qemu/hw/net/ne2000.c
<<
>>
Prefs
   1/*
   2 * QEMU NE2000 emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "hw/hw.h"
  25#include "hw/pci/pci.h"
  26#include "net/net.h"
  27#include "ne2000.h"
  28#include "hw/loader.h"
  29#include "sysemu/sysemu.h"
  30
  31/* debug NE2000 card */
  32//#define DEBUG_NE2000
  33
  34#define MAX_ETH_FRAME_SIZE 1514
  35
  36#define E8390_CMD       0x00  /* The command register (for all pages) */
  37/* Page 0 register offsets. */
  38#define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
  39#define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
  40#define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
  41#define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
  42#define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
  43#define EN0_TSR         0x04    /* Transmit status reg RD */
  44#define EN0_TPSR        0x04    /* Transmit starting page WR */
  45#define EN0_NCR         0x05    /* Number of collision reg RD */
  46#define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
  47#define EN0_FIFO        0x06    /* FIFO RD */
  48#define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
  49#define EN0_ISR         0x07    /* Interrupt status reg RD WR */
  50#define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
  51#define EN0_RSARLO      0x08    /* Remote start address reg 0 */
  52#define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
  53#define EN0_RSARHI      0x09    /* Remote start address reg 1 */
  54#define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
  55#define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
  56#define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
  57#define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
  58#define EN0_RSR         0x0c    /* rx status reg RD */
  59#define EN0_RXCR        0x0c    /* RX configuration reg WR */
  60#define EN0_TXCR        0x0d    /* TX configuration reg WR */
  61#define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
  62#define EN0_DCFG        0x0e    /* Data configuration reg WR */
  63#define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
  64#define EN0_IMR         0x0f    /* Interrupt mask reg WR */
  65#define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
  66
  67#define EN1_PHYS        0x11
  68#define EN1_CURPAG      0x17
  69#define EN1_MULT        0x18
  70
  71#define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
  72#define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
  73
  74#define EN3_CONFIG0     0x33
  75#define EN3_CONFIG1     0x34
  76#define EN3_CONFIG2     0x35
  77#define EN3_CONFIG3     0x36
  78
  79/*  Register accessed at EN_CMD, the 8390 base addr.  */
  80#define E8390_STOP      0x01    /* Stop and reset the chip */
  81#define E8390_START     0x02    /* Start the chip, clear reset */
  82#define E8390_TRANS     0x04    /* Transmit a frame */
  83#define E8390_RREAD     0x08    /* Remote read */
  84#define E8390_RWRITE    0x10    /* Remote write  */
  85#define E8390_NODMA     0x20    /* Remote DMA */
  86#define E8390_PAGE0     0x00    /* Select page chip registers */
  87#define E8390_PAGE1     0x40    /* using the two high-order bits */
  88#define E8390_PAGE2     0x80    /* Page 3 is invalid. */
  89
  90/* Bits in EN0_ISR - Interrupt status register */
  91#define ENISR_RX        0x01    /* Receiver, no error */
  92#define ENISR_TX        0x02    /* Transmitter, no error */
  93#define ENISR_RX_ERR    0x04    /* Receiver, with error */
  94#define ENISR_TX_ERR    0x08    /* Transmitter, with error */
  95#define ENISR_OVER      0x10    /* Receiver overwrote the ring */
  96#define ENISR_COUNTERS  0x20    /* Counters need emptying */
  97#define ENISR_RDC       0x40    /* remote dma complete */
  98#define ENISR_RESET     0x80    /* Reset completed */
  99#define ENISR_ALL       0x3f    /* Interrupts we will enable */
 100
 101/* Bits in received packet status byte and EN0_RSR*/
 102#define ENRSR_RXOK      0x01    /* Received a good packet */
 103#define ENRSR_CRC       0x02    /* CRC error */
 104#define ENRSR_FAE       0x04    /* frame alignment error */
 105#define ENRSR_FO        0x08    /* FIFO overrun */
 106#define ENRSR_MPA       0x10    /* missed pkt */
