qemu/target-arm/helper.c
<<
>>
Prefs
   1#include "cpu.h"
   2#include "exec/gdbstub.h"
   3#include "helper.h"
   4#include "qemu/host-utils.h"
   5#include "sysemu/sysemu.h"
   6#include "qemu/bitops.h"
   7
   8#ifndef CONFIG_USER_ONLY
   9static inline int get_phys_addr(CPUARMState *env, uint32_t address,
  10                                int access_type, int is_user,
  11                                hwaddr *phys_ptr, int *prot,
  12                                target_ulong *page_size);
  13#endif
  14
  15static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
  16{
  17    int nregs;
  18
  19    /* VFP data registers are always little-endian.  */
  20    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
  21    if (reg < nregs) {
  22        stfq_le_p(buf, env->vfp.regs[reg]);
  23        return 8;
  24    }
  25    if (arm_feature(env, ARM_FEATURE_NEON)) {
  26        /* Aliases for Q regs.  */
  27        nregs += 16;
  28        if (reg < nregs) {
  29            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
  30            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
  31            return 16;
  32        }
  33    }
  34    switch (reg - nregs) {
  35    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
  36    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
  37    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
  38    }
  39    return 0;
  40}
  41
  42static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
  43{
  44    int nregs;
  45
  46    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
  47    if (reg < nregs) {
  48        env->vfp.regs[reg] = ldfq_le_p(buf);
  49        return 8;
  50    }
  51    if (arm_feature(env, ARM_FEATURE_NEON)) {
  52        nregs += 16;
  53        if (reg < nregs) {
  54            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
  55            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
  56            return 16;
  57        }
  58    }
  59    switch (reg - nregs) {
  60    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
  61    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
  62    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
  63    }
  64    return 0;
  65}
  66
  67static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
  68                    uint64_t *value)
  69{
  70    *value = CPREG_FIELD32(env, ri);
  71    return 0;
  72}
  73
  74static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
  75                     uint64_t value)
  76{
  77    CPREG_FIELD32(env, ri) = value;
  78    return 0;
  79}
  80
  81static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
  82                            uint64_t *v)
  83{
  84    /* Raw read of a coprocessor register (as needed for migration, etc)
  85     * return true on success, false if the read is impossible for some reason.
  86     */
  87    if (ri->type & ARM_CP_CONST) {
  88        *v = ri->resetvalue;
  89    } else if (ri->raw_readfn) {
  90        return (ri->raw_readfn(env, ri, v) == 0);
  91    } else if (ri->readfn) {
  92        return (ri->readfn(env, ri, v) == 0);
  93    } else {
  94        if (ri->type & ARM_CP_64BIT) {
  95            *v = CPREG_FIELD64(env, ri);
  96        } else {
  97            *v = CPREG_FIELD32(env, ri);
  98        }
  99    }
 100    return true;
 101}
 102
 103static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 104                             int64_t v)
 105{
 106    /* Raw write of a coprocessor register (as needed for migration, etc).
 107     * Return true on success, false if the write is impossible for some reason.
 108     * Note that constant registers are treated as write-ignored; the
 109     * caller should check for success by whether a readback gives the
 110     * value written.
 111     */
 112    if (ri->type & ARM_CP_CONST) {
 113        return true;
 114    } else if (ri->raw_writefn) {
 115        return (ri->raw_writefn(env, ri, v) == 0);
 116    } else if (ri->writefn) {
 117        return (ri->writefn(env, ri, v) == 0);
 118    } else {
 119        if (ri->type & ARM_CP_64BIT) {
 120            CPREG_FIELD64(env, ri) = v;
 121        } else {
 122            CPREG_FIELD32(env, ri) = v;
 123        }
 124    }
 125    return true;
 126}
 127
 128bool write_cpustate_to_list(ARMCPU *cpu)
 129{
 130    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 131    int i;
 132    bool ok = true;
 133
 134    for (i = 0; i < cpu->cpreg_array_len; i++) {
 135        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 136        const ARMCPRegInfo *ri;
 137        uint64_t v;
 138        ri = get_arm_cp_reginfo(cpu, regidx);
 139        if (!ri) {
 140            ok = false;
 141            continue;
 142        }
 143        if (ri->type & ARM_CP_NO_MIGRATE) {
 144            continue;
 145        }
 146        if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
 147            ok = false;
 148            continue;
 149        }
 150        cpu->cpreg_values[i] = v;
 151    }
 152    return ok;
 153}
 154
 155bool write_list_to_cpustate(ARMCPU *cpu)
 156{
 157    int i;
 158    bool ok = true;
 159
 160    for (i = 0; i < cpu->cpreg_array_len; i++) {
 161        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 162        uint64_t v = cpu->cpreg_values[i];
 163        uint64_t readback;
 164        const ARMCPRegInfo *ri;
 165
 166        ri = get_arm_cp_reginfo(cpu, regidx);
 167        if (!ri) {
 168            ok = false;
 169            continue;
 170        }
 171        if (ri->type & ARM_CP_NO_MIGRATE) {
 172            continue;
 173        }
 174        /* Write value and confirm it reads back as written
 175         * (to catch read-only registers and partially read-only
 176         * registers where the incoming migration value doesn't match)
 177         */
 178        if (!write_raw_cp_reg(&cpu->env, ri, v) ||
 179            !read_raw_cp_reg(&cpu->env, ri, &readback) ||
 180            readback != v) {
 181            ok = false;
 182        }
 183    }
 184    return ok;
 185}
 186
 187static void add_cpreg_to_list(gpointer key, gpointer opaque)
 188{
 189    ARMCPU *cpu = opaque;
 190    uint64_t regidx;
 191    const ARMCPRegInfo *ri;
 192
 193    regidx = *(uint32_t *)key;
 194    ri = get_arm_cp_reginfo(cpu, regidx);
 195
 196    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
 197        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 198        /* The value array need not be initialized at this point */
 199        cpu->cpreg_array_len++;
 200    }
 201}
 202
 203static void count_cpreg(gpointer key, gpointer opaque)
 204{
 205    ARMCPU *cpu = opaque;
 206    uint64_t regidx;
 207    const ARMCPRegInfo *ri;
 208
 209    regidx = *(uint32_t *)key;
 210    ri = get_arm_cp_reginfo(cpu, regidx);
 211
 212    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
 213        cpu->cpreg_array_len++;
 214    }
 215}
 216
 217static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 218{
 219    uint32_t aidx = *(uint32_t *)a;
 220    uint32_t bidx = *(uint32_t *)b;
 221
 222    return aidx - bidx;
 223}
 224
 225static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
 226{
 227    GList **plist = udata;
 228
 229    *plist = g_list_prepend(*plist, key);
 230}
 231
 232void init_cpreg_list(ARMCPU *cpu)
 233{
 234    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 235     * Note that we require cpreg_tuples[] to be sorted by key ID.
 236     */
 237    GList *keys = NULL;
 238    int arraylen;
 239
 240    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
 241
 242    keys = g_list_sort(keys, cpreg_key_compare);
 243
 244    cpu->cpreg_array_len = 0;
 245
 246    g_list_foreach(keys, count_cpreg, cpu);
 247
 248    arraylen = cpu->cpreg_array_len;
 249    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 250    cpu->cpreg_values = g_new(uint64_t, arraylen);
 251    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 252    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 253    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 254    cpu->cpreg_array_len = 0;
 255
 256    g_list_foreach(keys, add_cpreg_to_list, cpu);
 257
 258    assert(cpu->cpreg_array_len == arraylen);
 259
 260    g_list_free(keys);
 261}
 262
 263static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 264{
 265    env->cp15.c3 = value;
 266    tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
 267    return 0;
 268}
 269
 270static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 271{
 272    if (env->cp15.c13_fcse != value) {
 273        /* Unlike real hardware the qemu TLB uses virtual addresses,
 274         * not modified virtual addresses, so this causes a TLB flush.
 275         */
 276        tlb_flush(env, 1);
 277        env->cp15.c13_fcse = value;
 278    }
 279    return 0;
 280}
 281static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 282                            uint64_t value)
 283{
 284    if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
 285        /* For VMSA (when not using the LPAE long descriptor page table
 286         * format) this register includes the ASID, so do a TLB flush.
 287         * For PMSA it is purely a process ID and no action is needed.
 288         */
 289        tlb_flush(env, 1);
 290    }
 291    env->cp15.c13_context = value;
 292    return 0;
 293}
 294
 295static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 296                         uint64_t value)
 297{
 298    /* Invalidate all (TLBIALL) */
 299    tlb_flush(env, 1);
 300    return 0;
 301}
 302
 303static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 304                         uint64_t value)
 305{
 306    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 307    tlb_flush_page(env, value & TARGET_PAGE_MASK);
 308    return 0;
 309}
 310
 311static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 312                          uint64_t value)
 313{
 314    /* Invalidate by ASID (TLBIASID) */
 315    tlb_flush(env, value == 0);
 316    return 0;
 317}
 318
 319static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 320                          uint64_t value)
 321{
 322    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 323    tlb_flush_page(env, value & TARGET_PAGE_MASK);
 324    return 0;
 325}
 326
 327static const ARMCPRegInfo cp_reginfo[] = {
 328    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
 329     * version" bits will read as a reserved value, which should cause
 330     * Linux to not try to use the debug hardware.
 331     */
 332    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 333      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 334    /* MMU Domain access control / MPU write buffer control */
 335    { .name = "DACR", .cp = 15,
 336      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 337      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
 338      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
 339    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
 340      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
 341      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 342    { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
 343      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
 344      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 345    /* ??? This covers not just the impdef TLB lockdown registers but also
 346     * some v7VMSA registers relating to TEX remap, so it is overly broad.
 347     */
 348    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
 349      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 350    /* MMU TLB control. Note that the wildcarding means we cover not just
 351     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 352     */
 353    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 354      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 355      .type = ARM_CP_NO_MIGRATE },
 356    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 357      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 358      .type = ARM_CP_NO_MIGRATE },
 359    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 360      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 361      .type = ARM_CP_NO_MIGRATE },
 362    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 363      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 364      .type = ARM_CP_NO_MIGRATE },
 365    /* Cache maintenance ops; some of this space may be overridden later. */
 366    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 367      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 368      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 369    REGINFO_SENTINEL
 370};
 371
 372static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 373    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 374     * over-broad.
 375     */
 376    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 377      .access = PL1_W, .type = ARM_CP_WFI },
 378    REGINFO_SENTINEL
 379};
 380
 381static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 382    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 383     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 384     */
 385    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 386      .access = PL1_W, .type = ARM_CP_WFI },
 387    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 388     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 389     * OMAPCP will override this space.
 390     */
 391    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 392      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 393      .resetvalue = 0 },
 394    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 395      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 396      .resetvalue = 0 },
 397    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 398    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 399      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
 400      .resetvalue = 0 },
 401    REGINFO_SENTINEL
 402};
 403
 404static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 405{
 406    if (env->cp15.c1_coproc != value) {
 407        env->cp15.c1_coproc = value;
 408        /* ??? Is this safe when called from within a TB?  */
 409        tb_flush(env);
 410    }
 411    return 0;
 412}
 413
 414static const ARMCPRegInfo v6_cp_reginfo[] = {
 415    /* prefetch by MVA in v6, NOP in v7 */
 416    { .name = "MVA_prefetch",
 417      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 418      .access = PL1_W, .type = ARM_CP_NOP },
 419    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 420      .access = PL0_W, .type = ARM_CP_NOP },
 421    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 422      .access = PL0_W, .type = ARM_CP_NOP },
 423    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 424      .access = PL0_W, .type = ARM_CP_NOP },
 425    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 426      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
 427      .resetvalue = 0, },
 428    /* Watchpoint Fault Address Register : should actually only be present
 429     * for 1136, 1176, 11MPCore.
 430     */
 431    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 432      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 433    { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
 434      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
 435      .resetvalue = 0, .writefn = cpacr_write },
 436    REGINFO_SENTINEL
 437};
 438
 439
 440static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
 441                      uint64_t *value)
 442{
 443    /* Generic performance monitor register read function for where
 444     * user access may be allowed by PMUSERENR.
