qemu/target-xtensa/helper.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "cpu.h"
  29#include "exec/exec-all.h"
  30#include "exec/gdbstub.h"
  31#include "qemu/host-utils.h"
  32#if !defined(CONFIG_USER_ONLY)
  33#include "hw/loader.h"
  34#endif
  35
  36static struct XtensaConfigList *xtensa_cores;
  37
  38void xtensa_register_core(XtensaConfigList *node)
  39{
  40    node->next = xtensa_cores;
  41    xtensa_cores = node;
  42}
  43
  44static uint32_t check_hw_breakpoints(CPUXtensaState *env)
  45{
  46    unsigned i;
  47
  48    for (i = 0; i < env->config->ndbreak; ++i) {
  49        if (env->cpu_watchpoint[i] &&
  50                env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
  51            return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
  52        }
  53    }
  54    return 0;
  55}
  56
  57void xtensa_breakpoint_handler(CPUXtensaState *env)
  58{
  59    if (env->watchpoint_hit) {
  60        if (env->watchpoint_hit->flags & BP_CPU) {
  61            uint32_t cause;
  62
  63            env->watchpoint_hit = NULL;
  64            cause = check_hw_breakpoints(env);
  65            if (cause) {
  66                debug_exception_env(env, cause);
  67            }
  68            cpu_resume_from_signal(env, NULL);
  69        }
  70    }
  71}
  72
  73XtensaCPU *cpu_xtensa_init(const char *cpu_model)
  74{
  75    XtensaCPU *cpu;
  76    CPUXtensaState *env;
  77    const XtensaConfig *config = NULL;
  78    XtensaConfigList *core = xtensa_cores;
  79
  80    for (; core; core = core->next)
  81        if (strcmp(core->config->name, cpu_model) == 0) {
  82            config = core->config;
  83            break;
  84        }
  85
  86    if (config == NULL) {
  87        return NULL;
  88    }
  89
  90    cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
  91    env = &cpu->env;
  92    env->config = config;
  93
  94    xtensa_irq_init(env);
  95
  96    object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
  97
  98    return cpu;
  99}
 100
 101
 102void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
 103{
 104    XtensaConfigList *core = xtensa_cores;
 105    cpu_fprintf(f, "Available CPUs:\n");
 106    for (; core; core = core->next) {
 107        cpu_fprintf(f, "  %s\n", core->config->name);
 108    }
 109}
 110
 111hwaddr cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
 112{
 113    uint32_t paddr;
 114    uint32_t page_size;
 115    unsigned access;
 116
 117    if (xtensa_get_physical_addr(env, false, addr, 0, 0,
 118                &paddr, &page_size, &access) == 0) {
 119        return paddr;
 120    }
 121    if (xtensa_get_physical_addr(env, false, addr, 2, 0,
 122                &paddr, &page_size, &access) == 0) {
 123        return paddr;
 124    }
 125    return ~0;
 126}
 127
 128static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
 129{
 130    if (xtensa_option_enabled(env->config,
 131                XTENSA_OPTION_RELOCATABLE_VECTOR)) {
 132        return vector - env->config->vecbase + env->sregs[VECBASE];
 133    } else {
 134        return vector;
 135    }
 136}
 137
 138/*!
 139 * Handle penging IRQ.
 140 * For the high priority interrupt jump to the corresponding interrupt vector.
 141 * For the level-1 interrupt convert it to either user, kernel or double
 142 * exception with the 'level-1 interrupt' exception cause.
