qemu/target-xtensa/op_helper.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "cpu.h"
  29#include "helper.h"
  30#include "qemu/host-utils.h"
  31
  32static void do_unaligned_access(CPUXtensaState *env,
  33        target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
  34
  35#define ALIGNED_ONLY
  36#define MMUSUFFIX _mmu
  37
  38#define SHIFT 0
  39#include "exec/softmmu_template.h"
  40
  41#define SHIFT 1
  42#include "exec/softmmu_template.h"
  43
  44#define SHIFT 2
  45#include "exec/softmmu_template.h"
  46
  47#define SHIFT 3
  48#include "exec/softmmu_template.h"
  49
  50static void do_unaligned_access(CPUXtensaState *env,
  51        target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
  52{
  53    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
  54            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
  55        cpu_restore_state(env, retaddr);
  56        HELPER(exception_cause_vaddr)(env,
  57                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
  58    }
  59}
  60
  61void tlb_fill(CPUXtensaState *env,
  62        target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
  63{
  64    uint32_t paddr;
  65    uint32_t page_size;
  66    unsigned access;
  67    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
  68            &paddr, &page_size, &access);
  69
  70    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
  71            vaddr, is_write, mmu_idx, paddr, ret);
  72
  73    if (ret == 0) {
  74        tlb_set_page(env,
  75                vaddr & TARGET_PAGE_MASK,
  76                paddr & TARGET_PAGE_MASK,
  77                access, mmu_idx, page_size);
  78    } else {
  79        cpu_restore_state(env, retaddr);
  80        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
  81    }
  82}
  83
  84static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
  85{
  86    uint32_t paddr;
  87    uint32_t page_size;
  88    unsigned access;
  89    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
  90            &paddr, &page_size, &access);
  91    if (ret == 0) {
  92        tb_invalidate_phys_addr(paddr);
  93    }
  94}
  95
  96void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
  97{
  98    env->exception_index = excp;
  99    cpu_loop_exit(env);
 100}
 101
 102void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
 103{
 104    uint32_t vector;
 105
 106    env->pc = pc;
 107    if (env->sregs[PS] & PS_EXCM) {
 108        if (env->config->ndepc) {
 109            env->sregs[DEPC] = pc;
 110        } else {
 111            env->sregs[EPC1] = pc;
 112        }
 113        vector = EXC_DOUBLE;
 114    } else {
 115        env->sregs[EPC1] = pc;
 116        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
 117    }
 118
 119    env->sregs[EXCCAUSE] = cause;
 120    env->sregs[PS] |= PS_EXCM;
 121
 122    HELPER(exception)(env, vector);
 123}
 124
 125void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
 126        uint32_t pc, uint32_t cause, uint32_t vaddr)
 127{
 128    env->sregs[EXCVADDR] = vaddr;
 129    HELPER(exception_cause)(env, pc, cause);
 130}
 131
 132void debug_exception_env(CPUXtensaState *env, uint32_t cause)
 133{
 134    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
 135        HELPER(debug_exception)(env, env->pc, cause);
 136    }
 137}
 138
 139void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
 140{
 141    unsigned level = env->config->debug_level;
 142
 143    env->pc = pc;
 144    env->sregs[DEBUGCAUSE] = cause;
 145    env->sregs[EPC1 + level - 1] = pc;
 146    env->sregs[EPS2 + level - 2] = env->sregs[PS];
 147    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
 148        (level << PS_INTLEVEL_SHIFT);
 149    HELPER(exception)(env, EXC_DEBUG);
 150}
 151
 152uint32_t HELPER(nsa)(uint32_t v)
 153{
 154    if (v & 0x80000000) {
 155        v = ~v;
 156    }
 157    return v ? clz32(v) - 1 : 31;
 158}
 159
 160uint32_t HELPER(nsau)(uint32_t v)
 161{
 162    return v ? clz32(v) : 32;
 163}
 164
 165static void copy_window_from_phys(CPUXtensaState *env,
 166        uint32_t window, uint32_t phys, uint32_t n)
 167{
 168    assert(phys < env->config->nareg);
 169    if (phys + n <= env->config->nareg) {
 170        memcpy(env->regs + window, env->phys_regs + phys,
 171                n * sizeof(uint32_t));
 172    } else {
 173        uint32_t n1 = env->config->nareg - phys;