 445     */
 446    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 447        return EXCP_UDEF;
 448    }
 449    *value = CPREG_FIELD32(env, ri);
 450    return 0;
 451}
 452
 453static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 454                      uint64_t value)
 455{
 456    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 457        return EXCP_UDEF;
 458    }
 459    /* only the DP, X, D and E bits are writable */
 460    env->cp15.c9_pmcr &= ~0x39;
 461    env->cp15.c9_pmcr |= (value & 0x39);
 462    return 0;
 463}
 464
 465static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 466                            uint64_t value)
 467{
 468    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 469        return EXCP_UDEF;
 470    }
 471    value &= (1 << 31);
 472    env->cp15.c9_pmcnten |= value;
 473    return 0;
 474}
 475
 476static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 477                            uint64_t value)
 478{
 479    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 480        return EXCP_UDEF;
 481    }
 482    value &= (1 << 31);
 483    env->cp15.c9_pmcnten &= ~value;
 484    return 0;
 485}
 486
 487static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 488                        uint64_t value)
 489{
 490    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 491        return EXCP_UDEF;
 492    }
 493    env->cp15.c9_pmovsr &= ~value;
 494    return 0;
 495}
 496
 497static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
 498                            uint64_t value)
 499{
 500    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
 501        return EXCP_UDEF;
 502    }
 503    env->cp15.c9_pmxevtyper = value & 0xff;
 504    return 0;
 505}
 506
 507static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 508                            uint64_t value)
 509{
 510    env->cp15.c9_pmuserenr = value & 1;
 511    return 0;
 512}
 513
 514static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 515                            uint64_t value)
 516{
 517    /* We have no event counters so only the C bit can be changed */
 518    value &= (1 << 31);
 519    env->cp15.c9_pminten |= value;
 520    return 0;
 521}
 522
 523static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 524                            uint64_t value)
 525{
 526    value &= (1 << 31);
 527    env->cp15.c9_pminten &= ~value;
 528    return 0;
 529}
 530
 531static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
 532                       uint64_t *value)
 533{
 534    ARMCPU *cpu = arm_env_get_cpu(env);
 535    *value = cpu->ccsidr[env->cp15.c0_cssel];
 536    return 0;
 537}
 538
 539static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 540                        uint64_t value)
 541{
 542    env->cp15.c0_cssel = value & 0xf;
 543    return 0;
 544}
 545
 546static const ARMCPRegInfo v7_cp_reginfo[] = {
 547    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 548     * debug components
 549     */
 550    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 551      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 552    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 553      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 554    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
 555    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 556      .access = PL1_W, .type = ARM_CP_NOP },
 557    /* Performance monitors are implementation defined in v7,
 558     * but with an ARM recommended set of registers, which we
 559     * follow (although we don't actually implement any counters)
 560     *
 561     * Performance registers fall into three categories:
 562     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
 563     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
 564     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
 565     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
 566     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
 567     */
 568    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
 569      .access = PL0_RW, .resetvalue = 0,
 570      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 571      .readfn = pmreg_read, .writefn = pmcntenset_write,
 572      .raw_readfn = raw_read, .raw_writefn = raw_write },
 573    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
 574      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 575      .readfn = pmreg_read, .writefn = pmcntenclr_write,
 576      .type = ARM_CP_NO_MIGRATE },
 577    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
 578      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 579      .readfn = pmreg_read, .writefn = pmovsr_write,
 580      .raw_readfn = raw_read, .raw_writefn = raw_write },
 581    /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
 582     * respect PMUSERENR.
 583     */
 584    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
 585      .access = PL0_W, .type = ARM_CP_NOP },
 586    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
 587     * We choose to RAZ/WI. XXX should respect PMUSERENR.
 588     */
 589    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
 590      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 591    /* Unimplemented, RAZ/WI. XXX PMUSERENR */
 592    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
 593      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 594    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
 595      .access = PL0_RW,
 596      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
 597      .readfn = pmreg_read, .writefn = pmxevtyper_write,
 598      .raw_readfn = raw_read, .raw_writefn = raw_write },
 599    /* Unimplemented, RAZ/WI. XXX PMUSERENR */
 600    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
 601      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 602    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
 603      .access = PL0_R | PL1_RW,
 604      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 605      .resetvalue = 0,
 606      .writefn = pmuserenr_write, .raw_writefn = raw_write },
 607    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
 608      .access = PL1_RW,
 609      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 610      .resetvalue = 0,
 611      .writefn = pmintenset_write, .raw_writefn = raw_write },
 612    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
 613      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
 614      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 615      .resetvalue = 0, .writefn = pmintenclr_write, },
 616    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
 617      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
 618      .resetvalue = 0, },
 619    { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
 620      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
 621    { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
 622      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
 623      .writefn = csselr_write, .resetvalue = 0 },
 624    /* Auxiliary ID register: this actually has an IMPDEF value but for now
 625     * just RAZ for all cores:
 626     */
 627    { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
 628      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 629    REGINFO_SENTINEL
 630};
 631
 632static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 633{
 634    value &= 1;
 635    env->teecr = value;
 636    return 0;
 637}
 638
 639static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
 640                       uint64_t *value)
 641{
 642    /* This is a helper function because the user access rights
 643     * depend on the value of the TEECR.
 644     */
 645    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
 646        return EXCP_UDEF;
 647    }
 648    *value = env->teehbr;
 649    return 0;
 650}
 651
 652static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 653                        uint64_t value)
 654{
 655    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
 656        return EXCP_UDEF;
 657    }
 658    env->teehbr = value;
 659    return 0;
 660}
 661
 662static const ARMCPRegInfo t2ee_cp_reginfo[] = {
 663    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
 664      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
 665      .resetvalue = 0,
 666      .writefn = teecr_write },
 667    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
 668      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
 669      .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
 670      .readfn = teehbr_read, .writefn = teehbr_write },
 671    REGINFO_SENTINEL
 672};
 673
 674static const ARMCPRegInfo v6k_cp_reginfo[] = {
 675    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
 676      .access = PL0_RW,
 677      .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
 678      .resetvalue = 0 },
 679    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
 680      .access = PL0_R|PL1_W,
 681      .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
 682      .resetvalue = 0 },
 683    { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
 684      .access = PL1_RW,
 685      .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
 686      .resetvalue = 0 },
 687    REGINFO_SENTINEL
 688};
 689
 690static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 691    /* Dummy implementation: RAZ/WI the whole crn=14 space */
 692    { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
 693      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 694      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
 695      .resetvalue = 0 },
 696    REGINFO_SENTINEL
 697};
 698
 699static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 700{
 701    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 702        env->cp15.c7_par = value;
 703    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 704        env->cp15.c7_par = value & 0xfffff6ff;
 705    } else {
 706        env->cp15.c7_par = value & 0xfffff1ff;
 707    }
 708    return 0;
 709}
 710
 711#ifndef CONFIG_USER_ONLY
 712/* get_phys_addr() isn't present for user-mode-only targets */
 713
 714/* Return true if extended addresses are enabled, ie this is an
 715 * LPAE implementation and we are using the long-descriptor translation
 716 * table format because the TTBCR EAE bit is set.
 717 */
 718static inline bool extended_addresses_enabled(CPUARMState *env)
 719{
 720    return arm_feature(env, ARM_FEATURE_LPAE)
 721        && (env->cp15.c2_control & (1 << 31));
 722}
 723
 724static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 725{
 726    hwaddr phys_addr;
 727    target_ulong page_size;
 728    int prot;
 729    int ret, is_user = ri->opc2 & 2;
 730    int access_type = ri->opc2 & 1;
 731
 732    if (ri->opc2 & 4) {
 733        /* Other states are only available with TrustZone */
 734        return EXCP_UDEF;
 735    }
 736    ret = get_phys_addr(env, value, access_type, is_user,
 737                        &phys_addr, &prot, &page_size);
 738    if (extended_addresses_enabled(env)) {
 739        /* ret is a DFSR/IFSR value for the long descriptor
 740         * translation table format, but with WnR always clear.
 741         * Convert it to a 64-bit PAR.
 742         */
 743        uint64_t par64 = (1 << 11); /* LPAE bit always set */
 744        if (ret == 0) {
 745            par64 |= phys_addr & ~0xfffULL;
 746            /* We don't set the ATTR or SH fields in the PAR. */
 747        } else {
 748            par64 |= 1; /* F */
 749            par64 |= (ret & 0x3f) << 1; /* FS */
 750            /* Note that S2WLK and FSTAGE are always zero, because we don't
 751             * implement virtualization and therefore there can't be a stage 2
 752             * fault.
 753             */
 754        }
 755        env->cp15.c7_par = par64;
 756        env->cp15.c7_par_hi = par64 >> 32;
 757    } else {
 758        /* ret is a DFSR/IFSR value for the short descriptor
 759         * translation table format (with WnR always clear).
 760         * Convert it to a 32-bit PAR.
 761         */
 762        if (ret == 0) {
 763            /* We do not set any attribute bits in the PAR */
 764            if (page_size == (1 << 24)
 765                && arm_feature(env, ARM_FEATURE_V7)) {
 766                env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
 767            } else {
 768                env->cp15.c7_par = phys_addr & 0xfffff000;
 769            }
 770        } else {
 771            env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
 772                ((ret & (12 << 1)) >> 6) |
 773                ((ret & 0xf) << 1) | 1;
 774        }
 775        env->cp15.c7_par_hi = 0;
 776    }
 777    return 0;
 778}
 779#endif
 780
 781static const ARMCPRegInfo vapa_cp_reginfo[] = {
 782    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
 783      .access = PL1_RW, .resetvalue = 0,
 784      .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
 785      .writefn = par_write },
 786#ifndef CONFIG_USER_ONLY
 787    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
 788      .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
 789#endif
 790    REGINFO_SENTINEL
 791};
 792
 793/* Return basic MPU access permission bits.  */
 794static uint32_t simple_mpu_ap_bits(uint32_t val)
 795{
 796    uint32_t ret;
 797    uint32_t mask;
 798    int i;
 799    ret = 0;
 800    mask = 3;
 801    for (i = 0; i < 16; i += 2) {
 802        ret |= (val >> i) & mask;
 803        mask <<= 2;
 804    }
 805    return ret;
 806}
 807
 808/* Pad basic MPU access permission bits to extended format.  */
 809static uint32_t extended_mpu_ap_bits(uint32_t val)
 810{
 811    uint32_t ret;
 812    uint32_t mask;
 813    int i;
 814    ret = 0;
 815    mask = 3;
 816    for (i = 0; i < 16; i += 2) {
 817        ret |= (val & mask) << i;
 818        mask <<= 2;
 819    }
 820    return ret;
 821}
 822
 823static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 824                                uint64_t value)
 825{
 826    env->cp15.c5_data = extended_mpu_ap_bits(value);
 827    return 0;
 828}
 829
 830static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
 831                               uint64_t *value)
 832{
 833    *value = simple_mpu_ap_bits(env->cp15.c5_data);
 834    return 0;
 835}
 836
 837static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 838                                uint64_t value)
 839{
 840    env->cp15.c5_insn = extended_mpu_ap_bits(value);
 841    return 0;
 842}
 843
 844static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
 845                               uint64_t *value)
 846{
 847    *value = simple_mpu_ap_bits(env->cp15.c5_insn);
 848    return 0;
 849}
 850
 851static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
 852                            uint64_t *value)
 853{
 854    if (ri->crm >= 8) {
 855        return EXCP_UDEF;
 856    }
 857    *value = env->cp15.c6_region[ri->crm];
 858    return 0;
 859}
 860
 861static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
 862                             uint64_t value)
 863{
 864    if (ri->crm >= 8) {
 865        return EXCP_UDEF;
 866    }
 867    env->cp15.c6_region[ri->crm] = value;
 868    return 0;
 869}
 870
 871static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
 872    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 873      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
 874      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
 875      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
 876    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 877      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
 878      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
 879      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
 880    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
 881      .access = PL1_RW,
 882      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
 883    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
 884      .access = PL1_RW,
 885      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
 886    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 887      .access = PL1_RW,
 888      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
 889    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 890      .access = PL1_RW,
 891      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
 892    /* Protection region base and size registers */
 893    { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
 894      .opc2 = CP_ANY, .access = PL1_RW,
 895      .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
 896    REGINFO_SENTINEL
 897};
 898
 899static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 900                                uint64_t value)
 901{
 902    int maskshift = extract32(value, 0, 3);
 903
 904    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 905        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
 906    } else {
 907        value &= 7;
 908    }
 909    /* Note that we always calculate c2_mask and c2_base_mask, but
 910     * they are only used for short-descriptor tables (ie if EAE is 0);
 911     * for long-descriptor tables the TTBCR fields are used differently
 912     * and the c2_mask and c2_base_mask values are meaningless.
 913     */
 914    env->cp15.c2_control = value;
 915    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
 916    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
 917    return 0;
 918}
 919
 920static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 921                            uint64_t value)
 922{
 923    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 924        /* With LPAE the TTBCR could result in a change of ASID
 925         * via the TTBCR.A1 bit, so do a TLB flush.
 926         */
 927        tlb_flush(env, 1);
 928    }
 929    return vmsa_ttbcr_raw_write(env, ri, value);
 930}
 931
 932static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 933{
 934    env->cp15.c2_base_mask = 0xffffc000u;
 935    env->cp15.c2_control = 0;
 936    env->cp15.c2_mask = 0;
 937}
 938
 939static const ARMCPRegInfo vmsa_cp_reginfo[] = {
 940    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 941      .access = PL1_RW,
 942      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
 943    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 944      .access = PL1_RW,
 945      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
 946    { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 947      .access = PL1_RW,
 948      .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
 949    { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 950      .access = PL1_RW,
 951      .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
 952    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 953      .access = PL1_RW, .writefn = vmsa_ttbcr_write,
 954      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
 955      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
 956    { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
 957      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
 958      .resetvalue = 0, },
 959    REGINFO_SENTINEL
 960};
 961
 962static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
 963                               uint64_t value)
 964{
 965    env->cp15.c15_ticonfig = value & 0xe7;
 966    /* The OS_TYPE bit in this register changes the reported CPUID! */
 967    env->cp15.c0_cpuid = (value & (1 << 5)) ?
 968        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
 969    return 0;
 970}
 971
 972static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 973                               uint64_t value)
 974{
 975    env->cp15.c15_threadid = value & 0xffff;
 976    return 0;
 977}
 978
 979static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
 980                          uint64_t value)
 981{
 982    /* Wait-for-interrupt (deprecated) */
 983    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
 984    return 0;
 985}
 986
 987static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
 988                                 uint64_t value)
 989{
 990    /* On OMAP there are registers indicating the max/min index of dcache lines
 991     * containing a dirty line; cache flush operations have to reset these.
