1/* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14#ifndef MEMORY_H 15#define MEMORY_H 16 17#ifndef CONFIG_USER_ONLY 18 19#include <stdint.h> 20#include <stdbool.h> 21#include "qemu-common.h" 22#include "exec/cpu-common.h" 23#include "exec/hwaddr.h" 24#include "qemu/queue.h" 25#include "exec/iorange.h" 26#include "exec/ioport.h" 27#include "qemu/int128.h" 28 29typedef struct MemoryRegionOps MemoryRegionOps; 30typedef struct MemoryRegionPortio MemoryRegionPortio; 31typedef struct MemoryRegionMmio MemoryRegionMmio; 32 33/* Must match *_DIRTY_FLAGS in cpu-all.h. To be replaced with dynamic 34 * registration. 35 */ 36#define DIRTY_MEMORY_VGA 0 37#define DIRTY_MEMORY_CODE 1 38#define DIRTY_MEMORY_MIGRATION 3 39 40struct MemoryRegionMmio { 41 CPUReadMemoryFunc *read[3]; 42 CPUWriteMemoryFunc *write[3]; 43}; 44 45/* Internal use; thunks between old-style IORange and MemoryRegions. */ 46typedef struct MemoryRegionIORange MemoryRegionIORange; 47struct MemoryRegionIORange { 48 IORange iorange; 49 MemoryRegion *mr; 50 hwaddr offset; 51}; 52 53/* 54 * Memory region callbacks 55 */ 56struct MemoryRegionOps { 57 /* Read from the memory region. @addr is relative to @mr; @size is 58 * in bytes. */ 59 uint64_t (*read)(void *opaque, 60 hwaddr addr, 61 unsigned size); 62 /* Write to the memory region. @addr is relative to @mr; @size is 63 * in bytes. */ 64 void (*write)(void *opaque, 65 hwaddr addr, 66 uint64_t data, 67 unsigned size); 68 69 enum device_endian endianness; 70 /* Guest-visible constraints: */ 71 struct { 72 /* If nonzero, specify bounds on access sizes beyond which a machine 73 * check is thrown. 74 */ 75 unsigned min_access_size; 76 unsigned max_access_size; 77 /* If true, unaligned accesses are supported. Otherwise unaligned 78 * accesses throw machine checks. 79 */ 80 bool unaligned; 81 /* 82 * If present, and returns #false, the transaction is not accepted 83 * by the device (and results in machine dependent behaviour such 84 * as a machine check exception). 85 */ 86 bool (*accepts)(void *opaque, hwaddr addr, 87 unsigned size, bool is_write); 88 } valid; 89 /* Internal implementation constraints: */ 90 struct { 91 /* If nonzero, specifies the minimum size implemented. Smaller sizes 92 * will be rounded upwards and a partial result will be returned. 93 */ 94 unsigned min_access_size; 95 /* If nonzero, specifies the maximum size implemented. Larger sizes 96 * will be done as a series of accesses with smaller sizes. 97 */ 98 unsigned max_access_size; 99 /* If true, unaligned accesses are supported. Otherwise all accesses 100 * are converted to (possibly multiple) naturally aligned accesses. 101 */ 102 bool unaligned; 103 } impl; 104 105 /* If .read and .write are not present, old_portio may be used for 106 * backwards compatibility with old portio registration 107 */ 108 const MemoryRegionPortio *old_portio; 109 /* If .read and .write are not present, old_mmio may be used for 110 * backwards compatibility with old mmio registration 111 */ 112 const MemoryRegionMmio old_mmio; 113}; 114 115typedef struct CoalescedMemoryRange CoalescedMemoryRange; 116typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 117 118struct MemoryRegion { 119 /* All fields are private - violators will be prosecuted */ 120 const MemoryRegionOps *ops; 121 void *opaque; 122 MemoryRegion *parent; 123 Int128 size; 124 hwaddr addr; 125 void (*destructor)(MemoryRegion *mr); 126 ram_addr_t ram_addr; 127 bool subpage; 128 bool terminates; 129 bool readable; 130 bool ram; 131 bool readonly; /* For RAM regions */ 132 bool enabled; 133 bool rom_device; 134 bool warning_printed; /* For reservations */ 135 bool flush_coalesced_mmio; 136 MemoryRegion *alias; 137 hwaddr alias_offset; 138 unsigned priority; 139 bool may_overlap; 140 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 141 QTAILQ_ENTRY(MemoryRegion) subregions_link; 142 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 143 const char *name; 144 uint8_t dirty_log_mask; 145 unsigned ioeventfd_nb; 146 MemoryRegionIoeventfd *ioeventfds; 147}; 148 149struct MemoryRegionPortio { 150 uint32_t offset; 151 uint32_t len; 152 unsigned size; 153 IOPortReadFunc *read; 154 IOPortWriteFunc *write; 155}; 156 157#define PORTIO_END_OF_LIST() { } 158 159/** 160 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 