 174        memcpy(env->regs + window, env->phys_regs + phys,
 175                n1 * sizeof(uint32_t));
 176        memcpy(env->regs + window + n1, env->phys_regs,
 177                (n - n1) * sizeof(uint32_t));
 178    }
 179}
 180
 181static void copy_phys_from_window(CPUXtensaState *env,
 182        uint32_t phys, uint32_t window, uint32_t n)
 183{
 184    assert(phys < env->config->nareg);
 185    if (phys + n <= env->config->nareg) {
 186        memcpy(env->phys_regs + phys, env->regs + window,
 187                n * sizeof(uint32_t));
 188    } else {
 189        uint32_t n1 = env->config->nareg - phys;
 190        memcpy(env->phys_regs + phys, env->regs + window,
 191                n1 * sizeof(uint32_t));
 192        memcpy(env->phys_regs, env->regs + window + n1,
 193                (n - n1) * sizeof(uint32_t));
 194    }
 195}
 196
 197
 198static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
 199{
 200    return a & (env->config->nareg / 4 - 1);
 201}
 202
 203static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
 204{
 205    return 1 << windowbase_bound(a, env);
 206}
 207
 208void xtensa_sync_window_from_phys(CPUXtensaState *env)
 209{
 210    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
 211}
 212
 213void xtensa_sync_phys_from_window(CPUXtensaState *env)
 214{
 215    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
 216}
 217
 218static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
 219{
 220    xtensa_sync_phys_from_window(env);
 221    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
 222    xtensa_sync_window_from_phys(env);
 223}
 224
 225static void rotate_window(CPUXtensaState *env, uint32_t delta)
 226{
 227    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
 228}
 229
 230void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
 231{
 232    rotate_window_abs(env, v);
 233}
 234
 235void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
 236{
 237    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
 238    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
 239        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
 240                pc, env->sregs[PS]);
 241        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
 242    } else {
 243        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
 244        rotate_window(env, callinc);
 245        env->sregs[WINDOW_START] |=
 246            windowstart_bit(env->sregs[WINDOW_BASE], env);
 247    }
 248}
 249
 250void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
 251{
 252    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
 253    uint32_t windowstart = env->sregs[WINDOW_START];
 254    uint32_t m, n;
 255
 256    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
 257        return;
 258    }
 259
 260    for (n = 1; ; ++n) {
 261        if (n > w) {
 262            return;
 263        }
 264        if (windowstart & windowstart_bit(windowbase + n, env)) {
 265            break;
 266        }
 267    }
 268
 269    m = windowbase_bound(windowbase + n, env);
 270    rotate_window(env, n);
 271    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
 272        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
 273    env->sregs[EPC1] = env->pc = pc;
 274
 275    if (windowstart & windowstart_bit(m + 1, env)) {
 276        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
 277    } else if (windowstart & windowstart_bit(m + 2, env)) {
 278        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
 279    } else {
 280        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
 281    }
 282}
 283
 284uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
 285{
 286    int n = (env->regs[0] >> 30) & 0x3;
 287    int m = 0;
 288    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
 289    uint32_t windowstart = env->sregs[WINDOW_START];
 290    uint32_t ret_pc = 0;
 291
 292    if (windowstart & windowstart_bit(windowbase - 1, env)) {
 293        m = 1;
 294    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
 295        m = 2;
 296    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
 297        m = 3;
 298    }
 299
 300    if (n == 0 || (m != 0 && m != n) ||
 301            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
 302        qemu_log("Illegal retw instruction(pc = %08x), "
 303                "PS = %08x, m = %d, n = %d\n",