 992     */
 993    env->cp15.c15_i_max = 0x000;
 994    env->cp15.c15_i_min = 0xff0;
 995    return 0;
 996}
 997
 998static const ARMCPRegInfo omap_cp_reginfo[] = {
 999    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1000      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1001      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1002    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1003      .access = PL1_RW, .type = ARM_CP_NOP },
1004    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1005      .access = PL1_RW,
1006      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1007      .writefn = omap_ticonfig_write },
1008    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1009      .access = PL1_RW,
1010      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1011    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1012      .access = PL1_RW, .resetvalue = 0xff0,
1013      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1014    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1015      .access = PL1_RW,
1016      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1017      .writefn = omap_threadid_write },
1018    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1019      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1020      .type = ARM_CP_NO_MIGRATE,
1021      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1022    /* TODO: Peripheral port remap register:
1023     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1024     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1025     * when MMU is off.
1026     */
1027    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1028      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1029      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1030      .writefn = omap_cachemaint_write },
1031    { .name = "C9", .cp = 15, .crn = 9,
1032      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1033      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1034    REGINFO_SENTINEL
1035};
1036
1037static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1038                             uint64_t value)
1039{
1040    value &= 0x3fff;
1041    if (env->cp15.c15_cpar != value) {
1042        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1043        tb_flush(env);
1044        env->cp15.c15_cpar = value;
1045    }
1046    return 0;
1047}
1048
1049static const ARMCPRegInfo xscale_cp_reginfo[] = {
1050    { .name = "XSCALE_CPAR",
1051      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1052      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1053      .writefn = xscale_cpar_write, },
1054    { .name = "XSCALE_AUXCR",
1055      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1056      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1057      .resetvalue = 0, },
1058    REGINFO_SENTINEL
1059};
1060
1061static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1062    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1063     * implementation of this implementation-defined space.
1064     * Ideally this should eventually disappear in favour of actually
1065     * implementing the correct behaviour for all cores.
1066     */
1067    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1068      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1069      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1070      .resetvalue = 0 },
1071    REGINFO_SENTINEL
1072};
1073
1074static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1075    /* Cache status: RAZ because we have no cache so it's always clean */
1076    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1077      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1078      .resetvalue = 0 },
1079    REGINFO_SENTINEL
1080};
1081
1082static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1083    /* We never have a a block transfer operation in progress */
1084    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1085      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1086      .resetvalue = 0 },
1087    /* The cache ops themselves: these all NOP for QEMU */
1088    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1089      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1090    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1091      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1092    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1093      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1094    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1095      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1096    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1097      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1098    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1099      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1100    REGINFO_SENTINEL
1101};
1102
1103static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1104    /* The cache test-and-clean instructions always return (1 << 30)
1105     * to indicate that there are no dirty cache lines.
1106     */
1107    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1108      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1109      .resetvalue = (1 << 30) },
1110    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1111      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1112      .resetvalue = (1 << 30) },
1113    REGINFO_SENTINEL
1114};
1115
1116static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1117    /* Ignore ReadBuffer accesses */
1118    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1119      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1120      .access = PL1_RW, .resetvalue = 0,
1121      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1122    REGINFO_SENTINEL
1123};
1124
1125static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1126                      uint64_t *value)
1127{
1128    CPUState *cs = CPU(arm_env_get_cpu(env));
1129    uint32_t mpidr = cs->cpu_index;
1130    /* We don't support setting cluster ID ([8..11])
1131     * so these bits always RAZ.
1132     */
1133    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1134        mpidr |= (1 << 31);
1135        /* Cores which are uniprocessor (non-coherent)
1136         * but still implement the MP extensions set
1137         * bit 30. (For instance, A9UP.) However we do
1138         * not currently model any of those cores.
1139         */
1140    }
1141    *value = mpidr;
1142    return 0;
1143}
1144
1145static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1146    { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1147      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1148    REGINFO_SENTINEL
1149};
1150
1151static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1152{
1153    *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1154    return 0;
1155}
1156
1157static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1158{
1159    env->cp15.c7_par_hi = value >> 32;
1160    env->cp15.c7_par = value;
1161    return 0;
1162}
1163
1164static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1165{
1166    env->cp15.c7_par_hi = 0;
1167    env->cp15.c7_par = 0;
1168}
1169
1170static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1171                        uint64_t *value)
1172{
1173    *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1174    return 0;
1175}
1176
1177static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1178                             uint64_t value)
1179{
1180    env->cp15.c2_base0_hi = value >> 32;
1181    env->cp15.c2_base0 = value;
1182    return 0;
1183}
1184
1185static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1186                         uint64_t value)
1187{
1188    /* Writes to the 64 bit format TTBRs may change the ASID */
1189    tlb_flush(env, 1);
1190    return ttbr064_raw_write(env, ri, value);
1191}
1192
1193static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1194{
1195    env->cp15.c2_base0_hi = 0;
1196    env->cp15.c2_base0 = 0;
1197}
1198
1199static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1200                        uint64_t *value)
1201{
1202    *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1203    return 0;
1204}
1205
1206static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1207                         uint64_t value)
1208{
1209    env->cp15.c2_base1_hi = value >> 32;
1210    env->cp15.c2_base1 = value;
1211    return 0;
1212}
1213
1214static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1215{
1216    env->cp15.c2_base1_hi = 0;
1217    env->cp15.c2_base1 = 0;
1218}
1219
1220static const ARMCPRegInfo lpae_cp_reginfo[] = {
1221    /* NOP AMAIR0/1: the override is because these clash with the rather
1222     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1223     */
1224    { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1225      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1226      .resetvalue = 0 },
1227    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1228      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1229      .resetvalue = 0 },
1230    /* 64 bit access versions of the (dummy) debug registers */
1231    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1232      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1233    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1234      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1235    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1236      .access = PL1_RW, .type = ARM_CP_64BIT,
1237      .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1238    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1239      .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1240      .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1241      .resetfn = ttbr064_reset },
1242    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1243      .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1244      .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1245    REGINFO_SENTINEL
1246};
1247
1248static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1249{
1250    env->cp15.c1_sys = value;
1251    /* ??? Lots of these bits are not implemented.  */
1252    /* This may enable/disable the MMU, so do a TLB flush.  */
1253    tlb_flush(env, 1);
1254    return 0;
1255}
1256
1257void register_cp_regs_for_features(ARMCPU *cpu)
1258{
1259    /* Register all the coprocessor registers based on feature bits */
1260    CPUARMState *env = &cpu->env;
1261    if (arm_feature(env, ARM_FEATURE_M)) {
1262        /* M profile has no coprocessor registers */
1263        return;
1264    }
1265
1266    define_arm_cp_regs(cpu, cp_reginfo);
1267    if (arm_feature(env, ARM_FEATURE_V6)) {
1268        /* The ID registers all have impdef reset values */
1269        ARMCPRegInfo v6_idregs[] = {
1270            { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1271              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1272              .resetvalue = cpu->id_pfr0 },
1273            { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1274              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1275              .resetvalue = cpu->id_pfr1 },
1276            { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1277              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1278              .resetvalue = cpu->id_dfr0 },
1279            { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1280              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1281              .resetvalue = cpu->id_afr0 },
1282            { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1283              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1284              .resetvalue = cpu->id_mmfr0 },
1285            { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1286              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1287              .resetvalue = cpu->id_mmfr1 },
1288            { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1289              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1290              .resetvalue = cpu->id_mmfr2 },
1291            { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1292              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1293              .resetvalue = cpu->id_mmfr3 },
1294            { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1295              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1296              .resetvalue = cpu->id_isar0 },
1297            { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1298              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1299              .resetvalue = cpu->id_isar1 },
1300            { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1301              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1302              .resetvalue = cpu->id_isar2 },
1303            { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1304              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1305              .resetvalue = cpu->id_isar3 },
1306            { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1307              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1308              .resetvalue = cpu->id_isar4 },
1309            { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1310              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1311              .resetvalue = cpu->id_isar5 },
1312            /* 6..7 are as yet unallocated and must RAZ */
1313            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1314              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1315              .resetvalue = 0 },
1316            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1317              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1318              .resetvalue = 0 },
1319            REGINFO_SENTINEL
1320        };
1321        define_arm_cp_regs(cpu, v6_idregs);
1322        define_arm_cp_regs(cpu, v6_cp_reginfo);
1323    } else {
1324        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1325    }
1326    if (arm_feature(env, ARM_FEATURE_V6K)) {
1327        define_arm_cp_regs(cpu, v6k_cp_reginfo);
1328    }
1329    if (arm_feature(env, ARM_FEATURE_V7)) {
1330        /* v7 performance monitor control register: same implementor
1331         * field as main ID register, and we implement no event counters.
1332         */
1333        ARMCPRegInfo pmcr = {
1334            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1335            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1336            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1337            .readfn = pmreg_read, .writefn = pmcr_write,
1338            .raw_readfn = raw_read, .raw_writefn = raw_write,
1339        };
1340        ARMCPRegInfo clidr = {
1341            .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1342            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1343        };
1344        define_one_arm_cp_reg(cpu, &pmcr);
1345        define_one_arm_cp_reg(cpu, &clidr);
1346        define_arm_cp_regs(cpu, v7_cp_reginfo);
1347    } else {
1348        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1349    }
1350    if (arm_feature(env, ARM_FEATURE_MPU)) {
1351        /* These are the MPU registers prior to PMSAv6. Any new
1352         * PMSA core later than the ARM946 will require that we
1353         * implement the PMSAv6 or PMSAv7 registers, which are
1354         * completely different.
1355         */
1356        assert(!arm_feature(env, ARM_FEATURE_V6));
1357        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1358    } else {
1359        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1360    }
1361    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1362        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1363    }
1364    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1365        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1366    }
1367    if (arm_feature(env, ARM_FEATURE_VAPA)) {
1368        define_arm_cp_regs(cpu, vapa_cp_reginfo);
1369    }
1370    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1371        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1372    }
1373    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1374        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1375    }
1376    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1377        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1378    }
1379    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1380        define_arm_cp_regs(cpu, omap_cp_reginfo);
1381    }
1382    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1383        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1384    }
1385    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1386        define_arm_cp_regs(cpu, xscale_cp_reginfo);
1387    }
1388    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1389        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1390    }
1391    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1392        define_arm_cp_regs(cpu, lpae_cp_reginfo);
1393    }
1394    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1395     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1396     * be read-only (ie write causes UNDEF exception).
1397     */
1398    {
1399        ARMCPRegInfo id_cp_reginfo[] = {
1400            /* Note that the MIDR isn't a simple constant register because
1401             * of the TI925 behaviour where writes to another register can
1402             * cause the MIDR value to change.
1403             *
1404             * Unimplemented registers in the c15 0 0 0 space default to
1405             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1406             * and friends override accordingly.
1407             */
1408            { .name = "MIDR",
1409              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1410              .access = PL1_R, .resetvalue = cpu->midr,
1411              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1412              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1413              .type = ARM_CP_OVERRIDE },
1414            { .name = "CTR",
1415              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1416              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1417            { .name = "TCMTR",
1418              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1419              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1420            { .name = "TLBTR",
1421              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1422              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1423            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1424            { .name = "DUMMY",
1425              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1426              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1427            { .name = "DUMMY",
1428              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1429              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1430            { .name = "DUMMY",
1431              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1432              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1433            { .name = "DUMMY",
1434              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1435              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1436            { .name = "DUMMY",
1437              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1438              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1439            REGINFO_SENTINEL
1440        };
1441        ARMCPRegInfo crn0_wi_reginfo = {
1442            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1443            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1444            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1445        };
1446        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1447            arm_feature(env, ARM_FEATURE_STRONGARM)) {
1448            ARMCPRegInfo *r;
1449            /* Register the blanket "writes ignored" value first to cover the
1450             * whole space. Then update the specific ID registers to allow write
1451             * access, so that they ignore writes rather than causing them to
1452             * UNDEF.
1453             */
1454            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1455            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1456                r->access = PL1_RW;
1457            }
1458        }
1459        define_arm_cp_regs(cpu, id_cp_reginfo);
1460    }
1461
1462    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1463        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1464    }
1465
1466    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1467        ARMCPRegInfo auxcr = {
1468            .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1469            .access = PL1_RW, .type = ARM_CP_CONST,
1470            .resetvalue = cpu->reset_auxcr
1471        };
1472        define_one_arm_cp_reg(cpu, &auxcr);
1473    }
1474
1475    /* Generic registers whose values depend on the implementation */
1476    {
1477        ARMCPRegInfo sctlr = {
1478            .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1479            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1480            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1481            .raw_writefn = raw_write,
1482        };
1483        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1484            /* Normally we would always end the TB on an SCTLR write, but Linux
1485             * arch/arm/mach-pxa/sleep.S expects two instructions following
1486             * an MMU enable to execute from cache.  Imitate this behaviour.
