qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include <stdint.h>
  20#include <stdbool.h>
  21#include "qemu-common.h"
  22#include "exec/cpu-common.h"
  23#ifndef CONFIG_USER_ONLY
  24#include "exec/hwaddr.h"
  25#endif
  26#include "qemu/queue.h"
  27#include "qemu/int128.h"
  28#include "qemu/notify.h"
  29
  30#define MAX_PHYS_ADDR_SPACE_BITS 62
  31#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  32
  33typedef struct MemoryRegionOps MemoryRegionOps;
  34typedef struct MemoryRegionMmio MemoryRegionMmio;
  35
  36/* Must match *_DIRTY_FLAGS in cpu-all.h.  To be replaced with dynamic
  37 * registration.
  38 */
  39#define DIRTY_MEMORY_VGA       0
  40#define DIRTY_MEMORY_CODE      1
  41#define DIRTY_MEMORY_MIGRATION 3
  42
  43struct MemoryRegionMmio {
  44    CPUReadMemoryFunc *read[3];
  45    CPUWriteMemoryFunc *write[3];
  46};
  47
  48typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  49
  50/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  51typedef enum {
  52    IOMMU_NONE = 0,
  53    IOMMU_RO   = 1,
  54    IOMMU_WO   = 2,
  55    IOMMU_RW   = 3,
  56} IOMMUAccessFlags;
  57
  58struct IOMMUTLBEntry {
  59    AddressSpace    *target_as;
  60    hwaddr           iova;
  61    hwaddr           translated_addr;
  62    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  63    IOMMUAccessFlags perm;
  64};
  65
  66/*
  67 * Memory region callbacks
  68 */
  69struct MemoryRegionOps {
  70    /* Read from the memory region. @addr is relative to @mr; @size is
  71     * in bytes. */
  72    uint64_t (*read)(void *opaque,
  73                     hwaddr addr,
  74                     unsigned size);
  75    /* Write to the memory region. @addr is relative to @mr; @size is
  76     * in bytes. */
  77    void (*write)(void *opaque,
  78                  hwaddr addr,
  79                  uint64_t data,
  80                  unsigned size);
  81
  82    enum device_endian endianness;
  83    /* Guest-visible constraints: */
  84    struct {
  85        /* If nonzero, specify bounds on access sizes beyond which a machine
  86         * check is thrown.
  87         */
  88        unsigned min_access_size;
  89        unsigned max_access_size;
  90        /* If true, unaligned accesses are supported.  Otherwise unaligned
  91         * accesses throw machine checks.
  92         */
  93         bool unaligned;
  94        /*
  95         * If present, and returns #false, the transaction is not accepted
  96         * by the device (and results in machine dependent behaviour such
  97         * as a machine check exception).
  98         */
  99        bool (*accepts)(void *opaque, hwaddr addr,
 100                        unsigned size, bool is_write);
 101    } valid;
 102    /* Internal implementation constraints: */
 103    struct {
 104        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 105         * will be rounded upwards and a partial result will be returned.
 106         */
 107        unsigned min_access_size;
 108        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 109         * will be done as a series of accesses with smaller sizes.
 110         */
 111        unsigned max_access_size;
 112        /* If true, unaligned accesses are supported.  Otherwise all accesses
 113         * are converted to (possibly multiple) naturally aligned accesses.
 114         */
 115         bool unaligned;
 116    } impl;
 117
 118    /* If .read and .write are not present, old_mmio may be used for
 119     * backwards compatibility with old mmio registration
 120     */
 121    const MemoryRegionMmio old_mmio;
 122};
 123
 124typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
 125
 126struct MemoryRegionIOMMUOps {
 127    /* Return a TLB entry that contains a given address. */
 128    IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
 129};
 130
 131typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 132typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 133
 134struct MemoryRegion {
 135    /* All fields are private - violators will be prosecuted */
 136    const MemoryRegionOps *ops;
 137    const MemoryRegionIOMMUOps *iommu_ops;
 138    void *opaque;
 139    struct Object *owner;
 140    MemoryRegion *parent;
 141    Int128 size;
 142    hwaddr addr;
 143    void (*destructor)(MemoryRegion *mr);
 144    ram_addr_t ram_addr;
 145    bool subpage;
 146    bool terminates;
 147    bool romd_mode;
 148    bool ram;
 149    bool readonly; /* For RAM regions */
 150    bool enabled;
 151    bool rom_device;
 152    bool warning_printed; /* For reservations */
 153    bool flush_coalesced_mmio;
 154    MemoryRegion *alias;
 155    hwaddr alias_offset;
 156    unsigned priority;
 157    bool may_overlap;
 158    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 159    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 160    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 161    const char *name;
 162    uint8_t dirty_log_mask;
 163    unsigned ioeventfd_nb;
 164    MemoryRegionIoeventfd *ioeventfds;
 165    NotifierList iommu_notify;
 166};
 167
 168typedef struct MemoryListener MemoryListener;
 169
 170/**
 171 * MemoryListener: callbacks structure for updates to the physical memory map
 172 *
 173 * Allows a component to adjust to changes in the guest-visible memory map.