 304                pc, env->sregs[PS], m, n);
 305        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
 306    } else {
 307        int owb = windowbase;
 308
 309        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
 310
 311        rotate_window(env, -n);
 312        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
 313            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
 314        } else {
 315            /* window underflow */
 316            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
 317                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
 318            env->sregs[EPC1] = env->pc = pc;
 319
 320            if (n == 1) {
 321                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
 322            } else if (n == 2) {
 323                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
 324            } else if (n == 3) {
 325                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
 326            }
 327        }
 328    }
 329    return ret_pc;
 330}
 331
 332void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
 333{
 334    rotate_window(env, imm4);
 335}
 336
 337void HELPER(restore_owb)(CPUXtensaState *env)
 338{
 339    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
 340}
 341
 342void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
 343{
 344    if ((env->sregs[WINDOW_START] &
 345            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
 346             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
 347             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
 348        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
 349    }
 350}
 351
 352void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
 353{
 354    if (env->sregs[LBEG] != v) {
 355        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 356        env->sregs[LBEG] = v;
 357    }
 358}
 359
 360void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
 361{
 362    if (env->sregs[LEND] != v) {
 363        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 364        env->sregs[LEND] = v;
 365        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 366    }
 367}
 368
 369void HELPER(dump_state)(CPUXtensaState *env)
 370{
 371    cpu_dump_state(env, stderr, fprintf, 0);
 372}
 373
 374void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
 375{
 376    CPUState *cpu;
 377
 378    env->pc = pc;
 379    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
 380        (intlevel << PS_INTLEVEL_SHIFT);
 381    check_interrupts(env);
 382    if (env->pending_irq_level) {
 383        cpu_loop_exit(env);
 384        return;
 385    }
 386
 387    cpu = CPU(xtensa_env_get_cpu(env));
 388    env->halt_clock = qemu_get_clock_ns(vm_clock);
 389    cpu->halted = 1;
 390    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
 391        xtensa_rearm_ccompare_timer(env);
 392    }
 393    HELPER(exception)(env, EXCP_HLT);
 394}
 395
 396void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
 397{
 398    xtensa_timer_irq(env, id, active);
 399}
 400
 401void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
 402{
 403    xtensa_advance_ccount(env, d);
 404}
 405
 406void HELPER(check_interrupts)(CPUXtensaState *env)
 407{
 408    check_interrupts(env);
 409}
 410
 411/*!
 412 * Check vaddr accessibility/cache attributes and raise an exception if
 413 * specified by the ATOMCTL SR.
 414 *
 415 * Note: local memory exclusion is not implemented
 416 */
 417void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
 418{
 419    uint32_t paddr, page_size, access;
 420    uint32_t atomctl = env->sregs[ATOMCTL];
 421    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
 422            xtensa_get_cring(env), &paddr, &page_size, &access);
 423
 424    /*
 425     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
 426     * see opcode description in the ISA
 427     */
 428    if (rc == 0 &&
 429            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
 430        rc = STORE_PROHIBITED_CAUSE;
 431    }
 432
 433    if (rc) {
 434        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
 435    }
 436
 437    /*
 438     * When data cache is not configured use ATOMCTL bypass field.
 439     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
 440     * under the Conditional Store Option.