161 */ 162struct AddressSpace { 163 /* All fields are private. */ 164 const char *name; 165 MemoryRegion *root; 166 struct FlatView *current_map; 167 int ioeventfd_nb; 168 struct MemoryRegionIoeventfd *ioeventfds; 169 struct AddressSpaceDispatch *dispatch; 170 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 171}; 172 173/** 174 * MemoryRegionSection: describes a fragment of a #MemoryRegion 175 * 176 * @mr: the region, or %NULL if empty 177 * @address_space: the address space the region is mapped in 178 * @offset_within_region: the beginning of the section, relative to @mr's start 179 * @size: the size of the section; will not exceed @mr's boundaries 180 * @offset_within_address_space: the address of the first byte of the section 181 * relative to the region's address space 182 * @readonly: writes to this section are ignored 183 */ 184struct MemoryRegionSection { 185 MemoryRegion *mr; 186 AddressSpace *address_space; 187 hwaddr offset_within_region; 188 uint64_t size; 189 hwaddr offset_within_address_space; 190 bool readonly; 191}; 192 193typedef struct MemoryListener MemoryListener; 194 195/** 196 * MemoryListener: callbacks structure for updates to the physical memory map 197 * 198 * Allows a component to adjust to changes in the guest-visible memory map. 199 * Use with memory_listener_register() and memory_listener_unregister(). 200 */ 201struct MemoryListener { 202 void (*begin)(MemoryListener *listener); 203 void (*commit)(MemoryListener *listener); 204 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 205 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 206 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 207 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section); 208 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section); 209 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 210 void (*log_global_start)(MemoryListener *listener); 211 void (*log_global_stop)(MemoryListener *listener); 212 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 213 bool match_data, uint64_t data, EventNotifier *e); 214 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 215 bool match_data, uint64_t data, EventNotifier *e); 216 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 217 hwaddr addr, hwaddr len); 218 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 219 hwaddr addr, hwaddr len); 220 /* Lower = earlier (during add), later (during del) */ 221 unsigned priority; 222 AddressSpace *address_space_filter; 223 QTAILQ_ENTRY(MemoryListener) link; 224}; 225 226/** 227 * memory_region_init: Initialize a memory region 228 * 229 * The region typically acts as a container for other memory regions. Use 230 * memory_region_add_subregion() to add subregions. 231 * 232 * @mr: the #MemoryRegion to be initialized 233 * @name: used for debugging; not visible to the user or ABI 234 * @size: size of the region; any subregions beyond this size will be clipped 235 */ 236void memory_region_init(MemoryRegion *mr, 237 const char *name, 238 uint64_t size); 239/** 240 * memory_region_init_io: Initialize an I/O memory region. 241 * 242 * Accesses into the region will cause the callbacks in @ops to be called. 243 * if @size is nonzero, subregions will be clipped to @size. 244 * 245 * @mr: the #MemoryRegion to be initialized. 246 * @ops: a structure containing read and write callbacks to be used when 247 * I/O is performed on the region. 248 * @opaque: passed to to the read and write callbacks of the @ops structure. 249 * @name: used for debugging; not visible to the user or ABI 250 * @size: size of the region. 251 */ 252void memory_region_init_io(MemoryRegion *mr, 253 const MemoryRegionOps *ops, 254 void *opaque, 255 const char *name, 256 uint64_t size); 257 258/** 259 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 260 * region will modify memory directly. 261 * 262 * @mr: the #MemoryRegion to be initialized. 263 * @name: the name of the region. 264 * @size: size of the region. 265 */ 266void memory_region_init_ram(MemoryRegion *mr, 267 const char *name, 268 uint64_t size); 269 270/** 271 * memory_region_init_ram_ptr: Initialize RAM memory region from a 272 * user-provided pointer. Accesses into the 273 * region will modify memory directly. 274 * 275 * @mr: the #MemoryRegion to be initialized. 