 107#define ENRSR_PHY       0x20    /* physical/multicast address */
 108#define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
 109#define ENRSR_DEF       0x80    /* deferring */
 110
 111/* Transmitted packet status, EN0_TSR. */
 112#define ENTSR_PTX 0x01  /* Packet transmitted without error */
 113#define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
 114#define ENTSR_COL 0x04  /* The transmit collided at least once. */
 115#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
 116#define ENTSR_CRS 0x10  /* The carrier sense was lost. */
 117#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
 118#define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
 119#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
 120
 121typedef struct PCINE2000State {
 122    PCIDevice dev;
 123    NE2000State ne2000;
 124} PCINE2000State;
 125
 126void ne2000_reset(NE2000State *s)
 127{
 128    int i;
 129
 130    s->isr = ENISR_RESET;
 131    memcpy(s->mem, &s->c.macaddr, 6);
 132    s->mem[14] = 0x57;
 133    s->mem[15] = 0x57;
 134
 135    /* duplicate prom data */
 136    for(i = 15;i >= 0; i--) {
 137        s->mem[2 * i] = s->mem[i];
 138        s->mem[2 * i + 1] = s->mem[i];
 139    }
 140}
 141
 142static void ne2000_update_irq(NE2000State *s)
 143{
 144    int isr;
 145    isr = (s->isr & s->imr) & 0x7f;
 146#if defined(DEBUG_NE2000)
 147    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
 148           isr ? 1 : 0, s->isr, s->imr);
 149#endif
 150    qemu_set_irq(s->irq, (isr != 0));
 151}
 152
 153static int ne2000_buffer_full(NE2000State *s)
 154{
 155    int avail, index, boundary;
 156
 157    index = s->curpag << 8;
 158    boundary = s->boundary << 8;
 159    if (index < boundary)
 160        avail = boundary - index;
 161    else
 162        avail = (s->stop - s->start) - (index - boundary);
 163    if (avail < (MAX_ETH_FRAME_SIZE + 4))
 164        return 1;
 165    return 0;
 166}
 167
 168int ne2000_can_receive(NetClientState *nc)
 169{
 170    NE2000State *s = qemu_get_nic_opaque(nc);
 171
 172    if (s->cmd & E8390_STOP)
 173        return 1;
 174    return !ne2000_buffer_full(s);
 175}
 176
 177#define MIN_BUF_SIZE 60
 178
 179ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
 180{
 181    NE2000State *s = qemu_get_nic_opaque(nc);
 182    int size = size_;
 183    uint8_t *p;
 184    unsigned int total_len, next, avail, len, index, mcast_idx;
 185    uint8_t buf1[60];
 186    static const uint8_t broadcast_macaddr[6] =
 187        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 188
 189#if defined(DEBUG_NE2000)
 190    printf("NE2000: received len=%d\n", size);
 191#endif
 192
 193    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
 194        return -1;
 195
 196    /* XXX: check this */
 197    if (s->rxcr & 0x10) {
 198        /* promiscuous: receive all */
 199    } else {
 200        if (!memcmp(buf,  broadcast_macaddr, 6)) {
 201            /* broadcast address */
 202            if (!(s->rxcr & 0x04))
 203                return size;
 204        } else if (buf[0] & 0x01) {
 205            /* multicast */
 206            if (!(s->rxcr & 0x08))
 207                return size;
 208            mcast_idx = compute_mcast_idx(buf);
 209            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
 210                return size;
 211        } else if (s->mem[0] == buf[0] &&
 212                   s->mem[2] == buf[1] &&
 213                   s->mem[4] == buf[2] &&
 214                   s->mem[6] == buf[3] &&
 215                   s->mem[8] == buf[4] &&
 216                   s->mem[10] == buf[5]) {
 217            /* match */
 218        } else {
 219            return size;
 220        }
 221    }
 222
 223
 224    /* if too small buffer, then expand it */
 225    if (size < MIN_BUF_SIZE) {
 226        memcpy(buf1, buf, size);
 227        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
 228        buf = buf1;
 229        size = MIN_BUF_SIZE;
 230    }
 231
 232    index = s->curpag << 8;
 233    /* 4 bytes for header */
 234    total_len = size + 4;
 235    /* address for next packet (4 bytes for CRC) */
 236    next = index + ((total_len + 4 + 255) & ~0xff);
 237    if (next >= s->stop)