 441     */
 442    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
 443        access = PAGE_CACHE_BYPASS;
 444    }
 445
 446    switch (access & PAGE_CACHE_MASK) {
 447    case PAGE_CACHE_WB:
 448        atomctl >>= 2;
 449    case PAGE_CACHE_WT:
 450        atomctl >>= 2;
 451    case PAGE_CACHE_BYPASS:
 452        if ((atomctl & 0x3) == 0) {
 453            HELPER(exception_cause_vaddr)(env, pc,
 454                    LOAD_STORE_ERROR_CAUSE, vaddr);
 455        }
 456        break;
 457
 458    case PAGE_CACHE_ISOLATE:
 459        HELPER(exception_cause_vaddr)(env, pc,
 460                LOAD_STORE_ERROR_CAUSE, vaddr);
 461        break;
 462
 463    default:
 464        break;
 465    }
 466}
 467
 468void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
 469{
 470    v = (v & 0xffffff00) | 0x1;
 471    if (v != env->sregs[RASID]) {
 472        env->sregs[RASID] = v;
 473        tlb_flush(env, 1);
 474    }
 475}
 476
 477static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
 478{
 479    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
 480
 481    switch (way) {
 482    case 4:
 483        return (tlbcfg >> 16) & 0x3;
 484
 485    case 5:
 486        return (tlbcfg >> 20) & 0x1;
 487
 488    case 6:
 489        return (tlbcfg >> 24) & 0x1;
 490
 491    default:
 492        return 0;
 493    }
 494}
 495
 496/*!
 497 * Get bit mask for the virtual address bits translated by the TLB way
 498 */
 499uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 500{
 501    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 502        bool varway56 = dtlb ?
 503            env->config->dtlb.varway56 :
 504            env->config->itlb.varway56;
 505
 506        switch (way) {
 507        case 4:
 508            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
 509
 510        case 5:
 511            if (varway56) {
 512                return 0xf8000000 << get_page_size(env, dtlb, way);
 513            } else {
 514                return 0xf8000000;
 515            }
 516
 517        case 6:
 518            if (varway56) {
 519                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
 520            } else {
 521                return 0xf0000000;
 522            }
 523
 524        default:
 525            return 0xfffff000;
 526        }
 527    } else {
 528        return REGION_PAGE_MASK;
 529    }
 530}
 531
 532/*!
 533 * Get bit mask for the 'VPN without index' field.
 534 * See ISA, 4.6.5.6, data format for RxTLB0
 535 */
 536static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 537{
 538    if (way < 4) {
 539        bool is32 = (dtlb ?
 540                env->config->dtlb.nrefillentries :
 541                env->config->itlb.nrefillentries) == 32;
 542        return is32 ? 0xffff8000 : 0xffffc000;
 543    } else if (way == 4) {
 544        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
 545    } else if (way <= 6) {
 546        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
 547        bool varway56 = dtlb ?
 548            env->config->dtlb.varway56 :
 549            env->config->itlb.varway56;
 550
 551        if (varway56) {
 552            return mask << (way == 5 ? 2 : 3);
 553        } else {
 554            return mask << 1;
 555        }
 556    } else {
 557        return 0xfffff000;
 558    }
 559}
 560
 561/*!
 562 * Split virtual address into VPN (with index) and entry index
 563 * for the given TLB way
 564 */
 565void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
 566        uint32_t *vpn, uint32_t wi, uint32_t *ei)
 567{
 568    bool varway56 = dtlb ?
 569        env->config->dtlb.varway56 :
 570        env->config->itlb.varway56;
 571
 572    if (!dtlb) {
 573        wi &= 7;
 574    }
 575
 576    if (wi < 4) {
 577        bool is32 = (dtlb ?
 578                env->config->dtlb.nrefillentries :
 579                env->config->itlb.nrefillentries) == 32;
 580        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
 581    } else {
 582        switch (wi) {
 583        case 4:
 584            {
 585                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
 586                *ei = (v >> eibase) & 0x3;
 587            }
 588            break;
 589
 590        case 5:
 591            if (varway56) {
 592                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
 593                *ei = (v >> eibase) & 0x3;
 594            } else {
 595                *ei = (v >> 27) & 0x1;
 596            }
 597            break;
 598
 599        case 6:
 600            if (varway56) {
 601                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
 602                *ei = (v >> eibase) & 0x7;
 603            } else {
 604                *ei = (v >> 28) & 0x1;
 605            }
 606            break;
 607
 608        default:
 609            *ei = 0;
 610            break;
 611        }
 612    }
 613    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 614}
 615
 616/*!
 617 * Split TLB address into TLB way, entry index and VPN (with index).