276 * @name: the name of the region. 277 * @size: size of the region. 278 * @ptr: memory to be mapped; must contain at least @size bytes. 279 */ 280void memory_region_init_ram_ptr(MemoryRegion *mr, 281 const char *name, 282 uint64_t size, 283 void *ptr); 284 285/** 286 * memory_region_init_alias: Initialize a memory region that aliases all or a 287 * part of another memory region. 288 * 289 * @mr: the #MemoryRegion to be initialized. 290 * @name: used for debugging; not visible to the user or ABI 291 * @orig: the region to be referenced; @mr will be equivalent to 292 * @orig between @offset and @offset + @size - 1. 293 * @offset: start of the section in @orig to be referenced. 294 * @size: size of the region. 295 */ 296void memory_region_init_alias(MemoryRegion *mr, 297 const char *name, 298 MemoryRegion *orig, 299 hwaddr offset, 300 uint64_t size); 301 302/** 303 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 304 * handled via callbacks. 305 * 306 * @mr: the #MemoryRegion to be initialized. 307 * @ops: callbacks for write access handling. 308 * @name: the name of the region. 309 * @size: size of the region. 310 */ 311void memory_region_init_rom_device(MemoryRegion *mr, 312 const MemoryRegionOps *ops, 313 void *opaque, 314 const char *name, 315 uint64_t size); 316 317/** 318 * memory_region_init_reservation: Initialize a memory region that reserves 319 * I/O space. 320 * 321 * A reservation region primariy serves debugging purposes. It claims I/O 322 * space that is not supposed to be handled by QEMU itself. Any access via 323 * the memory API will cause an abort(). 324 * 325 * @mr: the #MemoryRegion to be initialized 326 * @name: used for debugging; not visible to the user or ABI 327 * @size: size of the region. 328 */ 329void memory_region_init_reservation(MemoryRegion *mr, 330 const char *name, 331 uint64_t size); 332/** 333 * memory_region_destroy: Destroy a memory region and reclaim all resources. 334 * 335 * @mr: the region to be destroyed. May not currently be a subregion 336 * (see memory_region_add_subregion()) or referenced in an alias 337 * (see memory_region_init_alias()). 338 */ 339void memory_region_destroy(MemoryRegion *mr); 340 341/** 342 * memory_region_size: get a memory region's size. 343 * 344 * @mr: the memory region being queried. 345 */ 346uint64_t memory_region_size(MemoryRegion *mr); 347 348/** 349 * memory_region_is_ram: check whether a memory region is random access 350 * 351 * Returns %true is a memory region is random access. 352 * 353 * @mr: the memory region being queried 354 */ 355bool memory_region_is_ram(MemoryRegion *mr); 356 357/** 358 * memory_region_is_romd: check whether a memory region is ROMD 359 * 360 * Returns %true is a memory region is ROMD and currently set to allow 361 * direct reads. 362 * 363 * @mr: the memory region being queried 364 */ 365static inline bool memory_region_is_romd(MemoryRegion *mr) 366{ 367 return mr->rom_device && mr->readable; 368} 369 370/** 371 * memory_region_name: get a memory region's name 372 * 373 * Returns the string that was used to initialize the memory region. 374 * 375 * @mr: the memory region being queried 376 */ 377const char *memory_region_name(MemoryRegion *mr); 378 379/** 380 * memory_region_is_logging: return whether a memory region is logging writes 381 * 382 * Returns %true if the memory region is logging writes 383 * 384 * @mr: the memory region being queried 385 */ 386bool memory_region_is_logging(MemoryRegion *mr); 387 388/** 389 * memory_region_is_rom: check whether a memory region is ROM 390 * 391 * Returns %true is a memory region is read-only memory. 392 * 393 * @mr: the memory region being queried 394 */ 395bool memory_region_is_rom(MemoryRegion *mr); 396 397/** 398 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 399 * 400 * Returns a host pointer to a RAM memory region (created with 401 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 402 * care. 403 * 404 * @mr: the memory region being queried. 405 */ 406void *memory_region_get_ram_ptr(MemoryRegion *mr); 407 408/** 409 * memory_region_set_log: Turn dirty logging on or off for a region. 410 * 411 * Turns dirty logging on or off for a specified client (display, migration). 412 * Only meaningful for RAM regions. 413 * 414 * @mr: the memory region being updated. 