1487             */
1488            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1489        }
1490        define_one_arm_cp_reg(cpu, &sctlr);
1491    }
1492}
1493
1494ARMCPU *cpu_arm_init(const char *cpu_model)
1495{
1496    ARMCPU *cpu;
1497    CPUARMState *env;
1498    ObjectClass *oc;
1499
1500    oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1501    if (!oc) {
1502        return NULL;
1503    }
1504    cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1505    env = &cpu->env;
1506    env->cpu_model_str = cpu_model;
1507
1508    /* TODO this should be set centrally, once possible */
1509    object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1510
1511    return cpu;
1512}
1513
1514void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1515{
1516    CPUState *cs = CPU(cpu);
1517    CPUARMState *env = &cpu->env;
1518
1519    if (arm_feature(env, ARM_FEATURE_NEON)) {
1520        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1521                                 51, "arm-neon.xml", 0);
1522    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1523        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1524                                 35, "arm-vfp3.xml", 0);
1525    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1526        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1527                                 19, "arm-vfp.xml", 0);
1528    }
1529}
1530
1531/* Sort alphabetically by type name, except for "any". */
1532static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1533{
1534    ObjectClass *class_a = (ObjectClass *)a;
1535    ObjectClass *class_b = (ObjectClass *)b;
1536    const char *name_a, *name_b;
1537
1538    name_a = object_class_get_name(class_a);
1539    name_b = object_class_get_name(class_b);
1540    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1541        return 1;
1542    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1543        return -1;
1544    } else {
1545        return strcmp(name_a, name_b);
1546    }
1547}
1548
1549static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1550{
1551    ObjectClass *oc = data;
1552    CPUListState *s = user_data;
1553    const char *typename;
1554    char *name;
1555
1556    typename = object_class_get_name(oc);
1557    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1558    (*s->cpu_fprintf)(s->file, "  %s\n",
1559                      name);
1560    g_free(name);
1561}
1562
1563void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1564{
1565    CPUListState s = {
1566        .file = f,
1567        .cpu_fprintf = cpu_fprintf,
1568    };
1569    GSList *list;
1570
1571    list = object_class_get_list(TYPE_ARM_CPU, false);
1572    list = g_slist_sort(list, arm_cpu_list_compare);
1573    (*cpu_fprintf)(f, "Available CPUs:\n");
1574    g_slist_foreach(list, arm_cpu_list_entry, &s);
1575    g_slist_free(list);
1576}
1577
1578void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1579                                       const ARMCPRegInfo *r, void *opaque)
1580{
1581    /* Define implementations of coprocessor registers.
1582     * We store these in a hashtable because typically
1583     * there are less than 150 registers in a space which
1584     * is 16*16*16*8*8 = 262144 in size.
1585     * Wildcarding is supported for the crm, opc1 and opc2 fields.
1586     * If a register is defined twice then the second definition is
1587     * used, so this can be used to define some generic registers and
1588     * then override them with implementation specific variations.
1589     * At least one of the original and the second definition should
1590     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1591     * against accidental use.
1592     */
1593    int crm, opc1, opc2;
1594    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1595    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1596    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1597    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1598    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1599    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1600    /* 64 bit registers have only CRm and Opc1 fields */
1601    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1602    /* Check that the register definition has enough info to handle
1603     * reads and writes if they are permitted.
1604     */
1605    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1606        if (r->access & PL3_R) {
1607            assert(r->fieldoffset || r->readfn);
1608        }
1609        if (r->access & PL3_W) {
1610            assert(r->fieldoffset || r->writefn);
1611        }
1612    }
1613    /* Bad type field probably means missing sentinel at end of reg list */
1614    assert(cptype_valid(r->type));
1615    for (crm = crmmin; crm <= crmmax; crm++) {
1616        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1617            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1618                uint32_t *key = g_new(uint32_t, 1);
1619                ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1620                int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1621                *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1622                if (opaque) {
1623                    r2->opaque = opaque;
1624                }
1625                /* Make sure reginfo passed to helpers for wildcarded regs
1626                 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1627                 */
1628                r2->crm = crm;
1629                r2->opc1 = opc1;
1630                r2->opc2 = opc2;
1631                /* By convention, for wildcarded registers only the first
1632                 * entry is used for migration; the others are marked as
1633                 * NO_MIGRATE so we don't try to transfer the register
1634                 * multiple times. Special registers (ie NOP/WFI) are
1635                 * never migratable.
1636                 */
1637                if ((r->type & ARM_CP_SPECIAL) ||
1638                    ((r->crm == CP_ANY) && crm != 0) ||
1639                    ((r->opc1 == CP_ANY) && opc1 != 0) ||
1640                    ((r->opc2 == CP_ANY) && opc2 != 0)) {
1641                    r2->type |= ARM_CP_NO_MIGRATE;
1642                }
1643
1644                /* Overriding of an existing definition must be explicitly
1645                 * requested.
1646                 */
1647                if (!(r->type & ARM_CP_OVERRIDE)) {
1648                    ARMCPRegInfo *oldreg;
1649                    oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1650                    if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1651                        fprintf(stderr, "Register redefined: cp=%d %d bit "
1652                                "crn=%d crm=%d opc1=%d opc2=%d, "
1653                                "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1654                                r2->crn, r2->crm, r2->opc1, r2->opc2,
1655                                oldreg->name, r2->name);
1656                        g_assert_not_reached();
1657                    }
1658                }
1659                g_hash_table_insert(cpu->cp_regs, key, r2);
1660            }
1661        }
1662    }
1663}
1664
1665void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1666                                    const ARMCPRegInfo *regs, void *opaque)
1667{
1668    /* Define a whole list of registers */
1669    const ARMCPRegInfo *r;
1670    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1671        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1672    }
1673}
1674
1675const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1676{
1677    return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1678}
1679
1680int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1681                        uint64_t value)
1682{
1683    /* Helper coprocessor write function for write-ignore registers */
1684    return 0;
1685}
1686
1687int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1688{
1689    /* Helper coprocessor write function for read-as-zero registers */
1690    *value = 0;
1691    return 0;
1692}
1693
1694static int bad_mode_switch(CPUARMState *env, int mode)
1695{
1696    /* Return true if it is not valid for us to switch to
1697     * this CPU mode (ie all the UNPREDICTABLE cases in
1698     * the ARM ARM CPSRWriteByInstr pseudocode).
1699     */
1700    switch (mode) {
1701    case ARM_CPU_MODE_USR:
1702    case ARM_CPU_MODE_SYS:
1703    case ARM_CPU_MODE_SVC:
1704    case ARM_CPU_MODE_ABT:
1705    case ARM_CPU_MODE_UND:
1706    case ARM_CPU_MODE_IRQ:
1707    case ARM_CPU_MODE_FIQ:
1708        return 0;
1709    default:
1710        return 1;
1711    }
1712}
1713
1714uint32_t cpsr_read(CPUARMState *env)
1715{
1716    int ZF;
1717    ZF = (env->ZF == 0);
1718    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1719        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1720        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1721        | ((env->condexec_bits & 0xfc) << 8)
1722        | (env->GE << 16);
1723}
1724
1725void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1726{
1727    if (mask & CPSR_NZCV) {
1728        env->ZF = (~val) & CPSR_Z;
1729        env->NF = val;
1730        env->CF = (val >> 29) & 1;
1731        env->VF = (val << 3) & 0x80000000;
1732    }
1733    if (mask & CPSR_Q)
1734        env->QF = ((val & CPSR_Q) != 0);
1735    if (mask & CPSR_T)
1736        env->thumb = ((val & CPSR_T) != 0);
1737    if (mask & CPSR_IT_0_1) {
1738        env->condexec_bits &= ~3;
1739        env->condexec_bits |= (val >> 25) & 3;
1740    }
1741    if (mask & CPSR_IT_2_7) {
1742        env->condexec_bits &= 3;
1743        env->condexec_bits |= (val >> 8) & 0xfc;
1744    }
1745    if (mask & CPSR_GE) {
1746        env->GE = (val >> 16) & 0xf;
1747    }
1748
1749    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1750        if (bad_mode_switch(env, val & CPSR_M)) {
1751            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1752             * We choose to ignore the attempt and leave the CPSR M field
1753             * untouched.
1754             */
1755            mask &= ~CPSR_M;
1756        } else {
1757            switch_mode(env, val & CPSR_M);
1758        }
1759    }
1760    mask &= ~CACHED_CPSR_BITS;
1761    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1762}
1763
1764/* Sign/zero extend */
1765uint32_t HELPER(sxtb16)(uint32_t x)
1766{
1767    uint32_t res;
1768    res = (uint16_t)(int8_t)x;
1769    res |= (uint32_t)(int8_t)(x >> 16) << 16;
1770    return res;
1771}
1772
1773uint32_t HELPER(uxtb16)(uint32_t x)
1774{
1775    uint32_t res;
1776    res = (uint16_t)(uint8_t)x;
1777    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1778    return res;
1779}
1780
1781uint32_t HELPER(clz)(uint32_t x)
1782{
1783    return clz32(x);
1784}
1785
1786int32_t HELPER(sdiv)(int32_t num, int32_t den)
1787{
1788    if (den == 0)
1789      return 0;
1790    if (num == INT_MIN && den == -1)
1791      return INT_MIN;
1792    return num / den;
1793}
1794
1795uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1796{
1797    if (den == 0)
1798      return 0;
1799    return num / den;
1800}
1801
1802uint32_t HELPER(rbit)(uint32_t x)
1803{
1804    x =  ((x & 0xff000000) >> 24)
1805       | ((x & 0x00ff0000) >> 8)
1806       | ((x & 0x0000ff00) << 8)
1807       | ((x & 0x000000ff) << 24);
1808    x =  ((x & 0xf0f0f0f0) >> 4)
1809       | ((x & 0x0f0f0f0f) << 4);
1810    x =  ((x & 0x88888888) >> 3)
1811       | ((x & 0x44444444) >> 1)
1812       | ((x & 0x22222222) << 1)
1813       | ((x & 0x11111111) << 3);
1814    return x;
1815}
1816
1817#if defined(CONFIG_USER_ONLY)
1818
1819void arm_cpu_do_interrupt(CPUState *cs)
1820{
1821    ARMCPU *cpu = ARM_CPU(cs);
1822    CPUARMState *env = &cpu->env;
1823
1824    env->exception_index = -1;
1825}
1826
1827int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1828                              int mmu_idx)
1829{
1830    if (rw == 2) {
1831        env->exception_index = EXCP_PREFETCH_ABORT;
1832        env->cp15.c6_insn = address;
1833    } else {
1834        env->exception_index = EXCP_DATA_ABORT;
1835        env->cp15.c6_data = address;
1836    }
1837    return 1;
1838}
1839
1840/* These should probably raise undefined insn exceptions.  */
1841void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1842{
1843    cpu_abort(env, "v7m_mrs %d\n", reg);
1844}
1845
1846uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1847{
1848    cpu_abort(env, "v7m_mrs %d\n", reg);
1849    return 0;
1850}
1851
1852void switch_mode(CPUARMState *env, int mode)
1853{
1854    if (mode != ARM_CPU_MODE_USR)
1855        cpu_abort(env, "Tried to switch out of user mode\n");
1856}
1857
1858void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1859{
1860    cpu_abort(env, "banked r13 write\n");
1861}
1862
1863uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1864{
1865    cpu_abort(env, "banked r13 read\n");
1866    return 0;
1867}
1868
1869#else
1870
1871/* Map CPU modes onto saved register banks.  */
1872int bank_number(int mode)
1873{
1874    switch (mode) {
1875    case ARM_CPU_MODE_USR:
1876    case ARM_CPU_MODE_SYS:
1877        return 0;
1878    case ARM_CPU_MODE_SVC:
1879        return 1;
1880    case ARM_CPU_MODE_ABT:
1881        return 2;
1882    case ARM_CPU_MODE_UND:
1883        return 3;
1884    case ARM_CPU_MODE_IRQ:
1885        return 4;
1886    case ARM_CPU_MODE_FIQ:
1887        return 5;
1888    }
1889    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1890}
1891
1892void switch_mode(CPUARMState *env, int mode)
1893{
1894    int old_mode;
1895    int i;
1896
1897    old_mode = env->uncached_cpsr & CPSR_M;
1898    if (mode == old_mode)
1899        return;
1900
1901    if (old_mode == ARM_CPU_MODE_FIQ) {
1902        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1903        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1904    } else if (mode == ARM_CPU_MODE_FIQ) {
1905        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1906        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1907    }
1908
1909    i = bank_number(old_mode);
1910    env->banked_r13[i] = env->regs[13];
1911    env->banked_r14[i] = env->regs[14];
1912    env->banked_spsr[i] = env->spsr;
1913
1914    i = bank_number(mode);
