qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include <stdint.h>
  20#include <stdbool.h>
  21#include "qemu-common.h"
  22#include "exec/cpu-common.h"
  23#include "exec/hwaddr.h"
  24#include "qemu/queue.h"
  25#include "exec/iorange.h"
  26#include "exec/ioport.h"
  27#include "qemu/int128.h"
  28
  29typedef struct MemoryRegionOps MemoryRegionOps;
  30typedef struct MemoryRegionPortio MemoryRegionPortio;
  31typedef struct MemoryRegionMmio MemoryRegionMmio;
  32
  33/* Must match *_DIRTY_FLAGS in cpu-all.h.  To be replaced with dynamic
  34 * registration.
  35 */
  36#define DIRTY_MEMORY_VGA       0
  37#define DIRTY_MEMORY_CODE      1
  38#define DIRTY_MEMORY_MIGRATION 3
  39
  40struct MemoryRegionMmio {
  41    CPUReadMemoryFunc *read[3];
  42    CPUWriteMemoryFunc *write[3];
  43};
  44
  45/* Internal use; thunks between old-style IORange and MemoryRegions. */
  46typedef struct MemoryRegionIORange MemoryRegionIORange;
  47struct MemoryRegionIORange {
  48    IORange iorange;
  49    MemoryRegion *mr;
  50    hwaddr offset;
  51};
  52
  53/*
  54 * Memory region callbacks
  55 */
  56struct MemoryRegionOps {
  57    /* Read from the memory region. @addr is relative to @mr; @size is
  58     * in bytes. */
  59    uint64_t (*read)(void *opaque,
  60                     hwaddr addr,
  61                     unsigned size);
  62    /* Write to the memory region. @addr is relative to @mr; @size is
  63     * in bytes. */
  64    void (*write)(void *opaque,
  65                  hwaddr addr,
  66                  uint64_t data,
  67                  unsigned size);
  68
  69    enum device_endian endianness;
  70    /* Guest-visible constraints: */
  71    struct {
  72        /* If nonzero, specify bounds on access sizes beyond which a machine
  73         * check is thrown.
  74         */
  75        unsigned min_access_size;
  76        unsigned max_access_size;
  77        /* If true, unaligned accesses are supported.  Otherwise unaligned
  78         * accesses throw machine checks.
  79         */
  80         bool unaligned;
  81        /*
  82         * If present, and returns #false, the transaction is not accepted
  83         * by the device (and results in machine dependent behaviour such
  84         * as a machine check exception).
  85         */
  86        bool (*accepts)(void *opaque, hwaddr addr,
  87                        unsigned size, bool is_write);
  88    } valid;
  89    /* Internal implementation constraints: */
  90    struct {
  91        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
  92         * will be rounded upwards and a partial result will be returned.
  93         */
  94        unsigned min_access_size;
  95        /* If nonzero, specifies the maximum size implemented.  Larger sizes
  96         * will be done as a series of accesses with smaller sizes.
  97         */
  98        unsigned max_access_size;
  99        /* If true, unaligned accesses are supported.  Otherwise all accesses
 100         * are converted to (possibly multiple) naturally aligned accesses.