 238        next -= (s->stop - s->start);
 239    /* prepare packet header */
 240    p = s->mem + index;
 241    s->rsr = ENRSR_RXOK; /* receive status */
 242    /* XXX: check this */
 243    if (buf[0] & 0x01)
 244        s->rsr |= ENRSR_PHY;
 245    p[0] = s->rsr;
 246    p[1] = next >> 8;
 247    p[2] = total_len;
 248    p[3] = total_len >> 8;
 249    index += 4;
 250
 251    /* write packet data */
 252    while (size > 0) {
 253        if (index <= s->stop)
 254            avail = s->stop - index;
 255        else
 256            avail = 0;
 257        len = size;
 258        if (len > avail)
 259            len = avail;
 260        memcpy(s->mem + index, buf, len);
 261        buf += len;
 262        index += len;
 263        if (index == s->stop)
 264            index = s->start;
 265        size -= len;
 266    }
 267    s->curpag = next >> 8;
 268
 269    /* now we can signal we have received something */
 270    s->isr |= ENISR_RX;
 271    ne2000_update_irq(s);
 272
 273    return size_;
 274}
 275
 276static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 277{
 278    NE2000State *s = opaque;
 279    int offset, page, index;
 280
 281    addr &= 0xf;
 282#ifdef DEBUG_NE2000
 283    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
 284#endif
 285    if (addr == E8390_CMD) {
 286        /* control register */
 287        s->cmd = val;
 288        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
 289            s->isr &= ~ENISR_RESET;
 290            /* test specific case: zero length transfer */
 291            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
 292                s->rcnt == 0) {
 293                s->isr |= ENISR_RDC;
 294                ne2000_update_irq(s);
 295            }
 296            if (val & E8390_TRANS) {
 297                index = (s->tpsr << 8);
 298                /* XXX: next 2 lines are a hack to make netware 3.11 work */
 299                if (index >= NE2000_PMEM_END)
 300                    index -= NE2000_PMEM_SIZE;
 301                /* fail safe: check range on the transmitted length  */
 302                if (index + s->tcnt <= NE2000_PMEM_END) {
 303                    qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
 304                                     s->tcnt);
 305                }
 306                /* signal end of transfer */
 307                s->tsr = ENTSR_PTX;
 308                s->isr |= ENISR_TX;
 309                s->cmd &= ~E8390_TRANS;
 310                ne2000_update_irq(s);
 311            }
 312        }
 313    } else {
 314        page = s->cmd >> 6;
 315        offset = addr | (page << 4);
 316        switch(offset) {
 317        case EN0_STARTPG:
 318            s->start = val << 8;
 319            break;
 320        case EN0_STOPPG:
 321            s->stop = val << 8;
 322            break;
 323        case EN0_BOUNDARY:
 324            s->boundary = val;
 325            break;
 326        case EN0_IMR:
 327            s->imr = val;
 328            ne2000_update_irq(s);
 329            break;
 330        case EN0_TPSR:
 331            s->tpsr = val;
 332            break;
 333        case EN0_TCNTLO:
 334            s->tcnt = (s->tcnt & 0xff00) | val;
 335            break;
 336        case EN0_TCNTHI:
 337            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
 338            break;
 339        case EN0_RSARLO:
 340            s->rsar = (s->rsar & 0xff00) | val;
 341            break;
 342        case EN0_RSARHI:
 343            s->rsar = (s->rsar & 0x00ff) | (val << 8);
 344            break;
 345        case EN0_RCNTLO:
 346            s->rcnt = (s->rcnt & 0xff00) | val;
 347            break;
 348        case EN0_RCNTHI:
 349            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
 350            break;
 351        case EN0_RXCR:
 352            s->rxcr = val;
 353            break;
 354        case EN0_DCFG:
 355            s->dcfg = val;
 356            break;
 357        case EN0_ISR:
 358            s->isr &= ~(val & 0x7f);
 359            ne2000_update_irq(s);
 360            break;
 361        case EN1_PHYS ... EN1_PHYS + 5:
 362            s->phys[offset - EN1_PHYS] = val;
 363            break;
 364        case EN1_CURPAG:
 365            s->curpag = val;