 143 */
 144static void handle_interrupt(CPUXtensaState *env)
 145{
 146    int level = env->pending_irq_level;
 147
 148    if (level > xtensa_get_cintlevel(env) &&
 149            level <= env->config->nlevel &&
 150            (env->config->level_mask[level] &
 151             env->sregs[INTSET] &
 152             env->sregs[INTENABLE])) {
 153        if (level > 1) {
 154            env->sregs[EPC1 + level - 1] = env->pc;
 155            env->sregs[EPS2 + level - 2] = env->sregs[PS];
 156            env->sregs[PS] =
 157                (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
 158            env->pc = relocated_vector(env,
 159                    env->config->interrupt_vector[level]);
 160        } else {
 161            env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
 162
 163            if (env->sregs[PS] & PS_EXCM) {
 164                if (env->config->ndepc) {
 165                    env->sregs[DEPC] = env->pc;
 166                } else {
 167                    env->sregs[EPC1] = env->pc;
 168                }
 169                env->exception_index = EXC_DOUBLE;
 170            } else {
 171                env->sregs[EPC1] = env->pc;
 172                env->exception_index =
 173                    (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
 174            }
 175            env->sregs[PS] |= PS_EXCM;
 176        }
 177        env->exception_taken = 1;
 178    }
 179}
 180
 181void xtensa_cpu_do_interrupt(CPUState *cs)
 182{
 183    XtensaCPU *cpu = XTENSA_CPU(cs);
 184    CPUXtensaState *env = &cpu->env;
 185
 186    if (env->exception_index == EXC_IRQ) {
 187        qemu_log_mask(CPU_LOG_INT,
 188                "%s(EXC_IRQ) level = %d, cintlevel = %d, "
 189                "pc = %08x, a0 = %08x, ps = %08x, "
 190                "intset = %08x, intenable = %08x, "
 191                "ccount = %08x\n",
 192                __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
 193                env->pc, env->regs[0], env->sregs[PS],
 194                env->sregs[INTSET], env->sregs[INTENABLE],
 195                env->sregs[CCOUNT]);
 196        handle_interrupt(env);
 197    }
 198
 199    switch (env->exception_index) {
 200    case EXC_WINDOW_OVERFLOW4:
 201    case EXC_WINDOW_UNDERFLOW4:
 202    case EXC_WINDOW_OVERFLOW8:
 203    case EXC_WINDOW_UNDERFLOW8:
 204    case EXC_WINDOW_OVERFLOW12:
 205    case EXC_WINDOW_UNDERFLOW12:
 206    case EXC_KERNEL:
 207    case EXC_USER:
 208    case EXC_DOUBLE:
 209    case EXC_DEBUG:
 210        qemu_log_mask(CPU_LOG_INT, "%s(%d) "
 211                "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
 212                __func__, env->exception_index,
 213                env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
 214        if (env->config->exception_vector[env->exception_index]) {
 215            env->pc = relocated_vector(env,
 216                    env->config->exception_vector[env->exception_index]);
 217            env->exception_taken = 1;
 218        } else {
 219            qemu_log("%s(pc = %08x) bad exception_index: %d\n",
 220                    __func__, env->pc, env->exception_index);
 221        }
 222        break;
 223
 224    case EXC_IRQ:
 225        break;
 226
 227    default:
 228        qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
 229                __func__, env->pc, env->exception_index);
 230        break;
 231    }
 232    check_interrupts(env);
 233}
 234
 235static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
 236        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 237{
 238    unsigned wi, ei;
 239
 240    for (wi = 0; wi < tlb->nways; ++wi) {
 241        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
 242            entry[wi][ei].asid = 0;
 243            entry[wi][ei].variable = true;
 244        }
 245    }
 246}
 247
 248static void reset_tlb_mmu_ways56(CPUXtensaState *env,
 249        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 250{
 251    if (!tlb->varway56) {
 252        static const xtensa_tlb_entry way5[] = {
 253            {
 254                .vaddr = 0xd0000000,
 255                .paddr = 0,
 256                .asid = 1,
 257                .attr = 7,
 258                .variable = false,
 259            }, {
 260                .vaddr = 0xd8000000,
 261                .paddr = 0,
 262                .asid = 1,
 263                .attr = 3,
 264                .variable = false,
 265            }
 266        };
 267        static const xtensa_tlb_entry way6[] = {