1915    env->regs[13] = env->banked_r13[i];
1916    env->regs[14] = env->banked_r14[i];
1917    env->spsr = env->banked_spsr[i];
1918}
1919
1920static void v7m_push(CPUARMState *env, uint32_t val)
1921{
1922    env->regs[13] -= 4;
1923    stl_phys(env->regs[13], val);
1924}
1925
1926static uint32_t v7m_pop(CPUARMState *env)
1927{
1928    uint32_t val;
1929    val = ldl_phys(env->regs[13]);
1930    env->regs[13] += 4;
1931    return val;
1932}
1933
1934/* Switch to V7M main or process stack pointer.  */
1935static void switch_v7m_sp(CPUARMState *env, int process)
1936{
1937    uint32_t tmp;
1938    if (env->v7m.current_sp != process) {
1939        tmp = env->v7m.other_sp;
1940        env->v7m.other_sp = env->regs[13];
1941        env->regs[13] = tmp;
1942        env->v7m.current_sp = process;
1943    }
1944}
1945
1946static void do_v7m_exception_exit(CPUARMState *env)
1947{
1948    uint32_t type;
1949    uint32_t xpsr;
1950
1951    type = env->regs[15];
1952    if (env->v7m.exception != 0)
1953        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1954
1955    /* Switch to the target stack.  */
1956    switch_v7m_sp(env, (type & 4) != 0);
1957    /* Pop registers.  */
1958    env->regs[0] = v7m_pop(env);
1959    env->regs[1] = v7m_pop(env);
1960    env->regs[2] = v7m_pop(env);
1961    env->regs[3] = v7m_pop(env);
1962    env->regs[12] = v7m_pop(env);
1963    env->regs[14] = v7m_pop(env);
1964    env->regs[15] = v7m_pop(env);
1965    xpsr = v7m_pop(env);
1966    xpsr_write(env, xpsr, 0xfffffdff);
1967    /* Undo stack alignment.  */
1968    if (xpsr & 0x200)
1969        env->regs[13] |= 4;
1970    /* ??? The exception return type specifies Thread/Handler mode.  However
1971       this is also implied by the xPSR value. Not sure what to do
1972       if there is a mismatch.  */
1973    /* ??? Likewise for mismatches between the CONTROL register and the stack
1974       pointer.  */
1975}
1976
1977void arm_v7m_cpu_do_interrupt(CPUState *cs)
1978{
1979    ARMCPU *cpu = ARM_CPU(cs);
1980    CPUARMState *env = &cpu->env;
1981    uint32_t xpsr = xpsr_read(env);
1982    uint32_t lr;
1983    uint32_t addr;
1984
1985    lr = 0xfffffff1;
1986    if (env->v7m.current_sp)
1987        lr |= 4;
1988    if (env->v7m.exception == 0)
1989        lr |= 8;
1990
1991    /* For exceptions we just mark as pending on the NVIC, and let that
1992       handle it.  */
1993    /* TODO: Need to escalate if the current priority is higher than the
1994       one we're raising.  */
1995    switch (env->exception_index) {
1996    case EXCP_UDEF:
1997        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1998        return;
1999    case EXCP_SWI:
2000        /* The PC already points to the next instruction.  */
2001        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2002        return;
2003    case EXCP_PREFETCH_ABORT:
2004    case EXCP_DATA_ABORT:
2005        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2006        return;
2007    case EXCP_BKPT:
2008        if (semihosting_enabled) {
2009            int nr;
2010            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2011            if (nr == 0xab) {
2012                env->regs[15] += 2;
2013                env->regs[0] = do_arm_semihosting(env);
2014                return;
2015            }
2016        }
2017        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2018        return;
2019    case EXCP_IRQ:
2020        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2021        break;
2022    case EXCP_EXCEPTION_EXIT:
2023        do_v7m_exception_exit(env);
2024        return;
2025    default:
2026        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2027        return; /* Never happens.  Keep compiler happy.  */
2028    }
2029
2030    /* Align stack pointer.  */
2031    /* ??? Should only do this if Configuration Control Register
2032       STACKALIGN bit is set.  */
2033    if (env->regs[13] & 4) {
2034        env->regs[13] -= 4;
2035        xpsr |= 0x200;
2036    }
2037    /* Switch to the handler mode.  */
2038    v7m_push(env, xpsr);
2039    v7m_push(env, env->regs[15]);
2040    v7m_push(env, env->regs[14]);
2041    v7m_push(env, env->regs[12]);
2042    v7m_push(env, env->regs[3]);
2043    v7m_push(env, env->regs[2]);
2044    v7m_push(env, env->regs[1]);
2045    v7m_push(env, env->regs[0]);
2046    switch_v7m_sp(env, 0);
2047    /* Clear IT bits */
2048    env->condexec_bits = 0;
2049    env->regs[14] = lr;
2050    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2051    env->regs[15] = addr & 0xfffffffe;
2052    env->thumb = addr & 1;
2053}
2054
2055/* Handle a CPU exception.  */
2056void arm_cpu_do_interrupt(CPUState *cs)
2057{
2058    ARMCPU *cpu = ARM_CPU(cs);
2059    CPUARMState *env = &cpu->env;
2060    uint32_t addr;
2061    uint32_t mask;
2062    int new_mode;
2063    uint32_t offset;
2064
2065    assert(!IS_M(env));
2066
2067    /* TODO: Vectored interrupt controller.  */
2068    switch (env->exception_index) {
2069    case EXCP_UDEF:
2070        new_mode = ARM_CPU_MODE_UND;
2071        addr = 0x04;
2072        mask = CPSR_I;
2073        if (env->thumb)
2074            offset = 2;
2075        else
2076            offset = 4;
2077        break;
2078    case EXCP_SWI:
2079        if (semihosting_enabled) {
2080            /* Check for semihosting interrupt.  */
2081            if (env->thumb) {
2082                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2083                    & 0xff;
2084            } else {
2085                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2086                    & 0xffffff;
2087            }
2088            /* Only intercept calls from privileged modes, to provide some
2089               semblance of security.  */
2090            if (((mask == 0x123456 && !env->thumb)
2091                    || (mask == 0xab && env->thumb))
2092                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2093                env->regs[0] = do_arm_semihosting(env);
2094                return;
2095            }
2096        }
2097        new_mode = ARM_CPU_MODE_SVC;
2098        addr = 0x08;
2099        mask = CPSR_I;
2100        /* The PC already points to the next instruction.  */
2101        offset = 0;
2102        break;
2103    case EXCP_BKPT:
2104        /* See if this is a semihosting syscall.  */
2105        if (env->thumb && semihosting_enabled) {
2106            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2107            if (mask == 0xab
2108                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2109                env->regs[15] += 2;
2110                env->regs[0] = do_arm_semihosting(env);
2111                return;
2112            }
2113        }
2114        env->cp15.c5_insn = 2;
2115        /* Fall through to prefetch abort.  */
2116    case EXCP_PREFETCH_ABORT:
2117        new_mode = ARM_CPU_MODE_ABT;
2118        addr = 0x0c;
2119        mask = CPSR_A | CPSR_I;
2120        offset = 4;
2121        break;
2122    case EXCP_DATA_ABORT:
2123        new_mode = ARM_CPU_MODE_ABT;
2124        addr = 0x10;
2125        mask = CPSR_A | CPSR_I;
2126        offset = 8;
2127        break;
2128    case EXCP_IRQ:
2129        new_mode = ARM_CPU_MODE_IRQ;
2130        addr = 0x18;
2131        /* Disable IRQ and imprecise data aborts.  */
2132        mask = CPSR_A | CPSR_I;
2133        offset = 4;
2134        break;
2135    case EXCP_FIQ:
2136        new_mode = ARM_CPU_MODE_FIQ;
2137        addr = 0x1c;
2138        /* Disable FIQ, IRQ and imprecise data aborts.  */
2139        mask = CPSR_A | CPSR_I | CPSR_F;
2140        offset = 4;
2141        break;
2142    default:
2143        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2144        return; /* Never happens.  Keep compiler happy.  */
2145    }
2146    /* High vectors.  */
2147    if (env->cp15.c1_sys & (1 << 13)) {
2148        addr += 0xffff0000;
2149    }
2150    switch_mode (env, new_mode);
2151    env->spsr = cpsr_read(env);
2152    /* Clear IT bits.  */
2153    env->condexec_bits = 0;
2154    /* Switch to the new mode, and to the correct instruction set.  */
2155    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2156    env->uncached_cpsr |= mask;
2157    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2158     * and we should just guard the thumb mode on V4 */
2159    if (arm_feature(env, ARM_FEATURE_V4T)) {
2160        env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2161    }
2162    env->regs[14] = env->regs[15] + offset;
2163    env->regs[15] = addr;
2164    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2165}
2166
2167/* Check section/page access permissions.
2168   Returns the page protection flags, or zero if the access is not
2169   permitted.  */
2170static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2171                           int access_type, int is_user)
2172{
2173  int prot_ro;
2174
2175  if (domain_prot == 3) {
2176    return PAGE_READ | PAGE_WRITE;
2177  }
2178
2179  if (access_type == 1)
2180      prot_ro = 0;
2181  else
2182      prot_ro = PAGE_READ;
2183
2184  switch (ap) {
2185  case 0:
2186      if (access_type == 1)
2187          return 0;
2188      switch ((env->cp15.c1_sys >> 8) & 3) {
2189      case 1:
2190          return is_user ? 0 : PAGE_READ;
2191      case 2:
2192          return PAGE_READ;
2193      default:
2194          return 0;
2195      }
2196  case 1:
2197      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2198  case 2:
2199      if (is_user)
2200          return prot_ro;
2201      else
2202          return PAGE_READ | PAGE_WRITE;
2203  case 3:
2204      return PAGE_READ | PAGE_WRITE;
2205  case 4: /* Reserved.  */
2206      return 0;
2207  case 5:
2208      return is_user ? 0 : prot_ro;
2209  case 6:
2210      return prot_ro;
2211  case 7:
2212      if (!arm_feature (env, ARM_FEATURE_V6K))
2213          return 0;
2214      return prot_ro;
2215  default:
2216      abort();
2217  }
2218}
2219
2220static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2221{
2222    uint32_t table;
2223
2224    if (address & env->cp15.c2_mask)
2225        table = env->cp15.c2_base1 & 0xffffc000;
2226    else
2227        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2228
2229    table |= (address >> 18) & 0x3ffc;
2230    return table;
2231}
2232
2233static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2234                            int is_user, hwaddr *phys_ptr,
2235                            int *prot, target_ulong *page_size)
2236{
2237    int code;
2238    uint32_t table;
2239    uint32_t desc;
2240    int type;
2241    int ap;
2242    int domain;
2243    int domain_prot;
2244    hwaddr phys_addr;
2245
2246    /* Pagetable walk.  */
2247    /* Lookup l1 descriptor.  */
2248    table = get_level1_table_address(env, address);
2249    desc = ldl_phys(table);
2250    type = (desc & 3);
2251    domain = (desc >> 5) & 0x0f;
2252    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2253    if (type == 0) {
2254        /* Section translation fault.  */
2255        code = 5;
2256        goto do_fault;
2257    }
2258    if (domain_prot == 0 || domain_prot == 2) {
2259        if (type == 2)
2260            code = 9; /* Section domain fault.  */
2261        else
2262            code = 11; /* Page domain fault.  */
2263        goto do_fault;
2264    }
2265    if (type == 2) {
2266        /* 1Mb section.  */
2267        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2268        ap = (desc >> 10) & 3;
2269        code = 13;
2270        *page_size = 1024 * 1024;
2271    } else {
2272        /* Lookup l2 entry.  */
2273        if (type == 1) {
2274            /* Coarse pagetable.  */
2275            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2276        } else {
2277            /* Fine pagetable.  */
2278            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2279        }
2280        desc = ldl_phys(table);
2281        switch (desc & 3) {
2282        case 0: /* Page translation fault.  */
2283            code = 7;
2284            goto do_fault;
2285        case 1: /* 64k page.  */
2286            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2287            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2288            *page_size = 0x10000;
2289            break;
2290        case 2: /* 4k page.  */
2291            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2292            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2293            *page_size = 0x1000;
2294            break;
2295        case 3: /* 1k page.  */
2296            if (type == 1) {
2297                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2298                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2299                } else {
2300                    /* Page translation fault.  */
2301                    code = 7;
2302                    goto do_fault;
2303                }
2304            } else {
2305                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2306            }
2307            ap = (desc >> 4) & 3;
2308            *page_size = 0x400;
2309            break;
2310        default:
2311            /* Never happens, but compiler isn't smart enough to tell.  */
2312            abort();
2313        }
2314        code = 15;
2315    }
2316    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2317    if (!*prot) {
2318        /* Access permission fault.  */
2319        goto do_fault;
2320    }
2321    *prot |= PAGE_EXEC;
2322    *phys_ptr = phys_addr;
2323    return 0;
2324do_fault:
2325    return code | (domain << 4);
2326}
2327
2328static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2329                            int is_user, hwaddr *phys_ptr,
2330                            int *prot, target_ulong *page_size)
2331{
2332    int code;
2333    uint32_t table;
2334    uint32_t desc;
2335    uint32_t xn;
2336    uint32_t pxn = 0;
2337    int type;
2338    int ap;
2339    int domain = 0;
2340    int domain_prot;
2341    hwaddr phys_addr;
2342
2343    /* Pagetable walk.  */
2344    /* Lookup l1 descriptor.  */
2345    table = get_level1_table_address(env, address);
2346    desc = ldl_phys(table);
2347    type = (desc & 3);
2348    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2349        /* Section translation fault, or attempt to use the encoding
2350         * which is Reserved on implementations without PXN.