 366            break;
 367        case EN1_MULT ... EN1_MULT + 7:
 368            s->mult[offset - EN1_MULT] = val;
 369            break;
 370        }
 371    }
 372}
 373
 374static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
 375{
 376    NE2000State *s = opaque;
 377    int offset, page, ret;
 378
 379    addr &= 0xf;
 380    if (addr == E8390_CMD) {
 381        ret = s->cmd;
 382    } else {
 383        page = s->cmd >> 6;
 384        offset = addr | (page << 4);
 385        switch(offset) {
 386        case EN0_TSR:
 387            ret = s->tsr;
 388            break;
 389        case EN0_BOUNDARY:
 390            ret = s->boundary;
 391            break;
 392        case EN0_ISR:
 393            ret = s->isr;
 394            break;
 395        case EN0_RSARLO:
 396            ret = s->rsar & 0x00ff;
 397            break;
 398        case EN0_RSARHI:
 399            ret = s->rsar >> 8;
 400            break;
 401        case EN1_PHYS ... EN1_PHYS + 5:
 402            ret = s->phys[offset - EN1_PHYS];
 403            break;
 404        case EN1_CURPAG:
 405            ret = s->curpag;
 406            break;
 407        case EN1_MULT ... EN1_MULT + 7:
 408            ret = s->mult[offset - EN1_MULT];
 409            break;
 410        case EN0_RSR:
 411            ret = s->rsr;
 412            break;
 413        case EN2_STARTPG:
 414            ret = s->start >> 8;
 415            break;
 416        case EN2_STOPPG:
 417            ret = s->stop >> 8;
 418            break;
 419        case EN0_RTL8029ID0:
 420            ret = 0x50;
 421            break;
 422        case EN0_RTL8029ID1:
 423            ret = 0x43;
 424            break;
 425        case EN3_CONFIG0:
 426            ret = 0;            /* 10baseT media */
 427            break;
 428        case EN3_CONFIG2:
 429            ret = 0x40;         /* 10baseT active */
 430            break;
 431        case EN3_CONFIG3:
 432            ret = 0x40;         /* Full duplex */
 433            break;
 434        default:
 435            ret = 0x00;
 436            break;
 437        }
 438    }
 439#ifdef DEBUG_NE2000
 440    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
 441#endif
 442    return ret;
 443}
 444
 445static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
 446                                     uint32_t val)
 447{
 448    if (addr < 32 ||
 449        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 450        s->mem[addr] = val;
 451    }
 452}
 453
 454static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
 455                                     uint32_t val)
 456{
 457    addr &= ~1; /* XXX: check exact behaviour if not even */
 458    if (addr < 32 ||
 459        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 460        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
 461    }
 462}
 463
 464static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
 465                                     uint32_t val)
 466{
 467    addr &= ~1; /* XXX: check exact behaviour if not even */
 468    if (addr < 32 ||
 469        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 470        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
 471    }
 472}
 473
 474static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
 475{
 476    if (addr < 32 ||
 477        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 478        return s->mem[addr];
 479    } else {
 480        return 0xff;
 481    }
 482}
 483
 484static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
 485{
 486    addr &= ~1; /* XXX: check exact behaviour if not even */
 487    if (addr < 32 ||
 488        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 489        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
 490    } else {
 491        return 0xffff;
 492    }
 493}
 494
 495static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
 496{
 497    addr &= ~1; /* XXX: check exact behaviour if not even */
 498    if (addr < 32 ||
 499        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 500        return le32_to_cpupu((uint32_t *)(s->mem + addr));
 501    } else {
 502        return 0xffffffff;
 503    }
 504}
 505
 506static inline void ne2000_dma_update(NE2000State *s, int len)
