qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include <string.h>
  13#include <glib.h>
  14#include <assert.h>
  15#include "qemu/osdep.h"
  16#include "qemu/hbitmap.h"
  17#include "qemu/host-utils.h"
  18#include "trace.h"
  19
  20/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  21 * array of unsigned longs, but HBitmap is also optimized to provide fast
  22 * iteration over set bits; going from one bit to the next is O(logB n)
  23 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  24 * that the number of levels is in fact fixed.
  25 *
  26 * In order to do this, it stacks multiple bitmaps with progressively coarser
  27 * granularity; in all levels except the last, bit N is set iff the N-th
  28 * unsigned long is nonzero in the immediately next level.  When iteration
  29 * completes on the last level it can examine the 2nd-last level to quickly
  30 * skip entire words, and even do so recursively to skip blocks of 64 words or
  31 * powers thereof (32 on 32-bit machines).
  32 *
  33 * Given an index in the bitmap, it can be split in group of bits like
  34 * this (for the 64-bit case):
  35 *
  36 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  37 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  38 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  39 *
  40 * So it is easy to move up simply by shifting the index right by
  41 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  42 * similarly, and add the word index within the group.  Iteration uses
  43 * ffs (find first set bit) to find the next word to examine; this
  44 * operation can be done in constant time in most current architectures.
  45 *
  46 * Setting or clearing a range of m bits on all levels, the work to perform
  47 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  48 *
  49 * When iterating on a bitmap, each bit (on any level) is only visited
  50 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  51 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  52 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  53 * cost of advancing from one bit to the next is usually constant (worst case
  54 * O(logB n) as in the non-amortized complexity).
  55 */
  56
  57struct HBitmap {
  58    /* Number of total bits in the bottom level.  */
  59    uint64_t size;
  60
  61    /* Number of set bits in the bottom level.  */
  62    uint64_t count;
  63
  64    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  65     * will actually represent a group of 2^G elements.  Each operation on a
  66     * range of bits first rounds the bits to determine which group they land
  67     * in, and then affect the entire page; iteration will only visit the first
  68     * bit of each group.  Here is an example of operations in a size-16,
  69     * granularity-1 HBitmap:
  70     *
  71     *    initial state            00000000
  72     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  73     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  74     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  75     *    reset(start=5, count=5)  00000000
  76     *
  77     * From an implementation point of view, when setting or resetting bits,
  78     * the bitmap will scale bit numbers right by this amount of bits.  When
  79     * iterating, the bitmap will scale bit numbers left by this amount of
  80     * bits.
  81     */
  82    int granularity;
  83
  84    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  85     * coarsest).  Each bit in level N represents a word in level N+1 that
  86     * has a set bit, except the last level where each bit represents the
  87     * actual bitmap.
  88     *
  89     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  90     * bitmap will still allocate HBITMAP_LEVELS arrays.
  91     */
  92    unsigned long *levels[HBITMAP_LEVELS];
  93};
  94
  95static inline int popcountl(unsigned long l)
  96{
  97    return BITS_PER_LONG == 32 ? ctpop32(l) : ctpop64(l);
  98}
  99
 100/* Advance hbi to the next nonzero word and return it.  hbi->pos
 101 * is updated.  Returns zero if we reach the end of the bitmap.
 102 */
 103unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 104{
 105    size_t pos = hbi->pos;
 106    const HBitmap *hb = hbi->hb;
 107    unsigned i = HBITMAP_LEVELS - 1;
 108
 109    unsigned long cur;
 110    do {
 111        cur = hbi->cur[--i];
 112        pos >>= BITS_PER_LEVEL;
 113    } while (cur == 0);
 114
 115    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 116     * bits in the level 0 bitmap; thus we can repurpose the most significant
 117     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 118     * that the above loop ends even without an explicit check on i.