 101         */
 102         bool unaligned;
 103    } impl;
 104
 105    /* If .read and .write are not present, old_portio may be used for
 106     * backwards compatibility with old portio registration
 107     */
 108    const MemoryRegionPortio *old_portio;
 109    /* If .read and .write are not present, old_mmio may be used for
 110     * backwards compatibility with old mmio registration
 111     */
 112    const MemoryRegionMmio old_mmio;
 113};
 114
 115typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 116typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 117
 118struct MemoryRegion {
 119    /* All fields are private - violators will be prosecuted */
 120    const MemoryRegionOps *ops;
 121    void *opaque;
 122    MemoryRegion *parent;
 123    Int128 size;
 124    hwaddr addr;
 125    void (*destructor)(MemoryRegion *mr);
 126    ram_addr_t ram_addr;
 127    bool subpage;
 128    bool terminates;
 129    bool readable;
 130    bool ram;
 131    bool readonly; /* For RAM regions */
 132    bool enabled;
 133    bool rom_device;
 134    bool warning_printed; /* For reservations */
 135    bool flush_coalesced_mmio;
 136    MemoryRegion *alias;
 137    hwaddr alias_offset;
 138    unsigned priority;
 139    bool may_overlap;
 140    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 141    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 142    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 143    const char *name;
 144    uint8_t dirty_log_mask;
 145    unsigned ioeventfd_nb;
 146    MemoryRegionIoeventfd *ioeventfds;
 147};
 148
 149struct MemoryRegionPortio {
 150    uint32_t offset;
 151    uint32_t len;
 152    unsigned size;
 153    IOPortReadFunc *read;
 154    IOPortWriteFunc *write;
 155};
 156
 157#define PORTIO_END_OF_LIST() { }
 158
 159/**
 160 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 161 */
 162struct AddressSpace {
 163    /* All fields are private. */
 164    const char *name;
 165    MemoryRegion *root;
 166    struct FlatView *current_map;
 167    int ioeventfd_nb;
 168    struct MemoryRegionIoeventfd *ioeventfds;
 169    struct AddressSpaceDispatch *dispatch;
 170    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 171};
 172
 173/**
 174 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 175 *
 176 * @mr: the region, or %NULL if empty
 177 * @address_space: the address space the region is mapped in
 178 * @offset_within_region: the beginning of the section, relative to @mr's start
 179 * @size: the size of the section; will not exceed @mr's boundaries
 180 * @offset_within_address_space: the address of the first byte of the section
 181 *     relative to the region's address space
 182 * @readonly: writes to this section are ignored
 183 */
 184struct MemoryRegionSection {
 185    MemoryRegion *mr;
 186    AddressSpace *address_space;
 187    hwaddr offset_within_region;
 188    uint64_t size;
 189    hwaddr offset_within_address_space;
 190    bool readonly;
 191};
 192
 193typedef struct MemoryListener MemoryListener;
 194
 195/**
 196 * MemoryListener: callbacks structure for updates to the physical memory map
 197 *
 198 * Allows a component to adjust to changes in the guest-visible memory map.
 199 * Use with memory_listener_register() and memory_listener_unregister().
 200 */
 201struct MemoryListener {
 202    void (*begin)(MemoryListener *listener);
 203    void (*commit)(MemoryListener *listener);
 204    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 205    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 206    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 207    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
 208    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
 209    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 210    void (*log_global_start)(MemoryListener *listener);
 211    void (*log_global_stop)(MemoryListener *listener);
 212    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 213                        bool match_data, uint64_t data, EventNotifier *e);
 214    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 215                        bool match_data, uint64_t data, EventNotifier *e);
 216    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 217                               hwaddr addr, hwaddr len);
 218    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 219                               hwaddr addr, hwaddr len);
 220    /* Lower = earlier (during add), later (during del) */
 221    unsigned priority;
 222    AddressSpace *address_space_filter;
 223    QTAILQ_ENTRY(MemoryListener) link;
 224};
 225
 226/**
 227 * memory_region_init: Initialize a memory region
 228 *
 229 * The region typically acts as a container for other memory regions.  Use
 230 * memory_region_add_subregion() to add subregions.
 231 *
 232 * @mr: the #MemoryRegion to be initialized
 233 * @name: used for debugging; not visible to the user or ABI
 234 * @size: size of the region; any subregions beyond this size will be clipped
 235 */
 236void memory_region_init(MemoryRegion *mr,
 237                        const char *name,
 238                        uint64_t size);
 239/**
 240 * memory_region_init_io: Initialize an I/O memory region.
 241 *
 242 * Accesses into the region will cause the callbacks in @ops to be called.
 243 * if @size is nonzero, subregions will be clipped to @size.
 244 *
 245 * @mr: the #MemoryRegion to be initialized.
 246 * @ops: a structure containing read and write callbacks to be used when
 247 *       I/O is performed on the region.
 248 * @opaque: passed to to the read and write callbacks of the @ops structure.
 249 * @name: used for debugging; not visible to the user or ABI
 250 * @size: size of the region.
 251 */
 252void memory_region_init_io(MemoryRegion *mr,
 253                           const MemoryRegionOps *ops,
 254                           void *opaque,
 255                           const char *name,
 256                           uint64_t size);
 257
 258/**
 259 * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
 260 *                          region will modify memory directly.
 261 *
 262 * @mr: the #MemoryRegion to be initialized.
 263 * @name: the name of the region.
 264 * @size: size of the region.