 268            {
 269                .vaddr = 0xe0000000,
 270                .paddr = 0xf0000000,
 271                .asid = 1,
 272                .attr = 7,
 273                .variable = false,
 274            }, {
 275                .vaddr = 0xf0000000,
 276                .paddr = 0xf0000000,
 277                .asid = 1,
 278                .attr = 3,
 279                .variable = false,
 280            }
 281        };
 282        memcpy(entry[5], way5, sizeof(way5));
 283        memcpy(entry[6], way6, sizeof(way6));
 284    } else {
 285        uint32_t ei;
 286        for (ei = 0; ei < 8; ++ei) {
 287            entry[6][ei].vaddr = ei << 29;
 288            entry[6][ei].paddr = ei << 29;
 289            entry[6][ei].asid = 1;
 290            entry[6][ei].attr = 3;
 291        }
 292    }
 293}
 294
 295static void reset_tlb_region_way0(CPUXtensaState *env,
 296        xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 297{
 298    unsigned ei;
 299
 300    for (ei = 0; ei < 8; ++ei) {
 301        entry[0][ei].vaddr = ei << 29;
 302        entry[0][ei].paddr = ei << 29;
 303        entry[0][ei].asid = 1;
 304        entry[0][ei].attr = 2;
 305        entry[0][ei].variable = true;
 306    }
 307}
 308
 309void reset_mmu(CPUXtensaState *env)
 310{
 311    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 312        env->sregs[RASID] = 0x04030201;
 313        env->sregs[ITLBCFG] = 0;
 314        env->sregs[DTLBCFG] = 0;
 315        env->autorefill_idx = 0;
 316        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
 317        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
 318        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
 319        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
 320    } else {
 321        reset_tlb_region_way0(env, env->itlb);
 322        reset_tlb_region_way0(env, env->dtlb);
 323    }
 324}
 325
 326static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
 327{
 328    unsigned i;
 329    for (i = 0; i < 4; ++i) {
 330        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
 331            return i;
 332        }
 333    }
 334    return 0xff;
 335}
 336
 337/*!
 338 * Lookup xtensa TLB for the given virtual address.
 339 * See ISA, 4.6.2.2
 340 *
 341 * \param pwi: [out] way index
 342 * \param pei: [out] entry index
 343 * \param pring: [out] access ring
 344 * \return 0 if ok, exception cause code otherwise
 345 */
 346int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
 347        uint32_t *pwi, uint32_t *pei, uint8_t *pring)
 348{
 349    const xtensa_tlb *tlb = dtlb ?
 350        &env->config->dtlb : &env->config->itlb;
 351    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
 352        env->dtlb : env->itlb;
 353
 354    int nhits = 0;
 355    unsigned wi;
 356
 357    for (wi = 0; wi < tlb->nways; ++wi) {
 358        uint32_t vpn;
 359        uint32_t ei;
 360        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
 361        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
 362            unsigned ring = get_ring(env, entry[wi][ei].asid);
 363            if (ring < 4) {
 364                if (++nhits > 1) {
 365                    return dtlb ?
 366                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
 367                        INST_TLB_MULTI_HIT_CAUSE;
 368                }
 369                *pwi = wi;
 370                *pei = ei;
 371                *pring = ring;
 372            }
 373        }
 374    }
 375    return nhits ? 0 :
 376        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
 377}
 378
 379/*!
 380 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
 381 * See ISA, 4.6.5.10
 382 */
 383static unsigned mmu_attr_to_access(uint32_t attr)
 384{
 385    unsigned access = 0;
 386
 387    if (attr < 12) {
 388        access |= PAGE_READ;
 389        if (attr & 0x1) {
 390            access |= PAGE_EXEC;
 391        }
 392        if (attr & 0x2) {
 393            access |= PAGE_WRITE;
 394        }
 395
 396        switch (attr & 0xc) {
 397        case 0:
 398            access |= PAGE_CACHE_BYPASS;
 399            break;
 400
 401        case 4:
 402            access |= PAGE_CACHE_WB;
 403            break;
 404
 405        case 8:
 406            access |= PAGE_CACHE_WT;
 407            break;
 408        }
 409    } else if (attr == 13) {
 410        access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
 411    }
 412    return access;
 413}
 414
 415/*!