 174 * Use with memory_listener_register() and memory_listener_unregister().
 175 */
 176struct MemoryListener {
 177    void (*begin)(MemoryListener *listener);
 178    void (*commit)(MemoryListener *listener);
 179    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 180    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 181    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 182    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
 183    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
 184    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 185    void (*log_global_start)(MemoryListener *listener);
 186    void (*log_global_stop)(MemoryListener *listener);
 187    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 188                        bool match_data, uint64_t data, EventNotifier *e);
 189    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 190                        bool match_data, uint64_t data, EventNotifier *e);
 191    void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
 192                               hwaddr addr, hwaddr len);
 193    void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
 194                               hwaddr addr, hwaddr len);
 195    /* Lower = earlier (during add), later (during del) */
 196    unsigned priority;
 197    AddressSpace *address_space_filter;
 198    QTAILQ_ENTRY(MemoryListener) link;
 199};
 200
 201/**
 202 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 203 */
 204struct AddressSpace {
 205    /* All fields are private. */
 206    char *name;
 207    MemoryRegion *root;
 208    struct FlatView *current_map;
 209    int ioeventfd_nb;
 210    struct MemoryRegionIoeventfd *ioeventfds;
 211    struct AddressSpaceDispatch *dispatch;
 212    struct AddressSpaceDispatch *next_dispatch;
 213    MemoryListener dispatch_listener;
 214
 215    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 216};
 217
 218/**
 219 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 220 *
 221 * @mr: the region, or %NULL if empty
 222 * @address_space: the address space the region is mapped in
 223 * @offset_within_region: the beginning of the section, relative to @mr's start
 224 * @size: the size of the section; will not exceed @mr's boundaries
 225 * @offset_within_address_space: the address of the first byte of the section
 226 *     relative to the region's address space
 227 * @readonly: writes to this section are ignored
 228 */
 229struct MemoryRegionSection {
 230    MemoryRegion *mr;
 231    AddressSpace *address_space;
 232    hwaddr offset_within_region;
 233    Int128 size;
 234    hwaddr offset_within_address_space;
 235    bool readonly;
 236};
 237
 238/**
 239 * memory_region_init: Initialize a memory region
 240 *
 241 * The region typically acts as a container for other memory regions.  Use
 242 * memory_region_add_subregion() to add subregions.
 243 *
 244 * @mr: the #MemoryRegion to be initialized
 245 * @owner: the object that tracks the region's reference count
 246 * @name: used for debugging; not visible to the user or ABI
 247 * @size: size of the region; any subregions beyond this size will be clipped
 248 */
 249void memory_region_init(MemoryRegion *mr,
 250                        struct Object *owner,
 251                        const char *name,
 252                        uint64_t size);
 253
 254/**
 255 * memory_region_ref: Add 1 to a memory region's reference count
 256 *
 257 * Whenever memory regions are accessed outside the BQL, they need to be
 258 * preserved against hot-unplug.  MemoryRegions actually do not have their
 259 * own reference count; they piggyback on a QOM object, their "owner".
 260 * This function adds a reference to the owner.
 261 *
 262 * All MemoryRegions must have an owner if they can disappear, even if the
 263 * device they belong to operates exclusively under the BQL.  This is because
 264 * the region could be returned at any time by memory_region_find, and this
 265 * is usually under guest control.
 266 *
 267 * @mr: the #MemoryRegion
 268 */
 269void memory_region_ref(MemoryRegion *mr);
 270
 271/**
 272 * memory_region_unref: Remove 1 to a memory region's reference count
 273 *
 274 * Whenever memory regions are accessed outside the BQL, they need to be
 275 * preserved against hot-unplug.  MemoryRegions actually do not have their
 276 * own reference count; they piggyback on a QOM object, their "owner".
 277 * This function removes a reference to the owner and possibly destroys it.