 265 */
 266void memory_region_init_ram(MemoryRegion *mr,
 267                            const char *name,
 268                            uint64_t size);
 269
 270/**
 271 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 272 *                              user-provided pointer.  Accesses into the
 273 *                              region will modify memory directly.
 274 *
 275 * @mr: the #MemoryRegion to be initialized.
 276 * @name: the name of the region.
 277 * @size: size of the region.
 278 * @ptr: memory to be mapped; must contain at least @size bytes.
 279 */
 280void memory_region_init_ram_ptr(MemoryRegion *mr,
 281                                const char *name,
 282                                uint64_t size,
 283                                void *ptr);
 284
 285/**
 286 * memory_region_init_alias: Initialize a memory region that aliases all or a
 287 *                           part of another memory region.
 288 *
 289 * @mr: the #MemoryRegion to be initialized.
 290 * @name: used for debugging; not visible to the user or ABI
 291 * @orig: the region to be referenced; @mr will be equivalent to
 292 *        @orig between @offset and @offset + @size - 1.
 293 * @offset: start of the section in @orig to be referenced.
 294 * @size: size of the region.
 295 */
 296void memory_region_init_alias(MemoryRegion *mr,
 297                              const char *name,
 298                              MemoryRegion *orig,
 299                              hwaddr offset,
 300                              uint64_t size);
 301
 302/**
 303 * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
 304 *                                 handled via callbacks.
 305 *
 306 * @mr: the #MemoryRegion to be initialized.
 307 * @ops: callbacks for write access handling.
 308 * @name: the name of the region.
 309 * @size: size of the region.
 310 */
 311void memory_region_init_rom_device(MemoryRegion *mr,
 312                                   const MemoryRegionOps *ops,
 313                                   void *opaque,
 314                                   const char *name,
 315                                   uint64_t size);
 316
 317/**
 318 * memory_region_init_reservation: Initialize a memory region that reserves
 319 *                                 I/O space.
 320 *
 321 * A reservation region primariy serves debugging purposes.  It claims I/O
 322 * space that is not supposed to be handled by QEMU itself.  Any access via
 323 * the memory API will cause an abort().
 324 *
 325 * @mr: the #MemoryRegion to be initialized
 326 * @name: used for debugging; not visible to the user or ABI
 327 * @size: size of the region.
 328 */
 329void memory_region_init_reservation(MemoryRegion *mr,
 330                                    const char *name,
 331                                    uint64_t size);
 332/**
 333 * memory_region_destroy: Destroy a memory region and reclaim all resources.
 334 *
 335 * @mr: the region to be destroyed.  May not currently be a subregion
 336 *      (see memory_region_add_subregion()) or referenced in an alias
 337 *      (see memory_region_init_alias()).
 338 */
 339void memory_region_destroy(MemoryRegion *mr);
 340
 341/**
 342 * memory_region_size: get a memory region's size.
 343 *
 344 * @mr: the memory region being queried.
 345 */
 346uint64_t memory_region_size(MemoryRegion *mr);
 347
 348/**
 349 * memory_region_is_ram: check whether a memory region is random access
 350 *
 351 * Returns %true is a memory region is random access.
 352 *
 353 * @mr: the memory region being queried
 354 */
 355bool memory_region_is_ram(MemoryRegion *mr);
 356
 357/**
 358 * memory_region_is_romd: check whether a memory region is ROMD
 359 *
 360 * Returns %true is a memory region is ROMD and currently set to allow
 361 * direct reads.
 362 *
 363 * @mr: the memory region being queried
 364 */
 365static inline bool memory_region_is_romd(MemoryRegion *mr)
 366{
 367    return mr->rom_device && mr->readable;
 368}
 369
 370/**
 371 * memory_region_name: get a memory region's name
 372 *
 373 * Returns the string that was used to initialize the memory region.
 374 *
 375 * @mr: the memory region being queried
 376 */
 377const char *memory_region_name(MemoryRegion *mr);
 378
 379/**
 380 * memory_region_is_logging: return whether a memory region is logging writes
 381 *
 382 * Returns %true if the memory region is logging writes
 383 *
 384 * @mr: the memory region being queried
 385 */
 386bool memory_region_is_logging(MemoryRegion *mr);
 387
 388/**
 389 * memory_region_is_rom: check whether a memory region is ROM
 390 *
 391 * Returns %true is a memory region is read-only memory.