 507{
 508    s->rsar += len;
 509    /* wrap */
 510    /* XXX: check what to do if rsar > stop */
 511    if (s->rsar == s->stop)
 512        s->rsar = s->start;
 513
 514    if (s->rcnt <= len) {
 515        s->rcnt = 0;
 516        /* signal end of transfer */
 517        s->isr |= ENISR_RDC;
 518        ne2000_update_irq(s);
 519    } else {
 520        s->rcnt -= len;
 521    }
 522}
 523
 524static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 525{
 526    NE2000State *s = opaque;
 527
 528#ifdef DEBUG_NE2000
 529    printf("NE2000: asic write val=0x%04x\n", val);
 530#endif
 531    if (s->rcnt == 0)
 532        return;
 533    if (s->dcfg & 0x01) {
 534        /* 16 bit access */
 535        ne2000_mem_writew(s, s->rsar, val);
 536        ne2000_dma_update(s, 2);
 537    } else {
 538        /* 8 bit access */
 539        ne2000_mem_writeb(s, s->rsar, val);
 540        ne2000_dma_update(s, 1);
 541    }
 542}
 543
 544static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
 545{
 546    NE2000State *s = opaque;
 547    int ret;
 548
 549    if (s->dcfg & 0x01) {
 550        /* 16 bit access */
 551        ret = ne2000_mem_readw(s, s->rsar);
 552        ne2000_dma_update(s, 2);
 553    } else {
 554        /* 8 bit access */
 555        ret = ne2000_mem_readb(s, s->rsar);
 556        ne2000_dma_update(s, 1);
 557    }
 558#ifdef DEBUG_NE2000
 559    printf("NE2000: asic read val=0x%04x\n", ret);
 560#endif
 561    return ret;
 562}
 563
 564static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
 565{
 566    NE2000State *s = opaque;
 567
 568#ifdef DEBUG_NE2000
 569    printf("NE2000: asic writel val=0x%04x\n", val);
 570#endif
 571    if (s->rcnt == 0)
 572        return;
 573    /* 32 bit access */
 574    ne2000_mem_writel(s, s->rsar, val);
 575    ne2000_dma_update(s, 4);
 576}
 577
 578static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
 579{
 580    NE2000State *s = opaque;
 581    int ret;
 582
 583    /* 32 bit access */
 584    ret = ne2000_mem_readl(s, s->rsar);
 585    ne2000_dma_update(s, 4);
 586#ifdef DEBUG_NE2000
 587    printf("NE2000: asic readl val=0x%04x\n", ret);
 588#endif
 589    return ret;
 590}
 591
 592static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 593{
 594    /* nothing to do (end of reset pulse) */
 595}
 596
 597static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
 598{
 599    NE2000State *s = opaque;
 600    ne2000_reset(s);
 601    return 0;
 602}
 603
 604static int ne2000_post_load(void* opaque, int version_id)
 605{
 606    NE2000State* s = opaque;
 607
 608    if (version_id < 2) {
 609        s->rxcr = 0x0c;
 610    }
 611    return 0;
 612}
 613
 614const VMStateDescription vmstate_ne2000 = {
 615    .name = "ne2000",
 616    .version_id = 2,
 617    .minimum_version_id = 0,
 618    .minimum_version_id_old = 0,
 619    .post_load = ne2000_post_load,
 620    .fields      = (VMStateField []) {
 621        VMSTATE_UINT8_V(rxcr, NE2000State, 2),
 622        VMSTATE_UINT8(cmd, NE2000State),
 623        VMSTATE_UINT32(start, NE2000State),
 624        VMSTATE_UINT32(stop, NE2000State),
 625        VMSTATE_UINT8(boundary, NE2000State),
 626        VMSTATE_UINT8(tsr, NE2000State),
 627        VMSTATE_UINT8(tpsr, NE2000State),
 628        VMSTATE_UINT16(tcnt, NE2000State),
 629        VMSTATE_UINT16(rcnt, NE2000State),
 630        VMSTATE_UINT32(rsar, NE2000State),
 631        VMSTATE_UINT8(rsr, NE2000State),
 632        VMSTATE_UINT8(isr, NE2000State),
 633        VMSTATE_UINT8(dcfg, NE2000State),
 634        VMSTATE_UINT8(imr, NE2000State),
 635        VMSTATE_BUFFER(phys, NE2000State),
 636        VMSTATE_UINT8(curpag, NE2000State),
 637        VMSTATE_BUFFER(mult, NE2000State),
 638        VMSTATE_UNUSED(4), /* was irq */
 639        VMSTATE_BUFFER(mem, NE2000State),
 640        VMSTATE_END_OF_LIST()
 641    }
 642};
 643
 644static const VMStateDescription vmstate_pci_ne2000 = {
 645    .name = "ne2000",
 646    .version_id = 3,
 647    .minimum_version_id = 3,
 648    .minimum_version_id_old = 3,
 649    .fields      = (VMStateField []) {
 650        VMSTATE_PCI_DEVICE(dev, PCINE2000State),
 651        VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
 652        VMSTATE_END_OF_LIST()
 653    }