 416 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
 417 * See ISA, 4.6.3.3
 418 */
 419static unsigned region_attr_to_access(uint32_t attr)
 420{
 421    static const unsigned access[16] = {
 422         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
 423         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
 424         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
 425         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
 426         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 427         [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 428        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
 429    };
 430
 431    return access[attr & 0xf];
 432}
 433
 434/*!
 435 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
 436 * See ISA, A.2.14 The Cache Attribute Register
 437 */
 438static unsigned cacheattr_attr_to_access(uint32_t attr)
 439{
 440    static const unsigned access[16] = {
 441         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
 442         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
 443         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
 444         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
 445         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 446        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
 447    };
 448
 449    return access[attr & 0xf];
 450}
 451
 452static bool is_access_granted(unsigned access, int is_write)
 453{
 454    switch (is_write) {
 455    case 0:
 456        return access & PAGE_READ;
 457
 458    case 1:
 459        return access & PAGE_WRITE;
 460
 461    case 2:
 462        return access & PAGE_EXEC;
 463
 464    default:
 465        return 0;
 466    }
 467}
 468
 469static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
 470
 471static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
 472        uint32_t vaddr, int is_write, int mmu_idx,
 473        uint32_t *paddr, uint32_t *page_size, unsigned *access,
 474        bool may_lookup_pt)
 475{
 476    bool dtlb = is_write != 2;
 477    uint32_t wi;
 478    uint32_t ei;
 479    uint8_t ring;
 480    uint32_t vpn;
 481    uint32_t pte;
 482    const xtensa_tlb_entry *entry = NULL;
 483    xtensa_tlb_entry tmp_entry;
 484    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
 485
 486    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
 487            may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
 488        ring = (pte >> 4) & 0x3;
 489        wi = 0;
 490        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
 491
 492        if (update_tlb) {
 493            wi = ++env->autorefill_idx & 0x3;
 494            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
 495            env->sregs[EXCVADDR] = vaddr;
 496            qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
 497                    __func__, vaddr, vpn, pte);
 498        } else {
 499            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
 500            entry = &tmp_entry;
 501        }
 502        ret = 0;
 503    }
 504    if (ret != 0) {
 505        return ret;
 506    }
 507
 508    if (entry == NULL) {
 509        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 510    }
 511
 512    if (ring < mmu_idx) {
 513        return dtlb ?
 514            LOAD_STORE_PRIVILEGE_CAUSE :
 515            INST_FETCH_PRIVILEGE_CAUSE;
 516    }
 517
 518    *access = mmu_attr_to_access(entry->attr) &
 519        ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
 520    if (!is_access_granted(*access, is_write)) {
 521        return dtlb ?
 522            (is_write ?
 523             STORE_PROHIBITED_CAUSE :
 524             LOAD_PROHIBITED_CAUSE) :
 525            INST_FETCH_PROHIBITED_CAUSE;
 526    }
 527
 528    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
 529    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
 530
 531    return 0;
 532}
 533
 534static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
 535{
 536    uint32_t paddr;
 537    uint32_t page_size;
 538    unsigned access;
 539    uint32_t pt_vaddr =
 540        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
 541    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
 542            &paddr, &page_size, &access, false);
 543
 544    qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
 545            vaddr, ret ? ~0 : paddr);
 546
 547    if (ret == 0) {
 548        *pte = ldl_phys(paddr);
 549    }
 550    return ret;
 551}
 552
 553static int get_physical_addr_region(CPUXtensaState *env,
 554        uint32_t vaddr, int is_write, int mmu_idx,
 555        uint32_t *paddr, uint32_t *page_size, unsigned *access)
 556{
 557    bool dtlb = is_write != 2;
 558    uint32_t wi = 0;
 559    uint32_t ei = (vaddr >> 29) & 0x7;
 560    const xtensa_tlb_entry *entry =
 561        xtensa_tlb_get_entry(env, dtlb, wi, ei);
 562
 563    *access = region_attr_to_access(entry->attr);
 564    if (!is_access_granted(*access, is_write)) {
 565        return dtlb ?