 278 *
 279 * @mr: the #MemoryRegion
 280 */
 281void memory_region_unref(MemoryRegion *mr);
 282
 283/**
 284 * memory_region_init_io: Initialize an I/O memory region.
 285 *
 286 * Accesses into the region will cause the callbacks in @ops to be called.
 287 * if @size is nonzero, subregions will be clipped to @size.
 288 *
 289 * @mr: the #MemoryRegion to be initialized.
 290 * @owner: the object that tracks the region's reference count
 291 * @ops: a structure containing read and write callbacks to be used when
 292 *       I/O is performed on the region.
 293 * @opaque: passed to to the read and write callbacks of the @ops structure.
 294 * @name: used for debugging; not visible to the user or ABI
 295 * @size: size of the region.
 296 */
 297void memory_region_init_io(MemoryRegion *mr,
 298                           struct Object *owner,
 299                           const MemoryRegionOps *ops,
 300                           void *opaque,
 301                           const char *name,
 302                           uint64_t size);
 303
 304/**
 305 * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
 306 *                          region will modify memory directly.
 307 *
 308 * @mr: the #MemoryRegion to be initialized.
 309 * @owner: the object that tracks the region's reference count
 310 * @name: the name of the region.
 311 * @size: size of the region.
 312 */
 313void memory_region_init_ram(MemoryRegion *mr,
 314                            struct Object *owner,
 315                            const char *name,
 316                            uint64_t size);
 317
 318/**
 319 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 320 *                              user-provided pointer.  Accesses into the
 321 *                              region will modify memory directly.
 322 *
 323 * @mr: the #MemoryRegion to be initialized.
 324 * @owner: the object that tracks the region's reference count
 325 * @name: the name of the region.
 326 * @size: size of the region.
 327 * @ptr: memory to be mapped; must contain at least @size bytes.
 328 */
 329void memory_region_init_ram_ptr(MemoryRegion *mr,
 330                                struct Object *owner,
 331                                const char *name,
 332                                uint64_t size,
 333                                void *ptr);
 334
 335/**
 336 * memory_region_init_alias: Initialize a memory region that aliases all or a
 337 *                           part of another memory region.
 338 *
 339 * @mr: the #MemoryRegion to be initialized.
 340 * @owner: the object that tracks the region's reference count
 341 * @name: used for debugging; not visible to the user or ABI
 342 * @orig: the region to be referenced; @mr will be equivalent to
 343 *        @orig between @offset and @offset + @size - 1.
 344 * @offset: start of the section in @orig to be referenced.
 345 * @size: size of the region.
 346 */
 347void memory_region_init_alias(MemoryRegion *mr,
 348                              struct Object *owner,
 349                              const char *name,
 350                              MemoryRegion *orig,
 351                              hwaddr offset,
 352                              uint64_t size);
 353
 354/**
 355 * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
 356 *                                 handled via callbacks.
 357 *
 358 * @mr: the #MemoryRegion to be initialized.
 359 * @owner: the object that tracks the region's reference count
 360 * @ops: callbacks for write access handling.
 361 * @name: the name of the region.
 362 * @size: size of the region.
 363 */
 364void memory_region_init_rom_device(MemoryRegion *mr,
 365                                   struct Object *owner,
 366                                   const MemoryRegionOps *ops,
 367                                   void *opaque,
 368                                   const char *name,
 369                                   uint64_t size);
 370
 371/**
 372 * memory_region_init_reservation: Initialize a memory region that reserves
 373 *                                 I/O space.
 374 *
 375 * A reservation region primariy serves debugging purposes.  It claims I/O
 376 * space that is not supposed to be handled by QEMU itself.  Any access via
 377 * the memory API will cause an abort().
 378 *
 379 * @mr: the #MemoryRegion to be initialized
 380 * @owner: the object that tracks the region's reference count
 381 * @name: used for debugging; not visible to the user or ABI
 382 * @size: size of the region.
 383 */
 384void memory_region_init_reservation(MemoryRegion *mr,
 385                                    struct Object *owner,
 386                                    const char *name,
 387                                    uint64_t size);
 388
 389/**
 390 * memory_region_init_iommu: Initialize a memory region that translates
 391 * addresses
 392 *
 393 * An IOMMU region translates addresses and forwards accesses to a target
 394 * memory region.
 395 *
 396 * @mr: the #MemoryRegion to be initialized
 397 * @owner: the object that tracks the region's reference count
 398 * @ops: a function that translates addresses into the @target region
 399 * @name: used for debugging; not visible to the user or ABI
 400 * @size: size of the region.