 392 *
 393 * @mr: the memory region being queried
 394 */
 395bool memory_region_is_rom(MemoryRegion *mr);
 396
 397/**
 398 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
 399 *
 400 * Returns a host pointer to a RAM memory region (created with
 401 * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
 402 * care.
 403 *
 404 * @mr: the memory region being queried.
 405 */
 406void *memory_region_get_ram_ptr(MemoryRegion *mr);
 407
 408/**
 409 * memory_region_set_log: Turn dirty logging on or off for a region.
 410 *
 411 * Turns dirty logging on or off for a specified client (display, migration).
 412 * Only meaningful for RAM regions.
 413 *
 414 * @mr: the memory region being updated.
 415 * @log: whether dirty logging is to be enabled or disabled.
 416 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 417 *          %DIRTY_MEMORY_VGA.
 418 */
 419void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
 420
 421/**
 422 * memory_region_get_dirty: Check whether a range of bytes is dirty
 423 *                          for a specified client.
 424 *
 425 * Checks whether a range of bytes has been written to since the last
 426 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 427 * must be enabled.
 428 *
 429 * @mr: the memory region being queried.
 430 * @addr: the address (relative to the start of the region) being queried.
 431 * @size: the size of the range being queried.
 432 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 433 *          %DIRTY_MEMORY_VGA.
 434 */
 435bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
 436                             hwaddr size, unsigned client);
 437
 438/**
 439 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
 440 *
 441 * Marks a range of bytes as dirty, after it has been dirtied outside
 442 * guest code.
 443 *
 444 * @mr: the memory region being dirtied.
 445 * @addr: the address (relative to the start of the region) being dirtied.
 446 * @size: size of the range being dirtied.
 447 */
 448void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
 449                             hwaddr size);
 450
 451/**
 452 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
 453 *                                     for a specified client. It clears them.
 454 *
 455 * Checks whether a range of bytes has been written to since the last
 456 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 457 * must be enabled.
 458 *
 459 * @mr: the memory region being queried.
 460 * @addr: the address (relative to the start of the region) being queried.
 461 * @size: the size of the range being queried.
 462 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 463 *          %DIRTY_MEMORY_VGA.
 464 */
 465bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
 466                                        hwaddr size, unsigned client);
 467/**
 468 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
 469 *                                  any external TLBs (e.g. kvm)
 470 *
 471 * Flushes dirty information from accelerators such as kvm and vhost-net
 472 * and makes it available to users of the memory API.
 473 *
 474 * @mr: the region being flushed.
 475 */
 476void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
 477
 478/**
 479 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
 480 *                            client.
 481 *
 482 * Marks a range of pages as no longer dirty.
 483 *
 484 * @mr: the region being updated.
 485 * @addr: the start of the subrange being cleaned.
 486 * @size: the size of the subrange being cleaned.
 487 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 488 *          %DIRTY_MEMORY_VGA.
 489 */
 490void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
 491                               hwaddr size, unsigned client);
 492
 493/**
 494 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
 495 *
 496 * Allows a memory region to be marked as read-only (turning it into a ROM).
 497 * only useful on RAM regions.
 498 *
 499 * @mr: the region being updated.
 500 * @readonly: whether rhe region is to be ROM or RAM.
 501 */
 502void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
 503
 504/**
 505 * memory_region_rom_device_set_readable: enable/disable ROM readability
 506 *
 507 * Allows a ROM device (initialized with memory_region_init_rom_device() to
 508 * to be marked as readable (default) or not readable.  When it is readable,
 509 * the device is mapped to guest memory.  When not readable, reads are
 510 * forwarded to the #MemoryRegion.read function.
 511 *
 512 * @mr: the memory region to be updated
 513 * @readable: whether reads are satisified directly (%true) or via callbacks
 514 *            (%false)
 515 */
 516void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable);
 517
 518/**
 519 * memory_region_set_coalescing: Enable memory coalescing for the region.
 520 *
 521 * Enabled writes to a region to be queued for later processing. MMIO ->write
 522 * callbacks may be delayed until a non-coalesced MMIO is issued.
 523 * Only useful for IO regions.  Roughly similar to write-combining hardware.