415 * @log: whether dirty logging is to be enabled or disabled. 416 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 417 * %DIRTY_MEMORY_VGA. 418 */ 419void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 420 421/** 422 * memory_region_get_dirty: Check whether a range of bytes is dirty 423 * for a specified client. 424 * 425 * Checks whether a range of bytes has been written to since the last 426 * call to memory_region_reset_dirty() with the same @client. Dirty logging 427 * must be enabled. 428 * 429 * @mr: the memory region being queried. 430 * @addr: the address (relative to the start of the region) being queried. 431 * @size: the size of the range being queried. 432 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 433 * %DIRTY_MEMORY_VGA. 434 */ 435bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 436 hwaddr size, unsigned client); 437 438/** 439 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 440 * 441 * Marks a range of bytes as dirty, after it has been dirtied outside 442 * guest code. 443 * 444 * @mr: the memory region being dirtied. 445 * @addr: the address (relative to the start of the region) being dirtied. 446 * @size: size of the range being dirtied. 447 */ 448void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 449 hwaddr size); 450 451/** 452 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 453 * for a specified client. It clears them. 454 * 455 * Checks whether a range of bytes has been written to since the last 456 * call to memory_region_reset_dirty() with the same @client. Dirty logging 457 * must be enabled. 458 * 459 * @mr: the memory region being queried. 460 * @addr: the address (relative to the start of the region) being queried. 461 * @size: the size of the range being queried. 462 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 463 * %DIRTY_MEMORY_VGA. 464 */ 465bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 466 hwaddr size, unsigned client); 467/** 468 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 469 * any external TLBs (e.g. kvm) 470 * 471 * Flushes dirty information from accelerators such as kvm and vhost-net 472 * and makes it available to users of the memory API. 473 * 474 * @mr: the region being flushed. 475 */ 476void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 477 478/** 479 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 480 * client. 481 * 482 * Marks a range of pages as no longer dirty. 483 * 484 * @mr: the region being updated. 485 * @addr: the start of the subrange being cleaned. 486 * @size: the size of the subrange being cleaned. 487 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 488 * %DIRTY_MEMORY_VGA. 489 */ 490void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 491 hwaddr size, unsigned client); 492 493/** 494 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 495 * 496 * Allows a memory region to be marked as read-only (turning it into a ROM). 497 * only useful on RAM regions. 498 * 499 * @mr: the region being updated. 500 * @readonly: whether rhe region is to be ROM or RAM. 501 */ 502void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 503 504/** 505 * memory_region_rom_device_set_readable: enable/disable ROM readability 506 * 507 * Allows a ROM device (initialized with memory_region_init_rom_device() to 508 * to be marked as readable (default) or not readable. When it is readable, 509 * the device is mapped to guest memory. When not readable, reads are 510 * forwarded to the #MemoryRegion.read function. 511 * 512 * @mr: the memory region to be updated 513 * @readable: whether reads are satisified directly (%true) or via callbacks 514 * (%false) 515 */ 516void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable); 517 518/** 519 * memory_region_set_coalescing: Enable memory coalescing for the region. 520 * 521 * Enabled writes to a region to be queued for later processing. MMIO ->write 522 * callbacks may be delayed until a non-coalesced MMIO is issued. 523 * Only useful for IO regions. Roughly similar to write-combining hardware. 524 * 525 * @mr: the memory region to be write coalesced 526 */ 527void memory_region_set_coalescing(MemoryRegion *mr); 528 529/** 530 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 531 * a region. 