 401 */
 402void memory_region_init_iommu(MemoryRegion *mr,
 403                              struct Object *owner,
 404                              const MemoryRegionIOMMUOps *ops,
 405                              const char *name,
 406                              uint64_t size);
 407
 408/**
 409 * memory_region_destroy: Destroy a memory region and reclaim all resources.
 410 *
 411 * @mr: the region to be destroyed.  May not currently be a subregion
 412 *      (see memory_region_add_subregion()) or referenced in an alias
 413 *      (see memory_region_init_alias()).
 414 */
 415void memory_region_destroy(MemoryRegion *mr);
 416
 417/**
 418 * memory_region_owner: get a memory region's owner.
 419 *
 420 * @mr: the memory region being queried.
 421 */
 422struct Object *memory_region_owner(MemoryRegion *mr);
 423
 424/**
 425 * memory_region_size: get a memory region's size.
 426 *
 427 * @mr: the memory region being queried.
 428 */
 429uint64_t memory_region_size(MemoryRegion *mr);
 430
 431/**
 432 * memory_region_is_ram: check whether a memory region is random access
 433 *
 434 * Returns %true is a memory region is random access.
 435 *
 436 * @mr: the memory region being queried
 437 */
 438bool memory_region_is_ram(MemoryRegion *mr);
 439
 440/**
 441 * memory_region_is_romd: check whether a memory region is in ROMD mode
 442 *
 443 * Returns %true if a memory region is a ROM device and currently set to allow
 444 * direct reads.
 445 *
 446 * @mr: the memory region being queried
 447 */
 448static inline bool memory_region_is_romd(MemoryRegion *mr)
 449{
 450    return mr->rom_device && mr->romd_mode;
 451}
 452
 453/**
 454 * memory_region_is_iommu: check whether a memory region is an iommu
 455 *
 456 * Returns %true is a memory region is an iommu.
 457 *
 458 * @mr: the memory region being queried
 459 */
 460bool memory_region_is_iommu(MemoryRegion *mr);
 461
 462/**
 463 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
 464 *
 465 * @mr: the memory region that was changed
 466 * @entry: the new entry in the IOMMU translation table.  The entry
 467 *         replaces all old entries for the same virtual I/O address range.
 468 *         Deleted entries have .@perm == 0.
 469 */
 470void memory_region_notify_iommu(MemoryRegion *mr,
 471                                IOMMUTLBEntry entry);
 472
 473/**
 474 * memory_region_register_iommu_notifier: register a notifier for changes to
 475 * IOMMU translation entries.
 476 *
 477 * @mr: the memory region to observe
 478 * @n: the notifier to be added; the notifier receives a pointer to an
 479 *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
 480 *     valid on exit from the notifier.
 481 */
 482void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
 483
 484/**
 485 * memory_region_unregister_iommu_notifier: unregister a notifier for
 486 * changes to IOMMU translation entries.
 487 *
 488 * @n: the notifier to be removed.
 489 */
 490void memory_region_unregister_iommu_notifier(Notifier *n);
 491
 492/**
 493 * memory_region_name: get a memory region's name
 494 *
 495 * Returns the string that was used to initialize the memory region.
 496 *
 497 * @mr: the memory region being queried
 498 */
 499const char *memory_region_name(MemoryRegion *mr);
 500
 501/**
 502 * memory_region_is_logging: return whether a memory region is logging writes
 503 *
 504 * Returns %true if the memory region is logging writes
 505 *
 506 * @mr: the memory region being queried
 507 */
 508bool memory_region_is_logging(MemoryRegion *mr);
 509
 510/**
 511 * memory_region_is_rom: check whether a memory region is ROM
 512 *
 513 * Returns %true is a memory region is read-only memory.
 514 *
 515 * @mr: the memory region being queried
 516 */
 517bool memory_region_is_rom(MemoryRegion *mr);
 518
 519/**
 520 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
 521 *
 522 * Returns a host pointer to a RAM memory region (created with
 523 * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
 524 * care.
 525 *
 526 * @mr: the memory region being queried.
 527 */
 528void *memory_region_get_ram_ptr(MemoryRegion *mr);
 529
 530/**
 531 * memory_region_set_log: Turn dirty logging on or off for a region.
 532 *
 533 * Turns dirty logging on or off for a specified client (display, migration).
 534 * Only meaningful for RAM regions.
 535 *
 536 * @mr: the memory region being updated.
 537 * @log: whether dirty logging is to be enabled or disabled.