 524 *
 525 * @mr: the memory region to be write coalesced
 526 */
 527void memory_region_set_coalescing(MemoryRegion *mr);
 528
 529/**
 530 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
 531 *                               a region.
 532 *
 533 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
 534 * Multiple calls can be issued coalesced disjoint ranges.
 535 *
 536 * @mr: the memory region to be updated.
 537 * @offset: the start of the range within the region to be coalesced.
 538 * @size: the size of the subrange to be coalesced.
 539 */
 540void memory_region_add_coalescing(MemoryRegion *mr,
 541                                  hwaddr offset,
 542                                  uint64_t size);
 543
 544/**
 545 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
 546 *
 547 * Disables any coalescing caused by memory_region_set_coalescing() or
 548 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
 549 * hardware.
 550 *
 551 * @mr: the memory region to be updated.
 552 */
 553void memory_region_clear_coalescing(MemoryRegion *mr);
 554
 555/**
 556 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
 557 *                                    accesses.
 558 *
 559 * Ensure that pending coalesced MMIO request are flushed before the memory
 560 * region is accessed. This property is automatically enabled for all regions
 561 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
 562 *
 563 * @mr: the memory region to be updated.
 564 */
 565void memory_region_set_flush_coalesced(MemoryRegion *mr);
 566
 567/**
 568 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
 569 *                                      accesses.
 570 *
 571 * Clear the automatic coalesced MMIO flushing enabled via
 572 * memory_region_set_flush_coalesced. Note that this service has no effect on
 573 * memory regions that have MMIO coalescing enabled for themselves. For them,
 574 * automatic flushing will stop once coalescing is disabled.
 575 *
 576 * @mr: the memory region to be updated.
 577 */
 578void memory_region_clear_flush_coalesced(MemoryRegion *mr);
 579
 580/**
 581 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
 582 *                            is written to a location.
 583 *
 584 * Marks a word in an IO region (initialized with memory_region_init_io())
 585 * as a trigger for an eventfd event.  The I/O callback will not be called.
 586 * The caller must be prepared to handle failure (that is, take the required
 587 * action if the callback _is_ called).
 588 *
 589 * @mr: the memory region being updated.
 590 * @addr: the address within @mr that is to be monitored
 591 * @size: the size of the access to trigger the eventfd
 592 * @match_data: whether to match against @data, instead of just @addr
 593 * @data: the data to match against the guest write
 594 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 595 **/
 596void memory_region_add_eventfd(MemoryRegion *mr,
 597                               hwaddr addr,
 598                               unsigned size,
 599                               bool match_data,
 600                               uint64_t data,
 601                               EventNotifier *e);
 602
 603/**
 604 * memory_region_del_eventfd: Cancel an eventfd.
 605 *
 606 * Cancels an eventfd trigger requested by a previous
 607 * memory_region_add_eventfd() call.
 608 *
 609 * @mr: the memory region being updated.
 610 * @addr: the address within @mr that is to be monitored
 611 * @size: the size of the access to trigger the eventfd
 612 * @match_data: whether to match against @data, instead of just @addr
 613 * @data: the data to match against the guest write
 614 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 615 */
 616void memory_region_del_eventfd(MemoryRegion *mr,
 617                               hwaddr addr,
 618                               unsigned size,
 619                               bool match_data,
 620                               uint64_t data,
 621                               EventNotifier *e);
 622
 623/**
 624 * memory_region_add_subregion: Add a subregion to a container.
 625 *
 626 * Adds a subregion at @offset.  The subregion may not overlap with other
 627 * subregions (except for those explicitly marked as overlapping).  A region
 628 * may only be added once as a subregion (unless removed with
 629 * memory_region_del_subregion()); use memory_region_init_alias() if you
 630 * want a region to be a subregion in multiple locations.
 631 *
 632 * @mr: the region to contain the new subregion; must be a container
 633 *      initialized with memory_region_init().
 634 * @offset: the offset relative to @mr where @subregion is added.
 635 * @subregion: the subregion to be added.
 636 */
 637void memory_region_add_subregion(MemoryRegion *mr,
 638                                 hwaddr offset,
 639                                 MemoryRegion *subregion);
 640/**
 641 * memory_region_add_subregion_overlap: Add a subregion to a container
 642 *                                      with overlap.