 618 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 619 */
 620static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
 621        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
 622{
 623    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 624        *wi = v & (dtlb ? 0xf : 0x7);
 625        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
 626    } else {
 627        *vpn = v & REGION_PAGE_MASK;
 628        *wi = 0;
 629        *ei = (v >> 29) & 0x7;
 630    }
 631}
 632
 633static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
 634        uint32_t v, bool dtlb, uint32_t *pwi)
 635{
 636    uint32_t vpn;
 637    uint32_t wi;
 638    uint32_t ei;
 639
 640    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 641    if (pwi) {
 642        *pwi = wi;
 643    }
 644    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
 645}
 646
 647uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 648{
 649    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 650        uint32_t wi;
 651        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 652        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
 653    } else {
 654        return v & REGION_PAGE_MASK;
 655    }
 656}
 657
 658uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 659{
 660    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
 661    return entry->paddr | entry->attr;
 662}
 663
 664void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 665{
 666    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 667        uint32_t wi;
 668        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 669        if (entry->variable && entry->asid) {
 670            tlb_flush_page(env, entry->vaddr);
 671            entry->asid = 0;
 672        }
 673    }
 674}
 675
 676uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 677{
 678    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 679        uint32_t wi;
 680        uint32_t ei;
 681        uint8_t ring;
 682        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
 683
 684        switch (res) {
 685        case 0:
 686            if (ring >= xtensa_get_ring(env)) {
 687                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
 688            }
 689            break;
 690
 691        case INST_TLB_MULTI_HIT_CAUSE:
 692        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
 693            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
 694            break;
 695        }
 696        return 0;
 697    } else {
 698        return (v & REGION_PAGE_MASK) | 0x1;
 699    }
 700}
 701
 702void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
 703        xtensa_tlb_entry *entry, bool dtlb,
 704        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
 705{
 706    entry->vaddr = vpn;
 707    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 708    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
 709    entry->attr = pte & 0xf;
 710}
 711
 712void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
 713        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
 714{
 715    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 716
 717    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 718        if (entry->variable) {
 719            if (entry->asid) {
 720                tlb_flush_page(env, entry->vaddr);
 721            }
 722            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
 723            tlb_flush_page(env, entry->vaddr);
 724        } else {
 725            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
 726                    __func__, dtlb, wi, ei);
 727        }
 728    } else {
 729        tlb_flush_page(env, entry->vaddr);
 730        if (xtensa_option_enabled(env->config,
 731                    XTENSA_OPTION_REGION_TRANSLATION)) {
 732            entry->paddr = pte & REGION_PAGE_MASK;
 733        }
 734        entry->attr = pte & 0xf;
 735    }
 736}
 737
 738void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
 739{
 740    uint32_t vpn;
 741    uint32_t wi;
 742    uint32_t ei;
 743    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 744    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
 745}
 746
 747
 748void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
 749{
 750    uint32_t change = v ^ env->sregs[IBREAKENABLE];
 751    unsigned i;
 752
 753    for (i = 0; i < env->config->nibreak; ++i) {
 754        if (change & (1 << i)) {
 755            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
 756        }
 757    }
 758    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
 759}
 760
 761void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
 762{
 763    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
 764        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
 765        tb_invalidate_virtual_addr(env, v);
 766    }
 767    env->sregs[IBREAKA + i] = v;
 768}
 769
 770static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
 771        uint32_t dbreakc)
 772{
 773    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 774    uint32_t mask = dbreakc | ~DBREAKC_MASK;
 775
 776    if (env->cpu_watchpoint[i]) {
 777        cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
 778    }
 779    if (dbreakc & DBREAKC_SB) {