532 * 533 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 534 * Multiple calls can be issued coalesced disjoint ranges. 535 * 536 * @mr: the memory region to be updated. 537 * @offset: the start of the range within the region to be coalesced. 538 * @size: the size of the subrange to be coalesced. 539 */ 540void memory_region_add_coalescing(MemoryRegion *mr, 541 hwaddr offset, 542 uint64_t size); 543 544/** 545 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 546 * 547 * Disables any coalescing caused by memory_region_set_coalescing() or 548 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 549 * hardware. 550 * 551 * @mr: the memory region to be updated. 552 */ 553void memory_region_clear_coalescing(MemoryRegion *mr); 554 555/** 556 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 557 * accesses. 558 * 559 * Ensure that pending coalesced MMIO request are flushed before the memory 560 * region is accessed. This property is automatically enabled for all regions 561 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 562 * 563 * @mr: the memory region to be updated. 564 */ 565void memory_region_set_flush_coalesced(MemoryRegion *mr); 566 567/** 568 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 569 * accesses. 570 * 571 * Clear the automatic coalesced MMIO flushing enabled via 572 * memory_region_set_flush_coalesced. Note that this service has no effect on 573 * memory regions that have MMIO coalescing enabled for themselves. For them, 574 * automatic flushing will stop once coalescing is disabled. 575 * 576 * @mr: the memory region to be updated. 577 */ 578void memory_region_clear_flush_coalesced(MemoryRegion *mr); 579 580/** 581 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 582 * is written to a location. 583 * 584 * Marks a word in an IO region (initialized with memory_region_init_io()) 585 * as a trigger for an eventfd event. The I/O callback will not be called. 586 * The caller must be prepared to handle failure (that is, take the required 587 * action if the callback _is_ called). 588 * 589 * @mr: the memory region being updated. 590 * @addr: the address within @mr that is to be monitored 591 * @size: the size of the access to trigger the eventfd 592 * @match_data: whether to match against @data, instead of just @addr 593 * @data: the data to match against the guest write 594 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 595 **/ 596void memory_region_add_eventfd(MemoryRegion *mr, 597 hwaddr addr, 598 unsigned size, 599 bool match_data, 600 uint64_t data, 601 EventNotifier *e); 602 603/** 604 * memory_region_del_eventfd: Cancel an eventfd. 605 * 606 * Cancels an eventfd trigger requested by a previous 607 * memory_region_add_eventfd() call. 608 * 609 * @mr: the memory region being updated. 610 * @addr: the address within @mr that is to be monitored 611 * @size: the size of the access to trigger the eventfd 612 * @match_data: whether to match against @data, instead of just @addr 613 * @data: the data to match against the guest write 614 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 615 */ 616void memory_region_del_eventfd(MemoryRegion *mr, 617 hwaddr addr, 618 unsigned size, 619 bool match_data, 620 uint64_t data, 621 EventNotifier *e); 622 623/** 624 * memory_region_add_subregion: Add a subregion to a container. 625 * 626 * Adds a subregion at @offset. The subregion may not overlap with other 627 * subregions (except for those explicitly marked as overlapping). A region 628 * may only be added once as a subregion (unless removed with 629 * memory_region_del_subregion()); use memory_region_init_alias() if you 630 * want a region to be a subregion in multiple locations. 631 * 632 * @mr: the region to contain the new subregion; must be a container 633 * initialized with memory_region_init(). 634 * @offset: the offset relative to @mr where @subregion is added. 635 * @subregion: the subregion to be added. 636 */ 637void memory_region_add_subregion(MemoryRegion *mr, 638 hwaddr offset, 639 MemoryRegion *subregion); 640/** 641 * memory_region_add_subregion_overlap: Add a subregion to a container 642 * with overlap. 643 * 644 * Adds a subregion at @offset. The subregion may overlap with other 645 * subregions. Conflicts are resolved by having a higher @priority hide a 646 * lower @priority. Subregions without priority are taken as @priority 0. 