 643 *
 644 * Adds a subregion at @offset.  The subregion may overlap with other
 645 * subregions.  Conflicts are resolved by having a higher @priority hide a
 646 * lower @priority. Subregions without priority are taken as @priority 0.
 647 * A region may only be added once as a subregion (unless removed with
 648 * memory_region_del_subregion()); use memory_region_init_alias() if you
 649 * want a region to be a subregion in multiple locations.
 650 *
 651 * @mr: the region to contain the new subregion; must be a container
 652 *      initialized with memory_region_init().
 653 * @offset: the offset relative to @mr where @subregion is added.
 654 * @subregion: the subregion to be added.
 655 * @priority: used for resolving overlaps; highest priority wins.
 656 */
 657void memory_region_add_subregion_overlap(MemoryRegion *mr,
 658                                         hwaddr offset,
 659                                         MemoryRegion *subregion,
 660                                         unsigned priority);
 661
 662/**
 663 * memory_region_get_ram_addr: Get the ram address associated with a memory
 664 *                             region
 665 *
 666 * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
 667 * code is being reworked.
 668 */
 669ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
 670
 671/**
 672 * memory_region_del_subregion: Remove a subregion.
 673 *
 674 * Removes a subregion from its container.
 675 *
 676 * @mr: the container to be updated.
 677 * @subregion: the region being removed; must be a current subregion of @mr.
 678 */
 679void memory_region_del_subregion(MemoryRegion *mr,
 680                                 MemoryRegion *subregion);
 681
 682/*
 683 * memory_region_set_enabled: dynamically enable or disable a region
 684 *
 685 * Enables or disables a memory region.  A disabled memory region
 686 * ignores all accesses to itself and its subregions.  It does not
 687 * obscure sibling subregions with lower priority - it simply behaves as
 688 * if it was removed from the hierarchy.
 689 *
 690 * Regions default to being enabled.
 691 *
 692 * @mr: the region to be updated
 693 * @enabled: whether to enable or disable the region
 694 */
 695void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
 696
 697/*
 698 * memory_region_set_address: dynamically update the address of a region
 699 *
 700 * Dynamically updates the address of a region, relative to its parent.
 701 * May be used on regions are currently part of a memory hierarchy.
 702 *
 703 * @mr: the region to be updated
 704 * @addr: new address, relative to parent region
 705 */
 706void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
 707
 708/*
 709 * memory_region_set_alias_offset: dynamically update a memory alias's offset
 710 *
 711 * Dynamically updates the offset into the target region that an alias points
 712 * to, as if the fourth argument to memory_region_init_alias() has changed.
 713 *
 714 * @mr: the #MemoryRegion to be updated; should be an alias.
 715 * @offset: the new offset into the target memory region
 716 */
 717void memory_region_set_alias_offset(MemoryRegion *mr,
 718                                    hwaddr offset);
 719
 720/**
 721 * memory_region_find: locate a MemoryRegion in an address space
 722 *
 723 * Locates the first #MemoryRegion within an address space given by
 724 * @address_space that overlaps the range given by @addr and @size.
 725 *
 726 * Returns a #MemoryRegionSection that describes a contiguous overlap.
 727 * It will have the following characteristics:
 728 *    .@offset_within_address_space >= @addr
 729 *    .@offset_within_address_space + .@size <= @addr + @size
 730 *    .@size = 0 iff no overlap was found
 731 *    .@mr is non-%NULL iff an overlap was found
 732 *
 733 * @address_space: a top-level (i.e. parentless) region that contains
 734 *       the region to be found
 735 * @addr: start of the area within @address_space to be searched
 736 * @size: size of the area to be searched
 737 */
 738MemoryRegionSection memory_region_find(MemoryRegion *address_space,
 739                                       hwaddr addr, uint64_t size);
 740
 741/**
 742 * memory_region_section_addr: get offset within MemoryRegionSection
 743 *
 744 * Returns offset within MemoryRegionSection
 745 *
 746 * @section: the memory region section being queried
 747 * @addr: address in address space
 748 */
 749static inline hwaddr
 750memory_region_section_addr(MemoryRegionSection *section,
 751                           hwaddr addr)
 752{
 753    addr -= section->offset_within_address_space;
 754    addr += section->offset_within_region;
 755    return addr;
 756}
 757
 758/**
 759 * memory_global_sync_dirty_bitmap: synchronize the dirty log for all memory
 760 *
 761 * Synchronizes the dirty page log for an entire address space.