 654};
 655
 656static uint64_t ne2000_read(void *opaque, hwaddr addr,
 657                            unsigned size)
 658{
 659    NE2000State *s = opaque;
 660
 661    if (addr < 0x10 && size == 1) {
 662        return ne2000_ioport_read(s, addr);
 663    } else if (addr == 0x10) {
 664        if (size <= 2) {
 665            return ne2000_asic_ioport_read(s, addr);
 666        } else {
 667            return ne2000_asic_ioport_readl(s, addr);
 668        }
 669    } else if (addr == 0x1f && size == 1) {
 670        return ne2000_reset_ioport_read(s, addr);
 671    }
 672    return ((uint64_t)1 << (size * 8)) - 1;
 673}
 674
 675static void ne2000_write(void *opaque, hwaddr addr,
 676                         uint64_t data, unsigned size)
 677{
 678    NE2000State *s = opaque;
 679
 680    if (addr < 0x10 && size == 1) {
 681        ne2000_ioport_write(s, addr, data);
 682    } else if (addr == 0x10) {
 683        if (size <= 2) {
 684            ne2000_asic_ioport_write(s, addr, data);
 685        } else {
 686            ne2000_asic_ioport_writel(s, addr, data);
 687        }
 688    } else if (addr == 0x1f && size == 1) {
 689        ne2000_reset_ioport_write(s, addr, data);
 690    }
 691}
 692
 693static const MemoryRegionOps ne2000_ops = {
 694    .read = ne2000_read,
 695    .write = ne2000_write,
 696    .endianness = DEVICE_LITTLE_ENDIAN,
 697};
 698
 699/***********************************************************/
 700/* PCI NE2000 definitions */
 701
 702void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
 703{
 704    memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
 705}
 706
 707static void ne2000_cleanup(NetClientState *nc)
 708{
 709    NE2000State *s = qemu_get_nic_opaque(nc);
 710
 711    s->nic = NULL;
 712}
 713
 714static NetClientInfo net_ne2000_info = {
 715    .type = NET_CLIENT_OPTIONS_KIND_NIC,
 716    .size = sizeof(NICState),
 717    .can_receive = ne2000_can_receive,
 718    .receive = ne2000_receive,
 719    .cleanup = ne2000_cleanup,
 720};
 721
 722static int pci_ne2000_init(PCIDevice *pci_dev)
 723{
 724    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 725    NE2000State *s;
 726    uint8_t *pci_conf;
 727
 728    pci_conf = d->dev.config;
 729    pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
 730
 731    s = &d->ne2000;
 732    ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
 733    pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
 734    s->irq = d->dev.irq[0];
 735
 736    qemu_macaddr_default_if_unset(&s->c.macaddr);
 737    ne2000_reset(s);
 738
 739    s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
 740                          object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
 741    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
 742
 743    add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
 744
 745    return 0;
 746}
 747
 748static void pci_ne2000_exit(PCIDevice *pci_dev)
 749{
 750    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 751    NE2000State *s = &d->ne2000;
 752
 753    memory_region_destroy(&s->io);
 754    qemu_del_nic(s->nic);
 755}
 756
 757static Property ne2000_properties[] = {
 758    DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
 759    DEFINE_PROP_END_OF_LIST(),
 760};
 761
 762static void ne2000_class_init(ObjectClass *klass, void *data)
 763{
 764    DeviceClass *dc = DEVICE_CLASS(klass);
 765    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 766
 767    k->init = pci_ne2000_init;
 768    k->exit = pci_ne2000_exit;
 769    k->romfile = "efi-ne2k_pci.rom",
 770    k->vendor_id = PCI_VENDOR_ID_REALTEK;
 771    k->device_id = PCI_DEVICE_ID_REALTEK_8029;
 772    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
 773    dc->vmsd = &vmstate_pci_ne2000;
 774    dc->props = ne2000_properties;
 775    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
 776}
 777
 778static const TypeInfo ne2000_info = {
 779    .name          = "ne2k_pci",
 780    .parent        = TYPE_PCI_DEVICE,
 781    .instance_size = sizeof(PCINE2000State),
 782    .class_init    = ne2000_class_init,
 783};
 784
 785static void ne2000_register_types(void)
 786{
 787    type_register_static(&ne2000_info);
 788}
 789
 790type_init(ne2000_register_types)
 791