647 * A region may only be added once as a subregion (unless removed with 648 * memory_region_del_subregion()); use memory_region_init_alias() if you 649 * want a region to be a subregion in multiple locations. 650 * 651 * @mr: the region to contain the new subregion; must be a container 652 * initialized with memory_region_init(). 653 * @offset: the offset relative to @mr where @subregion is added. 654 * @subregion: the subregion to be added. 655 * @priority: used for resolving overlaps; highest priority wins. 656 */ 657void memory_region_add_subregion_overlap(MemoryRegion *mr, 658 hwaddr offset, 659 MemoryRegion *subregion, 660 unsigned priority); 661 662/** 663 * memory_region_get_ram_addr: Get the ram address associated with a memory 664 * region 665 * 666 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 667 * code is being reworked. 668 */ 669ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 670 671/** 672 * memory_region_del_subregion: Remove a subregion. 673 * 674 * Removes a subregion from its container. 675 * 676 * @mr: the container to be updated. 677 * @subregion: the region being removed; must be a current subregion of @mr. 678 */ 679void memory_region_del_subregion(MemoryRegion *mr, 680 MemoryRegion *subregion); 681 682/* 683 * memory_region_set_enabled: dynamically enable or disable a region 684 * 685 * Enables or disables a memory region. A disabled memory region 686 * ignores all accesses to itself and its subregions. It does not 687 * obscure sibling subregions with lower priority - it simply behaves as 688 * if it was removed from the hierarchy. 689 * 690 * Regions default to being enabled. 691 * 692 * @mr: the region to be updated 693 * @enabled: whether to enable or disable the region 694 */ 695void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 696 697/* 698 * memory_region_set_address: dynamically update the address of a region 699 * 700 * Dynamically updates the address of a region, relative to its parent. 701 * May be used on regions are currently part of a memory hierarchy. 702 * 703 * @mr: the region to be updated 704 * @addr: new address, relative to parent region 705 */ 706void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 707 708/* 709 * memory_region_set_alias_offset: dynamically update a memory alias's offset 710 * 711 * Dynamically updates the offset into the target region that an alias points 712 * to, as if the fourth argument to memory_region_init_alias() has changed. 713 * 714 * @mr: the #MemoryRegion to be updated; should be an alias. 715 * @offset: the new offset into the target memory region 716 */ 717void memory_region_set_alias_offset(MemoryRegion *mr, 718 hwaddr offset); 719 720/** 721 * memory_region_find: locate a MemoryRegion in an address space 722 * 723 * Locates the first #MemoryRegion within an address space given by 724 * @address_space that overlaps the range given by @addr and @size. 725 * 726 * Returns a #MemoryRegionSection that describes a contiguous overlap. 727 * It will have the following characteristics: 728 * .@offset_within_address_space >= @addr 729 * .@offset_within_address_space + .@size <= @addr + @size 730 * .@size = 0 iff no overlap was found 731 * .@mr is non-%NULL iff an overlap was found 732 * 733 * @address_space: a top-level (i.e. parentless) region that contains 734 * the region to be found 735 * @addr: start of the area within @address_space to be searched 736 * @size: size of the area to be searched 737 */ 738MemoryRegionSection memory_region_find(MemoryRegion *address_space, 739 hwaddr addr, uint64_t size); 740 741/** 742 * memory_region_section_addr: get offset within MemoryRegionSection 743 * 744 * Returns offset within MemoryRegionSection 745 * 746 * @section: the memory region section being queried 747 * @addr: address in address space 748 */ 749static inline hwaddr 750memory_region_section_addr(MemoryRegionSection *section, 751 hwaddr addr) 752{ 753 addr -= section->offset_within_address_space; 754 addr += section->offset_within_region; 755 return addr; 756} 757 758/** 759 * memory_global_sync_dirty_bitmap: synchronize the dirty log for all memory 760 * 761 * Synchronizes the dirty page log for an entire address space. 