 762 * @address_space: a top-level (i.e. parentless) region that contains the
 763 *       memory being synchronized
 764 */
 765void memory_global_sync_dirty_bitmap(MemoryRegion *address_space);
 766
 767/**
 768 * memory_region_transaction_begin: Start a transaction.
 769 *
 770 * During a transaction, changes will be accumulated and made visible
 771 * only when the transaction ends (is committed).
 772 */
 773void memory_region_transaction_begin(void);
 774
 775/**
 776 * memory_region_transaction_commit: Commit a transaction and make changes
 777 *                                   visible to the guest.
 778 */
 779void memory_region_transaction_commit(void);
 780
 781/**
 782 * memory_listener_register: register callbacks to be called when memory
 783 *                           sections are mapped or unmapped into an address
 784 *                           space
 785 *
 786 * @listener: an object containing the callbacks to be called
 787 * @filter: if non-%NULL, only regions in this address space will be observed
 788 */
 789void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
 790
 791/**
 792 * memory_listener_unregister: undo the effect of memory_listener_register()
 793 *
 794 * @listener: an object containing the callbacks to be removed
 795 */
 796void memory_listener_unregister(MemoryListener *listener);
 797
 798/**
 799 * memory_global_dirty_log_start: begin dirty logging for all regions
 800 */
 801void memory_global_dirty_log_start(void);
 802
 803/**
 804 * memory_global_dirty_log_stop: end dirty logging for all regions
 805 */
 806void memory_global_dirty_log_stop(void);
 807
 808void mtree_info(fprintf_function mon_printf, void *f);
 809
 810/**
 811 * address_space_init: initializes an address space
 812 *
 813 * @as: an uninitialized #AddressSpace
 814 * @root: a #MemoryRegion that routes addesses for the address space
 815 */
 816void address_space_init(AddressSpace *as, MemoryRegion *root);
 817
 818
 819/**
 820 * address_space_destroy: destroy an address space
 821 *
 822 * Releases all resources associated with an address space.  After an address space
 823 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
 824 * as well.
 825 *
 826 * @as: address space to be destroyed
 827 */
 828void address_space_destroy(AddressSpace *as);
 829
 830/**
 831 * address_space_rw: read from or write to an address space.
 832 *
 833 * @as: #AddressSpace to be accessed
 834 * @addr: address within that address space
 835 * @buf: buffer with the data transferred
 836 * @is_write: indicates the transfer direction
 837 */
 838void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
 839                      int len, bool is_write);
 840
 841/**
 842 * address_space_write: write to address space.
 843 *
 844 * @as: #AddressSpace to be accessed
 845 * @addr: address within that address space
 846 * @buf: buffer with the data transferred
 847 */
 848void address_space_write(AddressSpace *as, hwaddr addr,
 849                         const uint8_t *buf, int len);
 850
 851/**
 852 * address_space_read: read from an address space.
 853 *
 854 * @as: #AddressSpace to be accessed
 855 * @addr: address within that address space
 856 * @buf: buffer with the data transferred
 857 */
 858void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
 859
 860/* address_space_map: map a physical memory region into a host virtual address
 861 *
 862 * May map a subset of the requested range, given by and returned in @plen.
 863 * May return %NULL if resources needed to perform the mapping are exhausted.
 864 * Use only for reads OR writes - not for read-modify-write operations.
 865 * Use cpu_register_map_client() to know when retrying the map operation is
 866 * likely to succeed.
 867 *
 868 * @as: #AddressSpace to be accessed
 869 * @addr: address within that address space
 870 * @plen: pointer to length of buffer; updated on return
 871 * @is_write: indicates the transfer direction
 872 */
 873void *address_space_map(AddressSpace *as, hwaddr addr,
 874                        hwaddr *plen, bool is_write);
 875
 876/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
 877 *
 878 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
 879 * the amount of memory that was actually read or written by the caller.
 880 *
 881 * @as: #AddressSpace used
 882 * @addr: address within that address space
 883 * @len: buffer length as returned by address_space_map()
 884 * @access_len: amount of data actually transferred
 885 * @is_write: indicates the transfer direction
 886 */
 887void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 888                         int is_write, hwaddr access_len);
 889
 890
 891#endif
 892
 893#endif
 894