 566            (is_write ?
 567             STORE_PROHIBITED_CAUSE :
 568             LOAD_PROHIBITED_CAUSE) :
 569            INST_FETCH_PROHIBITED_CAUSE;
 570    }
 571
 572    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
 573    *page_size = ~REGION_PAGE_MASK + 1;
 574
 575    return 0;
 576}
 577
 578/*!
 579 * Convert virtual address to physical addr.
 580 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
 581 *
 582 * \return 0 if ok, exception cause code otherwise
 583 */
 584int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
 585        uint32_t vaddr, int is_write, int mmu_idx,
 586        uint32_t *paddr, uint32_t *page_size, unsigned *access)
 587{
 588    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 589        return get_physical_addr_mmu(env, update_tlb,
 590                vaddr, is_write, mmu_idx, paddr, page_size, access, true);
 591    } else if (xtensa_option_bits_enabled(env->config,
 592                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
 593                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
 594        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
 595                paddr, page_size, access);
 596    } else {
 597        *paddr = vaddr;
 598        *page_size = TARGET_PAGE_SIZE;
 599        *access = cacheattr_attr_to_access(
 600                env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
 601        return 0;
 602    }
 603}
 604
 605static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
 606        CPUXtensaState *env, bool dtlb)
 607{
 608    unsigned wi, ei;
 609    const xtensa_tlb *conf =
 610        dtlb ? &env->config->dtlb : &env->config->itlb;
 611    unsigned (*attr_to_access)(uint32_t) =
 612        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
 613        mmu_attr_to_access : region_attr_to_access;
 614
 615    for (wi = 0; wi < conf->nways; ++wi) {
 616        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
 617        const char *sz_text;
 618        bool print_header = true;
 619
 620        if (sz >= 0x100000) {
 621            sz >>= 20;
 622            sz_text = "MB";
 623        } else {
 624            sz >>= 10;
 625            sz_text = "KB";
 626        }
 627
 628        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
 629            const xtensa_tlb_entry *entry =
 630                xtensa_tlb_get_entry(env, dtlb, wi, ei);
 631
 632            if (entry->asid) {
 633                static const char * const cache_text[8] = {
 634                    [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
 635                    [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
 636                    [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
 637                    [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
 638                };
 639                unsigned access = attr_to_access(entry->attr);
 640                unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
 641                    PAGE_CACHE_SHIFT;
 642
 643                if (print_header) {
 644                    print_header = false;
 645                    cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
 646                    cpu_fprintf(f,
 647                            "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
 648                            "\t----------  ----------  ----  ---- --- -------\n");
 649                }
 650                cpu_fprintf(f,
 651                        "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
 652                        entry->vaddr,
 653                        entry->paddr,
 654                        entry->asid,
 655                        entry->attr,
 656                        (access & PAGE_READ) ? 'R' : '-',
 657                        (access & PAGE_WRITE) ? 'W' : '-',
 658                        (access & PAGE_EXEC) ? 'X' : '-',
 659                        cache_text[cache_idx] ? cache_text[cache_idx] :
 660                            "Invalid");
 661            }
 662        }
 663    }
 664}
 665
 666void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
 667{
 668    if (xtensa_option_bits_enabled(env->config,
 669                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
 670                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
 671                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
 672
 673        cpu_fprintf(f, "ITLB:\n");
 674        dump_tlb(f, cpu_fprintf, env, false);
 675        cpu_fprintf(f, "\nDTLB:\n");
 676        dump_tlb(f, cpu_fprintf, env, true);
 677    } else {
 678        cpu_fprintf(f, "No TLB for this CPU core\n");
 679    }
 680}
 681