 780        flags |= BP_MEM_WRITE;
 781    }
 782    if (dbreakc & DBREAKC_LB) {
 783        flags |= BP_MEM_READ;
 784    }
 785    /* contiguous mask after inversion is one less than some power of 2 */
 786    if ((~mask + 1) & ~mask) {
 787        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
 788        /* cut mask after the first zero bit */
 789        mask = 0xffffffff << (32 - clo32(mask));
 790    }
 791    if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
 792            flags, &env->cpu_watchpoint[i])) {
 793        env->cpu_watchpoint[i] = NULL;
 794        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
 795                dbreaka & mask, ~mask + 1);
 796    }
 797}
 798
 799void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
 800{
 801    uint32_t dbreakc = env->sregs[DBREAKC + i];
 802
 803    if ((dbreakc & DBREAKC_SB_LB) &&
 804            env->sregs[DBREAKA + i] != v) {
 805        set_dbreak(env, i, v, dbreakc);
 806    }
 807    env->sregs[DBREAKA + i] = v;
 808}
 809
 810void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
 811{
 812    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
 813        if (v & DBREAKC_SB_LB) {
 814            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
 815        } else {
 816            if (env->cpu_watchpoint[i]) {
 817                cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
 818                env->cpu_watchpoint[i] = NULL;
 819            }
 820        }
 821    }
 822    env->sregs[DBREAKC + i] = v;
 823}
 824
 825void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
 826{
 827    static const int rounding_mode[] = {
 828        float_round_nearest_even,
 829        float_round_to_zero,
 830        float_round_up,
 831        float_round_down,
 832    };
 833
 834    env->uregs[FCR] = v & 0xfffff07f;
 835    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
 836}
 837
 838float32 HELPER(abs_s)(float32 v)
 839{
 840    return float32_abs(v);
 841}
 842
 843float32 HELPER(neg_s)(float32 v)
 844{
 845    return float32_chs(v);
 846}
 847
 848float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
 849{
 850    return float32_add(a, b, &env->fp_status);
 851}
 852
 853float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
 854{
 855    return float32_sub(a, b, &env->fp_status);
 856}
 857
 858float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
 859{
 860    return float32_mul(a, b, &env->fp_status);
 861}
 862
 863float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
 864{
 865    return float32_muladd(b, c, a, 0,
 866            &env->fp_status);
 867}
 868
 869float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
 870{
 871    return float32_muladd(b, c, a, float_muladd_negate_product,
 872            &env->fp_status);
 873}
 874
 875uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
 876{
 877    float_status fp_status = {0};
 878
 879    set_float_rounding_mode(rounding_mode, &fp_status);
 880    return float32_to_int32(
 881            float32_scalbn(v, scale, &fp_status), &fp_status);
 882}
 883
 884uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
 885{
 886    float_status fp_status = {0};
 887    float32 res;
 888
 889    set_float_rounding_mode(rounding_mode, &fp_status);
 890
 891    res = float32_scalbn(v, scale, &fp_status);
 892
 893    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
 894        return float32_to_int32(res, &fp_status);
 895    } else {
 896        return float32_to_uint32(res, &fp_status);
 897    }
 898}
 899
 900float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
 901{
 902    return float32_scalbn(int32_to_float32(v, &env->fp_status),
 903            (int32_t)scale, &env->fp_status);
 904}
 905
 906float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
 907{
 908    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
 909            (int32_t)scale, &env->fp_status);
 910}
 911
 912static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
 913{
 914    if (v) {
 915        env->sregs[BR] |= br;
 916    } else {
 917        env->sregs[BR] &= ~br;
 918    }
 919}
 920
 921void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 922{
 923    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
 924}
 925
 926void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 927{
 928    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
 929}
 930
 931void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 932{
 933    int v = float32_compare_quiet(a, b, &env->fp_status);
 934    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
 935}
 936
 937void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 938{
 939    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
 940}
 941
 942void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 943{
 944    int v = float32_compare_quiet(a, b, &env->fp_status);
 945    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
 946}
 947
 948void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 949{
 950    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
 951}
 952
 953void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 954{
 955    int v = float32_compare_quiet(a, b, &env->fp_status);
 956    set_br(env, v != float_relation_greater, br);
 957}
 958