2351         */
2352        code = 5;
2353        goto do_fault;
2354    }
2355    if ((type == 1) || !(desc & (1 << 18))) {
2356        /* Page or Section.  */
2357        domain = (desc >> 5) & 0x0f;
2358    }
2359    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2360    if (domain_prot == 0 || domain_prot == 2) {
2361        if (type != 1) {
2362            code = 9; /* Section domain fault.  */
2363        } else {
2364            code = 11; /* Page domain fault.  */
2365        }
2366        goto do_fault;
2367    }
2368    if (type != 1) {
2369        if (desc & (1 << 18)) {
2370            /* Supersection.  */
2371            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2372            *page_size = 0x1000000;
2373        } else {
2374            /* Section.  */
2375            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2376            *page_size = 0x100000;
2377        }
2378        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2379        xn = desc & (1 << 4);
2380        pxn = desc & 1;
2381        code = 13;
2382    } else {
2383        if (arm_feature(env, ARM_FEATURE_PXN)) {
2384            pxn = (desc >> 2) & 1;
2385        }
2386        /* Lookup l2 entry.  */
2387        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2388        desc = ldl_phys(table);
2389        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2390        switch (desc & 3) {
2391        case 0: /* Page translation fault.  */
2392            code = 7;
2393            goto do_fault;
2394        case 1: /* 64k page.  */
2395            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2396            xn = desc & (1 << 15);
2397            *page_size = 0x10000;
2398            break;
2399        case 2: case 3: /* 4k page.  */
2400            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2401            xn = desc & 1;
2402            *page_size = 0x1000;
2403            break;
2404        default:
2405            /* Never happens, but compiler isn't smart enough to tell.  */
2406            abort();
2407        }
2408        code = 15;
2409    }
2410    if (domain_prot == 3) {
2411        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2412    } else {
2413        if (pxn && !is_user) {
2414            xn = 1;
2415        }
2416        if (xn && access_type == 2)
2417            goto do_fault;
2418
2419        /* The simplified model uses AP[0] as an access control bit.  */
2420        if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2421            /* Access flag fault.  */
2422            code = (code == 15) ? 6 : 3;
2423            goto do_fault;
2424        }
2425        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2426        if (!*prot) {
2427            /* Access permission fault.  */
2428            goto do_fault;
2429        }
2430        if (!xn) {
2431            *prot |= PAGE_EXEC;
2432        }
2433    }
2434    *phys_ptr = phys_addr;
2435    return 0;
2436do_fault:
2437    return code | (domain << 4);
2438}
2439
2440/* Fault type for long-descriptor MMU fault reporting; this corresponds
2441 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2442 */
2443typedef enum {
2444    translation_fault = 1,
2445    access_fault = 2,
2446    permission_fault = 3,
2447} MMUFaultType;
2448
2449static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2450                              int access_type, int is_user,
2451                              hwaddr *phys_ptr, int *prot,
2452                              target_ulong *page_size_ptr)
2453{
2454    /* Read an LPAE long-descriptor translation table. */
2455    MMUFaultType fault_type = translation_fault;
2456    uint32_t level = 1;
2457    uint32_t epd;
2458    uint32_t tsz;
2459    uint64_t ttbr;
2460    int ttbr_select;
2461    int n;
2462    hwaddr descaddr;
2463    uint32_t tableattrs;
2464    target_ulong page_size;
2465    uint32_t attrs;
2466
2467    /* Determine whether this address is in the region controlled by
2468     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2469     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2470     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2471     */
2472    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2473    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2474    if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2475        /* there is a ttbr0 region and we are in it (high bits all zero) */
2476        ttbr_select = 0;
2477    } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2478        /* there is a ttbr1 region and we are in it (high bits all one) */
2479        ttbr_select = 1;
2480    } else if (!t0sz) {
2481        /* ttbr0 region is "everything not in the ttbr1 region" */
2482        ttbr_select = 0;
2483    } else if (!t1sz) {
2484        /* ttbr1 region is "everything not in the ttbr0 region" */
2485        ttbr_select = 1;
2486    } else {
2487        /* in the gap between the two regions, this is a Translation fault */
2488        fault_type = translation_fault;
2489        goto do_fault;
2490    }
2491
2492    /* Note that QEMU ignores shareability and cacheability attributes,
2493     * so we don't need to do anything with the SH, ORGN, IRGN fields
2494     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
2495     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2496     * implement any ASID-like capability so we can ignore it (instead
2497     * we will always flush the TLB any time the ASID is changed).
2498     */
2499    if (ttbr_select == 0) {
2500        ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2501        epd = extract32(env->cp15.c2_control, 7, 1);
2502        tsz = t0sz;
2503    } else {
2504        ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2505        epd = extract32(env->cp15.c2_control, 23, 1);
2506        tsz = t1sz;
2507    }
2508
2509    if (epd) {
2510        /* Translation table walk disabled => Translation fault on TLB miss */
2511        goto do_fault;
2512    }
2513
2514    /* If the region is small enough we will skip straight to a 2nd level
2515     * lookup. This affects the number of bits of the address used in
2516     * combination with the TTBR to find the first descriptor. ('n' here
2517     * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2518     * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2519     */
2520    if (tsz > 1) {
2521        level = 2;
2522        n = 14 - tsz;
2523    } else {
2524        n = 5 - tsz;
2525    }
2526
2527    /* Clear the vaddr bits which aren't part of the within-region address,
2528     * so that we don't have to special case things when calculating the
2529     * first descriptor address.
2530     */
2531    address &= (0xffffffffU >> tsz);
2532
2533    /* Now we can extract the actual base address from the TTBR */
2534    descaddr = extract64(ttbr, 0, 40);
2535    descaddr &= ~((1ULL << n) - 1);
2536
2537    tableattrs = 0;
2538    for (;;) {
2539        uint64_t descriptor;
2540
2541        descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2542        descriptor = ldq_phys(descaddr);
2543        if (!(descriptor & 1) ||
2544            (!(descriptor & 2) && (level == 3))) {
2545            /* Invalid, or the Reserved level 3 encoding */
2546            goto do_fault;
2547        }
2548        descaddr = descriptor & 0xfffffff000ULL;
2549
2550        if ((descriptor & 2) && (level < 3)) {
2551            /* Table entry. The top five bits are attributes which  may
2552             * propagate down through lower levels of the table (and
2553             * which are all arranged so that 0 means "no effect", so
2554             * we can gather them up by ORing in the bits at each level).
2555             */
2556            tableattrs |= extract64(descriptor, 59, 5);
2557            level++;
2558            continue;
2559        }
2560        /* Block entry at level 1 or 2, or page entry at level 3.
2561         * These are basically the same thing, although the number
2562         * of bits we pull in from the vaddr varies.
2563         */
2564        page_size = (1 << (39 - (9 * level)));
2565        descaddr |= (address & (page_size - 1));
2566        /* Extract attributes from the descriptor and merge with table attrs */
2567        attrs = extract64(descriptor, 2, 10)
2568            | (extract64(descriptor, 52, 12) << 10);
2569        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2570        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2571        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2572         * means "force PL1 access only", which means forcing AP[1] to 0.
2573         */
2574        if (extract32(tableattrs, 2, 1)) {
2575            attrs &= ~(1 << 4);
2576        }
2577        /* Since we're always in the Non-secure state, NSTable is ignored. */
2578        break;
2579    }
2580    /* Here descaddr is the final physical address, and attributes
2581     * are all in attrs.
2582     */
2583    fault_type = access_fault;
2584    if ((attrs & (1 << 8)) == 0) {
2585        /* Access flag */
2586        goto do_fault;
2587    }
2588    fault_type = permission_fault;
2589    if (is_user && !(attrs & (1 << 4))) {
2590        /* Unprivileged access not enabled */
2591        goto do_fault;
2592    }
2593    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2594    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2595        /* XN or PXN */
2596        if (access_type == 2) {
2597            goto do_fault;
2598        }
2599        *prot &= ~PAGE_EXEC;
2600    }
2601    if (attrs & (1 << 5)) {
2602        /* Write access forbidden */
2603        if (access_type == 1) {
2604            goto do_fault;
2605        }
2606        *prot &= ~PAGE_WRITE;
2607    }
2608
2609    *phys_ptr = descaddr;
2610    *page_size_ptr = page_size;
2611    return 0;
2612
2613do_fault:
2614    /* Long-descriptor format IFSR/DFSR value */
2615    return (1 << 9) | (fault_type << 2) | level;
2616}
2617
2618static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2619                             int access_type, int is_user,
2620                             hwaddr *phys_ptr, int *prot)
2621{
2622    int n;
2623    uint32_t mask;
2624    uint32_t base;
2625
2626    *phys_ptr = address;
2627    for (n = 7; n >= 0; n--) {
2628        base = env->cp15.c6_region[n];
2629        if ((base & 1) == 0)
2630            continue;
2631        mask = 1 << ((base >> 1) & 0x1f);
2632        /* Keep this shift separate from the above to avoid an
2633           (undefined) << 32.  */
2634        mask = (mask << 1) - 1;
2635        if (((base ^ address) & ~mask) == 0)
2636            break;
2637    }
2638    if (n < 0)
2639        return 2;
2640
2641    if (access_type == 2) {
2642        mask = env->cp15.c5_insn;
2643    } else {
2644        mask = env->cp15.c5_data;
2645    }
2646    mask = (mask >> (n * 4)) & 0xf;
2647    switch (mask) {
2648    case 0:
2649        return 1;
2650    case 1:
2651        if (is_user)
2652          return 1;
2653        *prot = PAGE_READ | PAGE_WRITE;
2654        break;
2655    case 2:
2656        *prot = PAGE_READ;
2657        if (!is_user)
2658            *prot |= PAGE_WRITE;
2659        break;
2660    case 3:
2661        *prot = PAGE_READ | PAGE_WRITE;
2662        break;
2663    case 5:
2664        if (is_user)
2665            return 1;
2666        *prot = PAGE_READ;
2667        break;
2668    case 6:
2669        *prot = PAGE_READ;
2670        break;
2671    default:
2672        /* Bad permission.  */
2673        return 1;
2674    }
2675    *prot |= PAGE_EXEC;
2676    return 0;
2677}
2678
2679/* get_phys_addr - get the physical address for this virtual address
2680 *
2681 * Find the physical address corresponding to the given virtual address,
2682 * by doing a translation table walk on MMU based systems or using the
2683 * MPU state on MPU based systems.
2684 *
2685 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2686 * prot and page_size are not filled in, and the return value provides
2687 * information on why the translation aborted, in the format of a
2688 * DFSR/IFSR fault register, with the following caveats:
2689 *  * we honour the short vs long DFSR format differences.
2690 *  * the WnR bit is never set (the caller must do this).
2691 *  * for MPU based systems we don't bother to return a full FSR format
2692 *    value.
2693 *
2694 * @env: CPUARMState
2695 * @address: virtual address to get physical address for
2696 * @access_type: 0 for read, 1 for write, 2 for execute
2697 * @is_user: 0 for privileged access, 1 for user
2698 * @phys_ptr: set to the physical address corresponding to the virtual address
2699 * @prot: set to the permissions for the page containing phys_ptr
2700 * @page_size: set to the size of the page containing phys_ptr
2701 */
2702static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2703                                int access_type, int is_user,
2704                                hwaddr *phys_ptr, int *prot,
2705                                target_ulong *page_size)
2706{
2707    /* Fast Context Switch Extension.  */
2708    if (address < 0x02000000)
2709        address += env->cp15.c13_fcse;
2710
2711    if ((env->cp15.c1_sys & 1) == 0) {
2712        /* MMU/MPU disabled.  */
2713        *phys_ptr = address;
2714        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2715        *page_size = TARGET_PAGE_SIZE;
2716        return 0;
2717    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2718        *page_size = TARGET_PAGE_SIZE;
2719        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2720                                 prot);
2721    } else if (extended_addresses_enabled(env)) {
2722        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2723                                  prot, page_size);
2724    } else if (env->cp15.c1_sys & (1 << 23)) {
2725        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2726                                prot, page_size);
2727    } else {
2728        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2729                                prot, page_size);
2730    }
2731}
2732
2733int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2734                              int access_type, int mmu_idx)
2735{
2736    hwaddr phys_addr;
2737    target_ulong page_size;
2738    int prot;
2739    int ret, is_user;
2740
2741    is_user = mmu_idx == MMU_USER_IDX;
2742    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2743                        &page_size);
2744    if (ret == 0) {
2745        /* Map a single [sub]page.  */
2746        phys_addr &= ~(hwaddr)0x3ff;
2747        address &= ~(uint32_t)0x3ff;
2748        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2749        return 0;
2750    }
2751
2752    if (access_type == 2) {
2753        env->cp15.c5_insn = ret;
2754        env->cp15.c6_insn = address;
2755        env->exception_index = EXCP_PREFETCH_ABORT;
2756    } else {
2757        env->cp15.c5_data = ret;
2758        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2759            env->cp15.c5_data |= (1 << 11);
2760        env->cp15.c6_data = address;
2761        env->exception_index = EXCP_DATA_ABORT;
2762    }
2763    return 1;
2764}
2765
2766hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
2767{
2768    ARMCPU *cpu = ARM_CPU(cs);
2769    hwaddr phys_addr;
2770    target_ulong page_size;
2771    int prot;
2772    int ret;
2773
2774    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
2775
2776    if (ret != 0) {
2777        return -1;
2778    }
2779
2780    return phys_addr;
2781}
2782
2783void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2784{
2785    if ((env->uncached_cpsr & CPSR_M) == mode) {
2786        env->regs[13] = val;
2787    } else {
2788        env->banked_r13[bank_number(mode)] = val;
2789    }
2790}
2791
2792uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2793{
2794    if ((env->uncached_cpsr & CPSR_M) == mode) {
2795        return env->regs[13];
2796    } else {
2797        return env->banked_r13[bank_number(mode)];
2798    }
2799}
2800
2801uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2802{
2803    switch (reg) {
2804    case 0: /* APSR */
2805        return xpsr_read(env) & 0xf8000000;
2806    case 1: /* IAPSR */
2807        return xpsr_read(env) & 0xf80001ff;
2808    case 2: /* EAPSR */
2809        return xpsr_read(env) & 0xff00fc00;
2810    case 3: /* xPSR */
2811        return xpsr_read(env) & 0xff00fdff;
2812    case 5: /* IPSR */
2813        return xpsr_read(env) & 0x000001ff;
2814    case 6: /* EPSR */
2815        return xpsr_read(env) & 0x0700fc00;
2816    case 7: /* IEPSR */
2817        return xpsr_read(env) & 0x0700edff;
2818    case 8: /* MSP */
2819        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2820    case 9: /* PSP */
2821        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2822    case 16: /* PRIMASK */
2823        return (env->uncached_cpsr & CPSR_I) != 0;
2824    case 17: /* BASEPRI */
2825    case 18: /* BASEPRI_MAX */
2826        return env->v7m.basepri;
2827    case 19: /* FAULTMASK */
2828        return (env->uncached_cpsr & CPSR_F) != 0;
2829    case 20: /* CONTROL */
2830        return env->v7m.control;
2831    default:
2832        /* ??? For debugging only.  */
2833        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2834        return 0;
2835    }
2836}
2837
2838void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2839{
2840    switch (reg) {
2841    case 0: /* APSR */
2842        xpsr_write(env, val, 0xf8000000);
2843        break;
2844    case 1: /* IAPSR */
2845        xpsr_write(env, val, 0xf8000000);
2846        break;
2847    case 2: /* EAPSR */
2848        xpsr_write(env, val, 0xfe00fc00);
2849        break;
2850    case 3: /* xPSR */
2851        xpsr_write(env, val, 0xfe00fc00);
2852        break;
2853    case 5: /* IPSR */
2854        /* IPSR bits are readonly.  */
2855        break;
2856    case 6: /* EPSR */
2857        xpsr_write(env, val, 0x0600fc00);
2858        break;
2859    case 7: /* IEPSR */
2860        xpsr_write(env, val, 0x0600fc00);
2861        break;
2862    case 8: /* MSP */
2863        if (env->v7m.current_sp)
2864            env->v7m.other_sp = val;
2865        else
2866            env->regs[13] = val;
2867        break;
2868    case 9: /* PSP */
2869        if (env->v7m.current_sp)
2870            env->regs[13] = val;
2871        else
2872            env->v7m.other_sp = val;
2873        break;
2874    case 16: /* PRIMASK */
2875        if (val & 1)
2876            env->uncached_cpsr |= CPSR_I;
2877        else
2878            env->uncached_cpsr &= ~CPSR_I;
2879        break;
2880    case 17: /* BASEPRI */
2881        env->v7m.basepri = val & 0xff;
2882        break;
2883    case 18: /* BASEPRI_MAX */
2884        val &= 0xff;
2885        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2886            env->v7m.basepri = val;
2887        break;
2888    case 19: /* FAULTMASK */
2889        if (val & 1)
2890            env->uncached_cpsr |= CPSR_F;
2891        else
2892            env->uncached_cpsr &= ~CPSR_F;
2893        break;
2894    case 20: /* CONTROL */
2895        env->v7m.control = val & 3;
2896        switch_v7m_sp(env, (val & 2) != 0);
2897        break;
2898    default:
2899        /* ??? For debugging only.  */
2900        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2901        return;
2902    }
2903}
2904
2905#endif
2906
2907/* Note that signed overflow is undefined in C.  The following routines are
2908   careful to use unsigned types where modulo arithmetic is required.