 119     */
 120
 121    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 122        return 0;
 123    }
 124    for (; i < HBITMAP_LEVELS - 1; i++) {
 125        /* Shift back pos to the left, matching the right shifts above.
 126         * The index of this word's least significant set bit provides
 127         * the low-order bits.
 128         */
 129        assert(cur);
 130        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 131        hbi->cur[i] = cur & (cur - 1);
 132
 133        /* Set up next level for iteration.  */
 134        cur = hb->levels[i + 1][pos];
 135    }
 136
 137    hbi->pos = pos;
 138    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 139
 140    assert(cur);
 141    return cur;
 142}
 143
 144void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 145{
 146    unsigned i, bit;
 147    uint64_t pos;
 148
 149    hbi->hb = hb;
 150    pos = first >> hb->granularity;
 151    assert(pos < hb->size);
 152    hbi->pos = pos >> BITS_PER_LEVEL;
 153    hbi->granularity = hb->granularity;
 154
 155    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 156        bit = pos & (BITS_PER_LONG - 1);
 157        pos >>= BITS_PER_LEVEL;
 158
 159        /* Drop bits representing items before first.  */
 160        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 161
 162        /* We have already added level i+1, so the lowest set bit has
 163         * been processed.  Clear it.
 164         */
 165        if (i != HBITMAP_LEVELS - 1) {
 166            hbi->cur[i] &= ~(1UL << bit);
 167        }
 168    }
 169}
 170
 171bool hbitmap_empty(const HBitmap *hb)
 172{
 173    return hb->count == 0;
 174}
 175
 176int hbitmap_granularity(const HBitmap *hb)
 177{
 178    return hb->granularity;
 179}
 180
 181uint64_t hbitmap_count(const HBitmap *hb)
 182{
 183    return hb->count << hb->granularity;
 184}
 185
 186/* Count the number of set bits between start and end, not accounting for
 187 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 188 */
 189static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 190{
 191    HBitmapIter hbi;
 192    uint64_t count = 0;
 193    uint64_t end = last + 1;
 194    unsigned long cur;
 195    size_t pos;
 196
 197    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 198    for (;;) {
 199        pos = hbitmap_iter_next_word(&hbi, &cur);
 200        if (pos >= (end >> BITS_PER_LEVEL)) {
 201            break;
 202        }
 203        count += popcountl(cur);
 204    }
 205
 206    if (pos == (end >> BITS_PER_LEVEL)) {
 207        /* Drop bits representing the END-th and subsequent items.  */
 208        int bit = end & (BITS_PER_LONG - 1);
 209        cur &= (1UL << bit) - 1;
 210        count += popcountl(cur);
 211    }
 212
 213    return count;
 214}
 215
 216/* Setting starts at the last layer and propagates up if an element
 217 * changes from zero to non-zero.
 218 */
 219static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 220{
 221    unsigned long mask;
 222    bool changed;
 223
 224    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 225    assert(start <= last);
 226
 227    mask = 2UL << (last & (BITS_PER_LONG - 1));
 228    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 229    changed = (*elem == 0);
 230    *elem |= mask;
 231    return changed;
 232}
 233
 234/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
 235static void hb_set_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
 236{
 237    size_t pos = start >> BITS_PER_LEVEL;
 238    size_t lastpos = last >> BITS_PER_LEVEL;
 239    bool changed = false;
 240    size_t i;
 241
 242    i = pos;
 243    if (i < lastpos) {
 244        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 245        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 246        for (;;) {
 247            start = next;
 248            next += BITS_PER_LONG;
 249            if (++i == lastpos) {
 250                break;
 251            }
 252            changed |= (hb->levels[level][i] == 0);
 253            hb->levels[level][i] = ~0UL;
 254        }
 255    }
 256    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 257
 258    /* If there was any change in this layer, we may have to update
 259     * the one above.