 538 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 539 *          %DIRTY_MEMORY_VGA.
 540 */
 541void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
 542
 543/**
 544 * memory_region_get_dirty: Check whether a range of bytes is dirty
 545 *                          for a specified client.
 546 *
 547 * Checks whether a range of bytes has been written to since the last
 548 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 549 * must be enabled.
 550 *
 551 * @mr: the memory region being queried.
 552 * @addr: the address (relative to the start of the region) being queried.
 553 * @size: the size of the range being queried.
 554 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 555 *          %DIRTY_MEMORY_VGA.
 556 */
 557bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
 558                             hwaddr size, unsigned client);
 559
 560/**
 561 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
 562 *
 563 * Marks a range of bytes as dirty, after it has been dirtied outside
 564 * guest code.
 565 *
 566 * @mr: the memory region being dirtied.
 567 * @addr: the address (relative to the start of the region) being dirtied.
 568 * @size: size of the range being dirtied.
 569 */
 570void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
 571                             hwaddr size);
 572
 573/**
 574 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
 575 *                                     for a specified client. It clears them.
 576 *
 577 * Checks whether a range of bytes has been written to since the last
 578 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
 579 * must be enabled.
 580 *
 581 * @mr: the memory region being queried.
 582 * @addr: the address (relative to the start of the region) being queried.
 583 * @size: the size of the range being queried.
 584 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 585 *          %DIRTY_MEMORY_VGA.
 586 */
 587bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
 588                                        hwaddr size, unsigned client);
 589/**
 590 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
 591 *                                  any external TLBs (e.g. kvm)
 592 *
 593 * Flushes dirty information from accelerators such as kvm and vhost-net
 594 * and makes it available to users of the memory API.
 595 *
 596 * @mr: the region being flushed.
 597 */
 598void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
 599
 600/**
 601 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
 602 *                            client.
 603 *
 604 * Marks a range of pages as no longer dirty.
 605 *
 606 * @mr: the region being updated.
 607 * @addr: the start of the subrange being cleaned.
 608 * @size: the size of the subrange being cleaned.
 609 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
 610 *          %DIRTY_MEMORY_VGA.
 611 */
 612void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
 613                               hwaddr size, unsigned client);
 614
 615/**
 616 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
 617 *
 618 * Allows a memory region to be marked as read-only (turning it into a ROM).
 619 * only useful on RAM regions.
 620 *
 621 * @mr: the region being updated.
 622 * @readonly: whether rhe region is to be ROM or RAM.
 623 */
 624void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
 625
 626/**
 627 * memory_region_rom_device_set_romd: enable/disable ROMD mode
 628 *
 629 * Allows a ROM device (initialized with memory_region_init_rom_device() to
 630 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
 631 * device is mapped to guest memory and satisfies read access directly.
 632 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
 633 * Writes are always handled by the #MemoryRegion.write function.
 634 *
 635 * @mr: the memory region to be updated
 636 * @romd_mode: %true to put the region into ROMD mode
 637 */
 638void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
 639
 640/**
 641 * memory_region_set_coalescing: Enable memory coalescing for the region.
 642 *
 643 * Enabled writes to a region to be queued for later processing. MMIO ->write
 644 * callbacks may be delayed until a non-coalesced MMIO is issued.
 645 * Only useful for IO regions.  Roughly similar to write-combining hardware.
 646 *
 647 * @mr: the memory region to be write coalesced
 648 */
 649void memory_region_set_coalescing(MemoryRegion *mr);
 650
 651/**
 652 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
 653 *                               a region.
 654 *
 655 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
 656 * Multiple calls can be issued coalesced disjoint ranges.
 657 *
 658 * @mr: the memory region to be updated.
 659 * @offset: the start of the range within the region to be coalesced.
 660 * @size: the size of the subrange to be coalesced.
 661 */
 662void memory_region_add_coalescing(MemoryRegion *mr,
 663                                  hwaddr offset,
 664                                  uint64_t size);
 665
 666/**
 667 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
 668 *
 669 * Disables any coalescing caused by memory_region_set_coalescing() or
 670 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
 671 * hardware.
 672 *
 673 * @mr: the memory region to be updated.
 674 */
 675void memory_region_clear_coalescing(MemoryRegion *mr);
 676
 677/**
 678 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
 679 *                                    accesses.
 680 *
 681 * Ensure that pending coalesced MMIO request are flushed before the memory
 682 * region is accessed. This property is automatically enabled for all regions
 683 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
 684 *
 685 * @mr: the memory region to be updated.