2909   Failure to do so _will_ break on newer gcc.  */
2910
2911/* Signed saturating arithmetic.  */
2912
2913/* Perform 16-bit signed saturating addition.  */
2914static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2915{
2916    uint16_t res;
2917
2918    res = a + b;
2919    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2920        if (a & 0x8000)
2921            res = 0x8000;
2922        else
2923            res = 0x7fff;
2924    }
2925    return res;
2926}
2927
2928/* Perform 8-bit signed saturating addition.  */
2929static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2930{
2931    uint8_t res;
2932
2933    res = a + b;
2934    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2935        if (a & 0x80)
2936            res = 0x80;
2937        else
2938            res = 0x7f;
2939    }
2940    return res;
2941}
2942
2943/* Perform 16-bit signed saturating subtraction.  */
2944static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2945{
2946    uint16_t res;
2947
2948    res = a - b;
2949    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2950        if (a & 0x8000)
2951            res = 0x8000;
2952        else
2953            res = 0x7fff;
2954    }
2955    return res;
2956}
2957
2958/* Perform 8-bit signed saturating subtraction.  */
2959static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2960{
2961    uint8_t res;
2962
2963    res = a - b;
2964    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2965        if (a & 0x80)
2966            res = 0x80;
2967        else
2968            res = 0x7f;
2969    }
2970    return res;
2971}
2972
2973#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2974#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2975#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2976#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2977#define PFX q
2978
2979#include "op_addsub.h"
2980
2981/* Unsigned saturating arithmetic.  */
2982static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2983{
2984    uint16_t res;
2985    res = a + b;
2986    if (res < a)
2987        res = 0xffff;
2988    return res;
2989}
2990
2991static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2992{
2993    if (a > b)
2994        return a - b;
2995    else
2996        return 0;
2997}
2998
2999static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3000{
3001    uint8_t res;
3002    res = a + b;
3003    if (res < a)
3004        res = 0xff;
3005    return res;
3006}
3007
3008static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3009{
3010    if (a > b)
3011        return a - b;
3012    else
3013        return 0;
3014}
3015
3016#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3017#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3018#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
3019#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
3020#define PFX uq
3021
3022#include "op_addsub.h"
3023
3024/* Signed modulo arithmetic.  */
3025#define SARITH16(a, b, n, op) do { \
3026    int32_t sum; \
3027    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3028    RESULT(sum, n, 16); \
3029    if (sum >= 0) \
3030        ge |= 3 << (n * 2); \
3031    } while(0)
3032
3033#define SARITH8(a, b, n, op) do { \
3034    int32_t sum; \
3035    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3036    RESULT(sum, n, 8); \
3037    if (sum >= 0) \
3038        ge |= 1 << n; \
3039    } while(0)
3040
3041
3042#define ADD16(a, b, n) SARITH16(a, b, n, +)
3043#define SUB16(a, b, n) SARITH16(a, b, n, -)
3044#define ADD8(a, b, n)  SARITH8(a, b, n, +)
3045#define SUB8(a, b, n)  SARITH8(a, b, n, -)
3046#define PFX s
3047#define ARITH_GE
3048
3049#include "op_addsub.h"
3050
3051/* Unsigned modulo arithmetic.  */
3052#define ADD16(a, b, n) do { \
3053    uint32_t sum; \
3054    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3055    RESULT(sum, n, 16); \
3056    if ((sum >> 16) == 1) \
3057        ge |= 3 << (n * 2); \
3058    } while(0)
3059
3060#define ADD8(a, b, n) do { \
3061    uint32_t sum; \
3062    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3063    RESULT(sum, n, 8); \
3064    if ((sum >> 8) == 1) \
3065        ge |= 1 << n; \
3066    } while(0)
3067
3068#define SUB16(a, b, n) do { \
3069    uint32_t sum; \
3070    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3071    RESULT(sum, n, 16); \
3072    if ((sum >> 16) == 0) \
3073        ge |= 3 << (n * 2); \
3074    } while(0)
3075
3076#define SUB8(a, b, n) do { \
3077    uint32_t sum; \
3078    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3079    RESULT(sum, n, 8); \
3080    if ((sum >> 8) == 0) \
3081        ge |= 1 << n; \
3082    } while(0)
3083
3084#define PFX u
3085#define ARITH_GE
3086
3087#include "op_addsub.h"
3088
3089/* Halved signed arithmetic.  */
3090#define ADD16(a, b, n) \
3091  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3092#define SUB16(a, b, n) \
3093  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3094#define ADD8(a, b, n) \
3095  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3096#define SUB8(a, b, n) \
3097  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3098#define PFX sh
3099
3100#include "op_addsub.h"
3101
3102/* Halved unsigned arithmetic.  */
3103#define ADD16(a, b, n) \
3104  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3105#define SUB16(a, b, n) \
3106  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3107#define ADD8(a, b, n) \
3108  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3109#define SUB8(a, b, n) \
3110  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3111#define PFX uh
3112
3113#include "op_addsub.h"
3114
3115static inline uint8_t do_usad(uint8_t a, uint8_t b)
3116{
3117    if (a > b)
3118        return a - b;
3119    else
3120        return b - a;
3121}
3122
3123/* Unsigned sum of absolute byte differences.  */
3124uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3125{
3126    uint32_t sum;
3127    sum = do_usad(a, b);
3128    sum += do_usad(a >> 8, b >> 8);
3129    sum += do_usad(a >> 16, b >>16);
3130    sum += do_usad(a >> 24, b >> 24);
3131    return sum;
3132}
3133
3134/* For ARMv6 SEL instruction.  */
3135uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3136{
3137    uint32_t mask;
3138
3139    mask = 0;
3140    if (flags & 1)
3141        mask |= 0xff;
3142    if (flags & 2)
3143        mask |= 0xff00;
3144    if (flags & 4)
3145        mask |= 0xff0000;
3146    if (flags & 8)
3147        mask |= 0xff000000;
3148    return (a & mask) | (b & ~mask);
3149}
3150
3151/* VFP support.  We follow the convention used for VFP instructions:
3152   Single precision routines have a "s" suffix, double precision a
3153   "d" suffix.  */
3154
3155/* Convert host exception flags to vfp form.  */
3156static inline int vfp_exceptbits_from_host(int host_bits)
3157{
3158    int target_bits = 0;
3159
3160    if (host_bits & float_flag_invalid)
3161        target_bits |= 1;
3162    if (host_bits & float_flag_divbyzero)
3163        target_bits |= 2;
3164    if (host_bits & float_flag_overflow)
3165        target_bits |= 4;
3166    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3167        target_bits |= 8;
3168    if (host_bits & float_flag_inexact)
3169        target_bits |= 0x10;
3170    if (host_bits & float_flag_input_denormal)
3171        target_bits |= 0x80;
3172    return target_bits;
3173}
3174
3175uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3176{
3177    int i;
3178    uint32_t fpscr;
3179
3180    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3181            | (env->vfp.vec_len << 16)
3182            | (env->vfp.vec_stride << 20);
3183    i = get_float_exception_flags(&env->vfp.fp_status);
3184    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3185    fpscr |= vfp_exceptbits_from_host(i);
3186    return fpscr;
3187}
3188
3189uint32_t vfp_get_fpscr(CPUARMState *env)
3190{
3191    return HELPER(vfp_get_fpscr)(env);
3192}
3193
3194/* Convert vfp exception flags to target form.  */
3195static inline int vfp_exceptbits_to_host(int target_bits)
3196{
3197    int host_bits = 0;
3198
3199    if (target_bits & 1)
3200        host_bits |= float_flag_invalid;
3201    if (target_bits & 2)
3202        host_bits |= float_flag_divbyzero;
3203    if (target_bits & 4)
3204        host_bits |= float_flag_overflow;
3205    if (target_bits & 8)
3206        host_bits |= float_flag_underflow;
3207    if (target_bits & 0x10)
3208        host_bits |= float_flag_inexact;
3209    if (target_bits & 0x80)
3210        host_bits |= float_flag_input_denormal;
3211    return host_bits;
3212}
3213
3214void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3215{
3216    int i;
3217    uint32_t changed;
3218
3219    changed = env->vfp.xregs[ARM_VFP_FPSCR];
3220    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3221    env->vfp.vec_len = (val >> 16) & 7;
3222    env->vfp.vec_stride = (val >> 20) & 3;
3223
3224    changed ^= val;
3225    if (changed & (3 << 22)) {
3226        i = (val >> 22) & 3;
3227        switch (i) {
3228        case 0:
3229            i = float_round_nearest_even;
3230            break;
3231        case 1:
3232            i = float_round_up;
3233            break;
3234        case 2:
3235            i = float_round_down;
3236            break;
3237        case 3:
3238            i = float_round_to_zero;
3239            break;
3240        }
3241        set_float_rounding_mode(i, &env->vfp.fp_status);
3242    }
3243    if (changed & (1 << 24)) {
3244        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3245        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3246    }
3247    if (changed & (1 << 25))
3248        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3249
3250    i = vfp_exceptbits_to_host(val);
3251    set_float_exception_flags(i, &env->vfp.fp_status);
3252    set_float_exception_flags(0, &env->vfp.standard_fp_status);
3253}
3254
3255void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3256{
3257    HELPER(vfp_set_fpscr)(env, val);
3258}
3259
3260#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3261
3262#define VFP_BINOP(name) \
3263float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3264{ \
3265    float_status *fpst = fpstp; \
3266    return float32_ ## name(a, b, fpst); \
3267} \
3268float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3269{ \
3270    float_status *fpst = fpstp; \
3271    return float64_ ## name(a, b, fpst); \
3272}
3273VFP_BINOP(add)
3274VFP_BINOP(sub)
3275VFP_BINOP(mul)
3276VFP_BINOP(div)
3277#undef VFP_BINOP
3278
3279float32 VFP_HELPER(neg, s)(float32 a)
3280{
3281    return float32_chs(a);
3282}
3283
3284float64 VFP_HELPER(neg, d)(float64 a)
3285{
3286    return float64_chs(a);
3287}
3288
3289float32 VFP_HELPER(abs, s)(float32 a)
3290{
3291    return float32_abs(a);
3292}
3293
3294float64 VFP_HELPER(abs, d)(float64 a)
3295{
3296    return float64_abs(a);
3297}
3298
3299float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3300{
3301    return float32_sqrt(a, &env->vfp.fp_status);
3302}
3303
3304float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3305{
3306    return float64_sqrt(a, &env->vfp.fp_status);
3307}
3308
3309/* XXX: check quiet/signaling case */
3310#define DO_VFP_cmp(p, type) \
3311void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
3312{ \
3313    uint32_t flags; \
3314    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3315    case 0: flags = 0x6; break; \
3316    case -1: flags = 0x8; break; \
3317    case 1: flags = 0x2; break; \
3318    default: case 2: flags = 0x3; break; \
3319    } \
3320    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3321        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3322} \
3323void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3324{ \
3325    uint32_t flags; \
3326    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3327    case 0: flags = 0x6; break; \
3328    case -1: flags = 0x8; break; \
3329    case 1: flags = 0x2; break; \
3330    default: case 2: flags = 0x3; break; \
3331    } \
3332    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3333        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3334}
3335DO_VFP_cmp(s, float32)
3336DO_VFP_cmp(d, float64)
3337#undef DO_VFP_cmp
3338
3339/* Integer to float and float to integer conversions */
3340
3341#define CONV_ITOF(name, fsz, sign) \
3342    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3343{ \
3344    float_status *fpst = fpstp; \
3345    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3346}
3347
3348#define CONV_FTOI(name, fsz, sign, round) \
3349uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3350{ \
3351    float_status *fpst = fpstp; \
3352    if (float##fsz##_is_any_nan(x)) { \
3353        float_raise(float_flag_invalid, fpst); \
3354        return 0; \
3355    } \
3356    return float##fsz##_to_##sign##int32##round(x, fpst); \
3357}
3358
3359#define FLOAT_CONVS(name, p, fsz, sign) \
3360CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3361CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3362CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3363
3364FLOAT_CONVS(si, s, 32, )
3365FLOAT_CONVS(si, d, 64, )
3366FLOAT_CONVS(ui, s, 32, u)
3367FLOAT_CONVS(ui, d, 64, u)
3368
3369#undef CONV_ITOF
3370#undef CONV_FTOI
3371#undef FLOAT_CONVS
3372
3373/* floating point conversion */
3374float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3375{
3376    float64 r = float32_to_float64(x, &env->vfp.fp_status);
3377    /* ARM requires that S<->D conversion of any kind of NaN generates
3378     * a quiet NaN by forcing the most significant frac bit to 1.