 260     */
 261    if (level > 0 && changed) {
 262        hb_set_between(hb, level - 1, pos, lastpos);
 263    }
 264}
 265
 266void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 267{
 268    /* Compute range in the last layer.  */
 269    uint64_t last = start + count - 1;
 270
 271    trace_hbitmap_set(hb, start, count,
 272                      start >> hb->granularity, last >> hb->granularity);
 273
 274    start >>= hb->granularity;
 275    last >>= hb->granularity;
 276    count = last - start + 1;
 277
 278    hb->count += count - hb_count_between(hb, start, last);
 279    hb_set_between(hb, HBITMAP_LEVELS - 1, start, last);
 280}
 281
 282/* Resetting works the other way round: propagate up if the new
 283 * value is zero.
 284 */
 285static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 286{
 287    unsigned long mask;
 288    bool blanked;
 289
 290    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 291    assert(start <= last);
 292
 293    mask = 2UL << (last & (BITS_PER_LONG - 1));
 294    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 295    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 296    *elem &= ~mask;
 297    return blanked;
 298}
 299
 300/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)... */
 301static void hb_reset_between(HBitmap *hb, int level, uint64_t start, uint64_t last)
 302{
 303    size_t pos = start >> BITS_PER_LEVEL;
 304    size_t lastpos = last >> BITS_PER_LEVEL;
 305    bool changed = false;
 306    size_t i;
 307
 308    i = pos;
 309    if (i < lastpos) {
 310        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 311
 312        /* Here we need a more complex test than when setting bits.  Even if
 313         * something was changed, we must not blank bits in the upper level
 314         * unless the lower-level word became entirely zero.  So, remove pos
 315         * from the upper-level range if bits remain set.
 316         */
 317        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 318            changed = true;
 319        } else {
 320            pos++;
 321        }
 322
 323        for (;;) {
 324            start = next;
 325            next += BITS_PER_LONG;
 326            if (++i == lastpos) {
 327                break;
 328            }
 329            changed |= (hb->levels[level][i] != 0);
 330            hb->levels[level][i] = 0UL;
 331        }
 332    }
 333
 334    /* Same as above, this time for lastpos.  */
 335    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 336        changed = true;
 337    } else {
 338        lastpos--;
 339    }
 340
 341    if (level > 0 && changed) {
 342        hb_reset_between(hb, level - 1, pos, lastpos);
 343    }
 344}
 345
 346void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 347{
 348    /* Compute range in the last layer.  */
 349    uint64_t last = start + count - 1;
 350
 351    trace_hbitmap_reset(hb, start, count,
 352                        start >> hb->granularity, last >> hb->granularity);
 353
 354    start >>= hb->granularity;
 355    last >>= hb->granularity;
 356
 357    hb->count -= hb_count_between(hb, start, last);
 358    hb_reset_between(hb, HBITMAP_LEVELS - 1, start, last);
 359}
 360
 361bool hbitmap_get(const HBitmap *hb, uint64_t item)
 362{
 363    /* Compute position and bit in the last layer.  */
 364    uint64_t pos = item >> hb->granularity;
 365    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 366
 367    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 368}
 369
 370void hbitmap_free(HBitmap *hb)
 371{
 372    unsigned i;
 373    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 374        g_free(hb->levels[i]);
 375    }
 376    g_free(hb);
 377}
 378
 379HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 380{
 381    HBitmap *hb = g_malloc0(sizeof (struct HBitmap));
 382    unsigned i;
 383
 384    assert(granularity >= 0 && granularity < 64);
 385    size = (size + (1ULL << granularity) - 1) >> granularity;
 386    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 387
 388    hb->size = size;
 389    hb->granularity = granularity;
 390    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 391        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 392        hb->levels[i] = g_malloc0(size * sizeof(unsigned long));
 393    }
 394
 395    /* We necessarily have free bits in level 0 due to the definition
 396     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 397     * hbitmap_iter_skip_words.
 398     */
 399    assert(size == 1);
 400    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 401    return hb;
 402}
 403