 686 */
 687void memory_region_set_flush_coalesced(MemoryRegion *mr);
 688
 689/**
 690 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
 691 *                                      accesses.
 692 *
 693 * Clear the automatic coalesced MMIO flushing enabled via
 694 * memory_region_set_flush_coalesced. Note that this service has no effect on
 695 * memory regions that have MMIO coalescing enabled for themselves. For them,
 696 * automatic flushing will stop once coalescing is disabled.
 697 *
 698 * @mr: the memory region to be updated.
 699 */
 700void memory_region_clear_flush_coalesced(MemoryRegion *mr);
 701
 702/**
 703 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
 704 *                            is written to a location.
 705 *
 706 * Marks a word in an IO region (initialized with memory_region_init_io())
 707 * as a trigger for an eventfd event.  The I/O callback will not be called.
 708 * The caller must be prepared to handle failure (that is, take the required
 709 * action if the callback _is_ called).
 710 *
 711 * @mr: the memory region being updated.
 712 * @addr: the address within @mr that is to be monitored
 713 * @size: the size of the access to trigger the eventfd
 714 * @match_data: whether to match against @data, instead of just @addr
 715 * @data: the data to match against the guest write
 716 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 717 **/
 718void memory_region_add_eventfd(MemoryRegion *mr,
 719                               hwaddr addr,
 720                               unsigned size,
 721                               bool match_data,
 722                               uint64_t data,
 723                               EventNotifier *e);
 724
 725/**
 726 * memory_region_del_eventfd: Cancel an eventfd.
 727 *
 728 * Cancels an eventfd trigger requested by a previous
 729 * memory_region_add_eventfd() call.
 730 *
 731 * @mr: the memory region being updated.
 732 * @addr: the address within @mr that is to be monitored
 733 * @size: the size of the access to trigger the eventfd
 734 * @match_data: whether to match against @data, instead of just @addr
 735 * @data: the data to match against the guest write
 736 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
 737 */
 738void memory_region_del_eventfd(MemoryRegion *mr,
 739                               hwaddr addr,
 740                               unsigned size,
 741                               bool match_data,
 742                               uint64_t data,
 743                               EventNotifier *e);
 744
 745/**
 746 * memory_region_add_subregion: Add a subregion to a container.
 747 *
 748 * Adds a subregion at @offset.  The subregion may not overlap with other
 749 * subregions (except for those explicitly marked as overlapping).  A region
 750 * may only be added once as a subregion (unless removed with
 751 * memory_region_del_subregion()); use memory_region_init_alias() if you
 752 * want a region to be a subregion in multiple locations.
 753 *
 754 * @mr: the region to contain the new subregion; must be a container
 755 *      initialized with memory_region_init().
 756 * @offset: the offset relative to @mr where @subregion is added.
 757 * @subregion: the subregion to be added.
 758 */
 759void memory_region_add_subregion(MemoryRegion *mr,
 760                                 hwaddr offset,
 761                                 MemoryRegion *subregion);
 762/**
 763 * memory_region_add_subregion_overlap: Add a subregion to a container
 764 *                                      with overlap.
 765 *
 766 * Adds a subregion at @offset.  The subregion may overlap with other
 767 * subregions.  Conflicts are resolved by having a higher @priority hide a
 768 * lower @priority. Subregions without priority are taken as @priority 0.
 769 * A region may only be added once as a subregion (unless removed with
 770 * memory_region_del_subregion()); use memory_region_init_alias() if you
 771 * want a region to be a subregion in multiple locations.
 772 *
 773 * @mr: the region to contain the new subregion; must be a container
 774 *      initialized with memory_region_init().
 775 * @offset: the offset relative to @mr where @subregion is added.
 776 * @subregion: the subregion to be added.
 777 * @priority: used for resolving overlaps; highest priority wins.
 778 */
 779void memory_region_add_subregion_overlap(MemoryRegion *mr,
 780                                         hwaddr offset,
 781                                         MemoryRegion *subregion,
 782                                         unsigned priority);
 783
 784/**
 785 * memory_region_get_ram_addr: Get the ram address associated with a memory
 786 *                             region
 787 *
 788 * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
 789 * code is being reworked.
 790 */
 791ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
 792
 793/**
 794 * memory_region_del_subregion: Remove a subregion.
 795 *
 796 * Removes a subregion from its container.
 797 *
 798 * @mr: the container to be updated.
 799 * @subregion: the region being removed; must be a current subregion of @mr.