762 * @address_space: a top-level (i.e. parentless) region that contains the 763 * memory being synchronized 764 */ 765void memory_global_sync_dirty_bitmap(MemoryRegion *address_space); 766 767/** 768 * memory_region_transaction_begin: Start a transaction. 769 * 770 * During a transaction, changes will be accumulated and made visible 771 * only when the transaction ends (is committed). 772 */ 773void memory_region_transaction_begin(void); 774 775/** 776 * memory_region_transaction_commit: Commit a transaction and make changes 777 * visible to the guest. 778 */ 779void memory_region_transaction_commit(void); 780 781/** 782 * memory_listener_register: register callbacks to be called when memory 783 * sections are mapped or unmapped into an address 784 * space 785 * 786 * @listener: an object containing the callbacks to be called 787 * @filter: if non-%NULL, only regions in this address space will be observed 788 */ 789void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 790 791/** 792 * memory_listener_unregister: undo the effect of memory_listener_register() 793 * 794 * @listener: an object containing the callbacks to be removed 795 */ 796void memory_listener_unregister(MemoryListener *listener); 797 798/** 799 * memory_global_dirty_log_start: begin dirty logging for all regions 800 */ 801void memory_global_dirty_log_start(void); 802 803/** 804 * memory_global_dirty_log_stop: end dirty logging for all regions 805 */ 806void memory_global_dirty_log_stop(void); 807 808void mtree_info(fprintf_function mon_printf, void *f); 809 810/** 811 * address_space_init: initializes an address space 812 * 813 * @as: an uninitialized #AddressSpace 814 * @root: a #MemoryRegion that routes addesses for the address space 815 */ 816void address_space_init(AddressSpace *as, MemoryRegion *root); 817 818 819/** 820 * address_space_destroy: destroy an address space 821 * 822 * Releases all resources associated with an address space. After an address space 823 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 824 * as well. 825 * 826 * @as: address space to be destroyed 827 */ 828void address_space_destroy(AddressSpace *as); 829 830/** 831 * address_space_rw: read from or write to an address space. 832 * 833 * @as: #AddressSpace to be accessed 834 * @addr: address within that address space 835 * @buf: buffer with the data transferred 836 * @is_write: indicates the transfer direction 837 */ 838void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, 839 int len, bool is_write); 840 841/** 842 * address_space_write: write to address space. 843 * 844 * @as: #AddressSpace to be accessed 845 * @addr: address within that address space 846 * @buf: buffer with the data transferred 847 */ 848void address_space_write(AddressSpace *as, hwaddr addr, 849 const uint8_t *buf, int len); 850 851/** 852 * address_space_read: read from an address space. 853 * 854 * @as: #AddressSpace to be accessed 855 * @addr: address within that address space 856 * @buf: buffer with the data transferred 857 */ 858void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len); 859 860/* address_space_map: map a physical memory region into a host virtual address 861 * 862 * May map a subset of the requested range, given by and returned in @plen. 863 * May return %NULL if resources needed to perform the mapping are exhausted. 864 * Use only for reads OR writes - not for read-modify-write operations. 865 * Use cpu_register_map_client() to know when retrying the map operation is 866 * likely to succeed. 867 * 868 * @as: #AddressSpace to be accessed 869 * @addr: address within that address space 870 * @plen: pointer to length of buffer; updated on return 871 * @is_write: indicates the transfer direction 872 */ 873void *address_space_map(AddressSpace *as, hwaddr addr, 874 hwaddr *plen, bool is_write); 875 876/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 877 * 878 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 879 * the amount of memory that was actually read or written by the caller. 880 * 881 * @as: #AddressSpace used 882 * @addr: address within that address space 883 * @len: buffer length as returned by address_space_map() 884 * @access_len: amount of data actually transferred 885 * @is_write: indicates the transfer direction 886 */ 887void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 888 int is_write, hwaddr access_len); 889 890 891#endif 892 893#endif 894