET_AND_RESET_IRQ:
 396        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
 397        ret = -TARGET_EINVAL;
 398        goto out;
 399    case TARGET_VM86_PLUS_INSTALL_CHECK:
 400        /* NOTE: on old vm86 stuff this will return the error
 401           from verify_area(), because the subfunction is
 402           interpreted as (invalid) address to vm86_struct.
 403           So the installation check works.
 404            */
 405        ret = 0;
 406        goto out;
 407    }
 408
 409    /* save current CPU regs */
 410    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
 411    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
 412    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
 413    ts->vm86_saved_regs.edx = env->regs[R_EDX];
 414    ts->vm86_saved_regs.esi = env->regs[R_ESI];
 415    ts->vm86_saved_regs.edi = env->regs[R_EDI];
 416    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
 417    ts->vm86_saved_regs.esp = env->regs[R_ESP];
 418    ts->vm86_saved_regs.eflags = env->eflags;
 419    ts->vm86_saved_regs.eip  = env->eip;
 420    ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
 421    ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
 422    ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
 423    ts->vm86_saved_regs.es = env->segs[R_ES].selector;
 424    ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
 425    ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
 426
 427    ts->target_v86 = vm86_addr;
 428    if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
 429        return -TARGET_EFAULT;
 430    /* build vm86 CPU state */
 431    ts->v86flags = tswap32(target_v86->regs.eflags);
 432    env->eflags = (env->eflags & ~SAFE_MASK) |
 433        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
 434
 435    ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
 436    switch (ts->vm86plus.cpu_type) {
 437    case TARGET_CPU_286:
 438        ts->v86mask = 0;
 439        break;
 440    case TARGET_CPU_386:
 441        ts->v86mask = NT_MASK | IOPL_MASK;
 442        break;
 443    case TARGET_CPU_486:
 444        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
 445        break;
 446    default:
 447        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
 448        break;
 449    }
 450
 451    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
 452    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
 453    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
 454    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
 455    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
 456    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
 457    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
 458    env->eip = tswap32(target_v86->regs.eip);
 459    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
 460    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
 461    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
 462    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
 463    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
 464    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
 465    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
 466                                            the end of the syscall */
 467    memcpy(&ts->vm86plus.int_revectored,
 468           &target_v86->int_revectored, 32);
 469    memcpy(&ts->vm86plus.int21_revectored,
 470           &target_v86->int21_revectored, 32);
 471    ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
 472    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
 473           target_v86->vm86plus.vm86dbg_intxxtab, 32);
 474    unlock_user_struct(target_v86, vm86_addr, 0);
 475
 476    LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
 477             env->segs[R_CS].selector, env->eip);
 478    /* now the virtual CPU is ready for vm86 execution ! */
 479 out:
 480    return ret;
 481}
 482