 800 */
 801void memory_region_del_subregion(MemoryRegion *mr,
 802                                 MemoryRegion *subregion);
 803
 804/*
 805 * memory_region_set_enabled: dynamically enable or disable a region
 806 *
 807 * Enables or disables a memory region.  A disabled memory region
 808 * ignores all accesses to itself and its subregions.  It does not
 809 * obscure sibling subregions with lower priority - it simply behaves as
 810 * if it was removed from the hierarchy.
 811 *
 812 * Regions default to being enabled.
 813 *
 814 * @mr: the region to be updated
 815 * @enabled: whether to enable or disable the region
 816 */
 817void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
 818
 819/*
 820 * memory_region_set_address: dynamically update the address of a region
 821 *
 822 * Dynamically updates the address of a region, relative to its parent.
 823 * May be used on regions are currently part of a memory hierarchy.
 824 *
 825 * @mr: the region to be updated
 826 * @addr: new address, relative to parent region
 827 */
 828void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
 829
 830/*
 831 * memory_region_set_alias_offset: dynamically update a memory alias's offset
 832 *
 833 * Dynamically updates the offset into the target region that an alias points
 834 * to, as if the fourth argument to memory_region_init_alias() has changed.
 835 *
 836 * @mr: the #MemoryRegion to be updated; should be an alias.
 837 * @offset: the new offset into the target memory region
 838 */
 839void memory_region_set_alias_offset(MemoryRegion *mr,
 840                                    hwaddr offset);
 841
 842/**
 843 * memory_region_present: translate an address/size relative to a
 844 * MemoryRegion into a #MemoryRegionSection.
 845 *
 846 * Answer whether a #MemoryRegion within @parent covers the address
 847 * @addr.
 848 *
 849 * @parent: a MemoryRegion within which @addr is a relative address
 850 * @addr: the area within @parent to be searched
 851 */
 852bool memory_region_present(MemoryRegion *parent, hwaddr addr);
 853
 854/**
 855 * memory_region_find: translate an address/size relative to a
 856 * MemoryRegion into a #MemoryRegionSection.
 857 *
 858 * Locates the first #MemoryRegion within @mr that overlaps the range
 859 * given by @addr and @size.
 860 *
 861 * Returns a #MemoryRegionSection that describes a contiguous overlap.
 862 * It will have the following characteristics:
 863 *    .@size = 0 iff no overlap was found
 864 *    .@mr is non-%NULL iff an overlap was found
 865 *
 866 * Remember that in the return value the @offset_within_region is
 867 * relative to the returned region (in the .@mr field), not to the
 868 * @mr argument.
 869 *
 870 * Similarly, the .@offset_within_address_space is relative to the
 871 * address space that contains both regions, the passed and the
 872 * returned one.  However, in the special case where the @mr argument
 873 * has no parent (and thus is the root of the address space), the
 874 * following will hold:
 875 *    .@offset_within_address_space >= @addr
 876 *    .@offset_within_address_space + .@size <= @addr + @size
 877 *
 878 * @mr: a MemoryRegion within which @addr is a relative address
 879 * @addr: start of the area within @as to be searched
 880 * @size: size of the area to be searched
 881 */
 882MemoryRegionSection memory_region_find(MemoryRegion *mr,
 883                                       hwaddr addr, uint64_t size);
 884
 885/**
 886 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
 887 *
 888 * Synchronizes the dirty page log for an entire address space.
 889 * @as: the address space that contains the memory being synchronized
 890 */
 891void address_space_sync_dirty_bitmap(AddressSpace *as);
 892
 893/**
 894 * memory_region_transaction_begin: Start a transaction.
 895 *
 896 * During a transaction, changes will be accumulated and made visible
 897 * only when the transaction ends (is committed).
 898 */
 899void memory_region_transaction_begin(void);
 900
 901/**
 902 * memory_region_transaction_commit: Commit a transaction and make changes
 903 *                                   visible to the guest.