3379     */
3380    return float64_maybe_silence_nan(r);
3381}
3382
3383float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3384{
3385    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
3386    /* ARM requires that S<->D conversion of any kind of NaN generates
3387     * a quiet NaN by forcing the most significant frac bit to 1.
3388     */
3389    return float32_maybe_silence_nan(r);
3390}
3391
3392/* VFP3 fixed point conversion.  */
3393#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3394float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
3395                                    void *fpstp) \
3396{ \
3397    float_status *fpst = fpstp; \
3398    float##fsz tmp; \
3399    tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3400    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3401} \
3402uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3403                                       void *fpstp) \
3404{ \
3405    float_status *fpst = fpstp; \
3406    float##fsz tmp; \
3407    if (float##fsz##_is_any_nan(x)) { \
3408        float_raise(float_flag_invalid, fpst); \
3409        return 0; \
3410    } \
3411    tmp = float##fsz##_scalbn(x, shift, fpst); \
3412    return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3413}
3414
3415VFP_CONV_FIX(sh, d, 64, int16, )
3416VFP_CONV_FIX(sl, d, 64, int32, )
3417VFP_CONV_FIX(uh, d, 64, uint16, u)
3418VFP_CONV_FIX(ul, d, 64, uint32, u)
3419VFP_CONV_FIX(sh, s, 32, int16, )
3420VFP_CONV_FIX(sl, s, 32, int32, )
3421VFP_CONV_FIX(uh, s, 32, uint16, u)
3422VFP_CONV_FIX(ul, s, 32, uint32, u)
3423#undef VFP_CONV_FIX
3424
3425/* Half precision conversions.  */
3426static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3427{
3428    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3429    float32 r = float16_to_float32(make_float16(a), ieee, s);
3430    if (ieee) {
3431        return float32_maybe_silence_nan(r);
3432    }
3433    return r;
3434}
3435
3436static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3437{
3438    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3439    float16 r = float32_to_float16(a, ieee, s);
3440    if (ieee) {
3441        r = float16_maybe_silence_nan(r);
3442    }
3443    return float16_val(r);
3444}
3445
3446float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3447{
3448    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3449}
3450
3451uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3452{
3453    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3454}
3455
3456float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3457{
3458    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3459}
3460
3461uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3462{
3463    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3464}
3465
3466#define float32_two make_float32(0x40000000)
3467#define float32_three make_float32(0x40400000)
3468#define float32_one_point_five make_float32(0x3fc00000)
3469
3470float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3471{
3472    float_status *s = &env->vfp.standard_fp_status;
3473    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3474        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3475        if (!(float32_is_zero(a) || float32_is_zero(b))) {
3476            float_raise(float_flag_input_denormal, s);
3477        }
3478        return float32_two;
3479    }
3480    return float32_sub(float32_two, float32_mul(a, b, s), s);
3481}
3482
3483float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3484{
3485    float_status *s = &env->vfp.standard_fp_status;
3486    float32 product;
3487    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3488        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3489        if (!(float32_is_zero(a) || float32_is_zero(b))) {
3490            float_raise(float_flag_input_denormal, s);
3491        }
3492        return float32_one_point_five;
3493    }
3494    product = float32_mul(a, b, s);
3495    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3496}
3497
3498/* NEON helpers.  */
3499
3500/* Constants 256 and 512 are used in some helpers; we avoid relying on
3501 * int->float conversions at run-time.  */
3502#define float64_256 make_float64(0x4070000000000000LL)
3503#define float64_512 make_float64(0x4080000000000000LL)
3504
3505/* The algorithm that must be used to calculate the estimate
3506 * is specified by the ARM ARM.
3507 */
3508static float64 recip_estimate(float64 a, CPUARMState *env)
3509{
3510    /* These calculations mustn't set any fp exception flags,
3511     * so we use a local copy of the fp_status.
3512     */
3513    float_status dummy_status = env->vfp.standard_fp_status;
3514    float_status *s = &dummy_status;
3515    /* q = (int)(a * 512.0) */
3516    float64 q = float64_mul(float64_512, a, s);
3517    int64_t q_int = float64_to_int64_round_to_zero(q, s);
3518
3519    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3520    q = int64_to_float64(q_int, s);
3521    q = float64_add(q, float64_half, s);
3522    q = float64_div(q, float64_512, s);
3523    q = float64_div(float64_one, q, s);
3524
3525    /* s = (int)(256.0 * r + 0.5) */
3526    q = float64_mul(q, float64_256, s);
3527    q = float64_add(q, float64_half, s);
3528    q_int = float64_to_int64_round_to_zero(q, s);
3529
3530    /* return (double)s / 256.0 */
3531    return float64_div(int64_to_float64(q_int, s), float64_256, s);
3532}
3533
3534float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3535{
3536    float_status *s = &env->vfp.standard_fp_status;
3537    float64 f64;
3538    uint32_t val32 = float32_val(a);
3539
3540    int result_exp;
3541    int a_exp = (val32  & 0x7f800000) >> 23;
3542    int sign = val32 & 0x80000000;
3543
3544    if (float32_is_any_nan(a)) {
3545        if (float32_is_signaling_nan(a)) {
3546            float_raise(float_flag_invalid, s);
3547        }
3548        return float32_default_nan;
3549    } else if (float32_is_infinity(a)) {
3550        return float32_set_sign(float32_zero, float32_is_neg(a));
3551    } else if (float32_is_zero_or_denormal(a)) {
3552        if (!float32_is_zero(a)) {
3553            float_raise(float_flag_input_denormal, s);
3554        }
3555        float_raise(float_flag_divbyzero, s);
3556        return float32_set_sign(float32_infinity, float32_is_neg(a));
3557    } else if (a_exp >= 253) {
3558        float_raise(float_flag_underflow, s);
3559        return float32_set_sign(float32_zero, float32_is_neg(a));
3560    }
3561
3562    f64 = make_float64((0x3feULL << 52)
3563                       | ((int64_t)(val32 & 0x7fffff) << 29));
3564
3565    result_exp = 253 - a_exp;
3566
3567    f64 = recip_estimate(f64, env);
3568
3569    val32 = sign
3570        | ((result_exp & 0xff) << 23)
3571        | ((float64_val(f64) >> 29) & 0x7fffff);
3572    return make_float32(val32);
3573}
3574
3575/* The algorithm that must be used to calculate the estimate
3576 * is specified by the ARM ARM.
3577 */
3578static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3579{
3580    /* These calculations mustn't set any fp exception flags,
3581     * so we use a local copy of the fp_status.
3582     */
3583    float_status dummy_status = env->vfp.standard_fp_status;
3584    float_status *s = &dummy_status;
3585    float64 q;
3586    int64_t q_int;
3587
3588    if (float64_lt(a, float64_half, s)) {
3589        /* range 0.25 <= a < 0.5 */
3590
3591        /* a in units of 1/512 rounded down */
3592        /* q0 = (int)(a * 512.0);  */
3593        q = float64_mul(float64_512, a, s);
3594        q_int = float64_to_int64_round_to_zero(q, s);
3595
3596        /* reciprocal root r */
3597        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
3598        q = int64_to_float64(q_int, s);
3599        q = float64_add(q, float64_half, s);
3600        q = float64_div(q, float64_512, s);
3601        q = float64_sqrt(q, s);
3602        q = float64_div(float64_one, q, s);
3603    } else {
3604        /* range 0.5 <= a < 1.0 */
3605
3606        /* a in units of 1/256 rounded down */
3607        /* q1 = (int)(a * 256.0); */
3608        q = float64_mul(float64_256, a, s);
3609        int64_t q_int = float64_to_int64_round_to_zero(q, s);
3610
3611        /* reciprocal root r */
3612        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3613        q = int64_to_float64(q_int, s);
3614        q = float64_add(q, float64_half, s);
3615        q = float64_div(q, float64_256, s);
3616        q = float64_sqrt(q, s);
3617        q = float64_div(float64_one, q, s);
3618    }
3619    /* r in units of 1/256 rounded to nearest */
3620    /* s = (int)(256.0 * r + 0.5); */
3621
3622    q = float64_mul(q, float64_256,s );
3623    q = float64_add(q, float64_half, s);
3624    q_int = float64_to_int64_round_to_zero(q, s);
3625
3626    /* return (double)s / 256.0;*/
3627    return float64_div(int64_to_float64(q_int, s), float64_256, s);
3628}
3629
3630float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3631{
3632    float_status *s = &env->vfp.standard_fp_status;
3633    int result_exp;
3634    float64 f64;
3635    uint32_t val;
3636    uint64_t val64;
3637
3638    val = float32_val(a);
3639
3640    if (float32_is_any_nan(a)) {
3641        if (float32_is_signaling_nan(a)) {
3642            float_raise(float_flag_invalid, s);
3643        }
3644        return float32_default_nan;
3645    } else if (float32_is_zero_or_denormal(a)) {
3646        if (!float32_is_zero(a)) {
3647            float_raise(float_flag_input_denormal, s);
3648        }
3649        float_raise(float_flag_divbyzero, s);
3650        return float32_set_sign(float32_infinity, float32_is_neg(a));
3651    } else if (float32_is_neg(a)) {
3652        float_raise(float_flag_invalid, s);
3653        return float32_default_nan;
3654    } else if (float32_is_infinity(a)) {
3655        return float32_zero;
3656    }
3657
3658    /* Normalize to a double-precision value between 0.25 and 1.0,
3659     * preserving the parity of the exponent.  */
3660    if ((val & 0x800000) == 0) {
3661        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3662                           | (0x3feULL << 52)
3663                           | ((uint64_t)(val & 0x7fffff) << 29));
3664    } else {
3665        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3666                           | (0x3fdULL << 52)
3667                           | ((uint64_t)(val & 0x7fffff) << 29));
3668    }
3669
3670    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3671
3672    f64 = recip_sqrt_estimate(f64, env);
3673
3674    val64 = float64_val(f64);
3675
3676    val = ((result_exp & 0xff) << 23)
3677        | ((val64 >> 29)  & 0x7fffff);
3678    return make_float32(val);
3679}
3680
3681uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3682{
3683    float64 f64;
3684
3685    if ((a & 0x80000000) == 0) {
3686        return 0xffffffff;
3687    }
3688
3689    f64 = make_float64((0x3feULL << 52)
3690                       | ((int64_t)(a & 0x7fffffff) << 21));
3691
3692    f64 = recip_estimate (f64, env);
3693
3694    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3695}
3696
3697uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3698{
3699    float64 f64;
3700
3701    if ((a & 0xc0000000) == 0) {
3702        return 0xffffffff;
3703    }
3704
3705    if (a & 0x80000000) {
3706        f64 = make_float64((0x3feULL << 52)
3707                           | ((uint64_t)(a & 0x7fffffff) << 21));
3708    } else { /* bits 31-30 == '01' */
3709        f64 = make_float64((0x3fdULL << 52)
3710                           | ((uint64_t)(a & 0x3fffffff) << 22));
3711    }
3712
3713    f64 = recip_sqrt_estimate(f64, env);
3714
3715    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3716}
3717
3718/* VFPv4 fused multiply-accumulate */
3719float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3720{
3721    float_status *fpst = fpstp;
3722    return float32_muladd(a, b, c, 0, fpst);
3723}
3724
3725float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3726{
3727    float_status *fpst = fpstp;
3728    return float64_muladd(a, b, c, 0, fpst);
3729}
3730