 904 */
 905void memory_region_transaction_commit(void);
 906
 907/**
 908 * memory_listener_register: register callbacks to be called when memory
 909 *                           sections are mapped or unmapped into an address
 910 *                           space
 911 *
 912 * @listener: an object containing the callbacks to be called
 913 * @filter: if non-%NULL, only regions in this address space will be observed
 914 */
 915void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
 916
 917/**
 918 * memory_listener_unregister: undo the effect of memory_listener_register()
 919 *
 920 * @listener: an object containing the callbacks to be removed
 921 */
 922void memory_listener_unregister(MemoryListener *listener);
 923
 924/**
 925 * memory_global_dirty_log_start: begin dirty logging for all regions
 926 */
 927void memory_global_dirty_log_start(void);
 928
 929/**
 930 * memory_global_dirty_log_stop: end dirty logging for all regions
 931 */
 932void memory_global_dirty_log_stop(void);
 933
 934void mtree_info(fprintf_function mon_printf, void *f);
 935
 936/**
 937 * address_space_init: initializes an address space
 938 *
 939 * @as: an uninitialized #AddressSpace
 940 * @root: a #MemoryRegion that routes addesses for the address space
 941 * @name: an address space name.  The name is only used for debugging
 942 *        output.
 943 */
 944void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
 945
 946
 947/**
 948 * address_space_destroy: destroy an address space
 949 *
 950 * Releases all resources associated with an address space.  After an address space
 951 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
 952 * as well.
 953 *
 954 * @as: address space to be destroyed
 955 */
 956void address_space_destroy(AddressSpace *as);
 957
 958/**
 959 * address_space_rw: read from or write to an address space.
 960 *
 961 * Return true if the operation hit any unassigned memory or encountered an
 962 * IOMMU fault.
 963 *
 964 * @as: #AddressSpace to be accessed
 965 * @addr: address within that address space
 966 * @buf: buffer with the data transferred
 967 * @is_write: indicates the transfer direction
 968 */
 969bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
 970                      int len, bool is_write);
 971
 972/**
 973 * address_space_write: write to address space.
 974 *
 975 * Return true if the operation hit any unassigned memory or encountered an
 976 * IOMMU fault.
 977 *
 978 * @as: #AddressSpace to be accessed
 979 * @addr: address within that address space
 980 * @buf: buffer with the data transferred
 981 */
 982bool address_space_write(AddressSpace *as, hwaddr addr,
 983                         const uint8_t *buf, int len);
 984
 985/**
 986 * address_space_read: read from an address space.
 987 *
 988 * Return true if the operation hit any unassigned memory or encountered an
 989 * IOMMU fault.
 990 *
 991 * @as: #AddressSpace to be accessed
 992 * @addr: address within that address space
 993 * @buf: buffer with the data transferred
 994 */
 995bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
 996
 997/* address_space_translate: translate an address range into an address space
 998 * into a MemoryRegion and an address range into that section
 999 *
1000 * @as: #AddressSpace to be accessed
1001 * @addr: address within that address space
1002 * @xlat: pointer to address within the returned memory region section's
1003 * #MemoryRegion.
1004 * @len: pointer to length
1005 * @is_write: indicates the transfer direction
1006 */
1007MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1008                                      hwaddr *xlat, hwaddr *len,
1009                                      bool is_write);
1010
1011/* address_space_access_valid: check for validity of accessing an address
1012 * space range
1013 *
1014 * Check whether memory is assigned to the given address space range, and
1015 * access is permitted by any IOMMU regions that are active for the address
1016 * space.
1017 *
1018 * For now, addr and len should be aligned to a page size.  This limitation
1019 * will be lifted in the future.
1020 *
1021 * @as: #AddressSpace to be accessed
1022 * @addr: address within that address space
1023 * @len: length of the area to be checked
1024 * @is_write: indicates the transfer direction
1025 */
1026bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1027
1028/* address_space_map: map a physical memory region into a host virtual address
1029 *
1030 * May map a subset of the requested range, given by and returned in @plen.
1031 * May return %NULL if resources needed to perform the mapping are exhausted.
1032 * Use only for reads OR writes - not for read-modify-write operations.
1033 * Use cpu_register_map_client() to know when retrying the map operation is
1034 * likely to succeed.
1035 *
1036 * @as: #AddressSpace to be accessed
1037 * @addr: address within that address space
1038 * @plen: pointer to length of buffer; updated on return
1039 * @is_write: indicates the transfer direction
1040 */
1041void *address_space_map(AddressSpace *as, hwaddr addr,
1042                        hwaddr *plen, bool is_write);
1043
1044/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1045 *
1046 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1047 * the amount of memory that was actually read or written by the caller.
1048 *
1049 * @as: #AddressSpace used
1050 * @addr: address within that address space
1051 * @len: buffer length as returned by address_space_map()
1052 * @access_len: amount of data actually transferred
1053 * @is_write: indicates the transfer direction
1054 */
1055void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1056                         int is_write, hwaddr access_len);
1057
1058
1059#endif
1060
1061#endif
1062