1/* 2 * Physical memory management API 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. See 10 * the COPYING file in the top-level directory. 11 * 12 */ 13 14#ifndef MEMORY_H 15#define MEMORY_H 16 17#ifndef CONFIG_USER_ONLY 18 19#include <stdint.h> 20#include <stdbool.h> 21#include "qemu-common.h" 22#include "exec/cpu-common.h" 23#ifndef CONFIG_USER_ONLY 24#include "exec/hwaddr.h" 25#endif 26#include "qemu/queue.h" 27#include "qemu/int128.h" 28#include "qemu/notify.h" 29 30#define MAX_PHYS_ADDR_SPACE_BITS 62 31#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) 32 33typedef struct MemoryRegionOps MemoryRegionOps; 34typedef struct MemoryRegionMmio MemoryRegionMmio; 35 36/* Must match *_DIRTY_FLAGS in cpu-all.h. To be replaced with dynamic 37 * registration. 38 */ 39#define DIRTY_MEMORY_VGA 0 40#define DIRTY_MEMORY_CODE 1 41#define DIRTY_MEMORY_MIGRATION 3 42 43struct MemoryRegionMmio { 44 CPUReadMemoryFunc *read[3]; 45 CPUWriteMemoryFunc *write[3]; 46}; 47 48typedef struct IOMMUTLBEntry IOMMUTLBEntry; 49 50/* See address_space_translate: bit 0 is read, bit 1 is write. */ 51typedef enum { 52 IOMMU_NONE = 0, 53 IOMMU_RO = 1, 54 IOMMU_WO = 2, 55 IOMMU_RW = 3, 56} IOMMUAccessFlags; 57 58struct IOMMUTLBEntry { 59 AddressSpace *target_as; 60 hwaddr iova; 61 hwaddr translated_addr; 62 hwaddr addr_mask; /* 0xfff = 4k translation */ 63 IOMMUAccessFlags perm; 64}; 65 66/* 67 * Memory region callbacks 68 */ 69struct MemoryRegionOps { 70 /* Read from the memory region. @addr is relative to @mr; @size is 71 * in bytes. */ 72 uint64_t (*read)(void *opaque, 73 hwaddr addr, 74 unsigned size); 75 /* Write to the memory region. @addr is relative to @mr; @size is 76 * in bytes. */ 77 void (*write)(void *opaque, 78 hwaddr addr, 79 uint64_t data, 80 unsigned size); 81 82 enum device_endian endianness; 83 /* Guest-visible constraints: */ 84 struct { 85 /* If nonzero, specify bounds on access sizes beyond which a machine 86 * check is thrown. 87 */ 88 unsigned min_access_size; 89 unsigned max_access_size; 90 /* If true, unaligned accesses are supported. Otherwise unaligned 91 * accesses throw machine checks. 92 */ 93 bool unaligned; 94 /* 95 * If present, and returns #false, the transaction is not accepted 96 * by the device (and results in machine dependent behaviour such 97 * as a machine check exception). 98 */ 99 bool (*accepts)(void *opaque, hwaddr addr, 100 unsigned size, bool is_write); 101 } valid; 102 /* Internal implementation constraints: */ 103 struct { 104 /* If nonzero, specifies the minimum size implemented. Smaller sizes 105 * will be rounded upwards and a partial result will be returned. 106 */ 107 unsigned min_access_size; 108 /* If nonzero, specifies the maximum size implemented. Larger sizes 109 * will be done as a series of accesses with smaller sizes. 110 */ 111 unsigned max_access_size; 112 /* If true, unaligned accesses are supported. Otherwise all accesses 113 * are converted to (possibly multiple) naturally aligned accesses. 114 */ 115 bool unaligned; 116 } impl; 117 118 /* If .read and .write are not present, old_mmio may be used for 119 * backwards compatibility with old mmio registration 120 */ 121 const MemoryRegionMmio old_mmio; 122}; 123 124typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps; 125 126struct MemoryRegionIOMMUOps { 127 /* Return a TLB entry that contains a given address. */ 128 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr); 129}; 130 131typedef struct CoalescedMemoryRange CoalescedMemoryRange; 132typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; 133 134struct MemoryRegion { 135 /* All fields are private - violators will be prosecuted */ 136 const MemoryRegionOps *ops; 137 const MemoryRegionIOMMUOps *iommu_ops; 138 void *opaque; 139 struct Object *owner; 140 MemoryRegion *parent; 141 Int128 size; 142 hwaddr addr; 143 void (*destructor)(MemoryRegion *mr); 144 ram_addr_t ram_addr; 145 bool subpage; 146 bool terminates; 147 bool romd_mode; 148 bool ram; 149 bool readonly; /* For RAM regions */ 150 bool enabled; 151 bool rom_device; 152 bool warning_printed; /* For reservations */ 153 bool flush_coalesced_mmio; 154 MemoryRegion *alias; 155 hwaddr alias_offset; 156 int priority; 157 bool may_overlap; 158 QTAILQ_HEAD(subregions, MemoryRegion) subregions; 159 QTAILQ_ENTRY(MemoryRegion) subregions_link; 160 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced; 161 const char *name; 162 uint8_t dirty_log_mask; 163 unsigned ioeventfd_nb; 164 MemoryRegionIoeventfd *ioeventfds; 165 NotifierList iommu_notify; 166}; 167 168typedef struct MemoryListener MemoryListener; 169 170/** 171 * MemoryListener: callbacks structure for updates to the physical memory map 172 * 173 * Allows a component to adjust to changes in the guest-visible memory map. 174 * Use with memory_listener_register() and memory_listener_unregister(). 175 */ 176struct MemoryListener { 177 void (*begin)(MemoryListener *listener); 178 void (*commit)(MemoryListener *listener); 179 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); 180 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); 181 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); 182 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section); 183 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section); 184 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); 185 void (*log_global_start)(MemoryListener *listener); 186 void (*log_global_stop)(MemoryListener *listener); 187 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, 188 bool match_data, uint64_t data, EventNotifier *e); 189 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, 190 bool match_data, uint64_t data, EventNotifier *e); 191 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section, 192 hwaddr addr, hwaddr len); 193 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section, 194 hwaddr addr, hwaddr len); 195 /* Lower = earlier (during add), later (during del) */ 196 unsigned priority; 197 AddressSpace *address_space_filter; 198 QTAILQ_ENTRY(MemoryListener) link; 199}; 200 201/** 202 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects 203 */ 204struct AddressSpace { 205 /* All fields are private. */ 206 char *name; 207 MemoryRegion *root; 208 struct FlatView *current_map; 209 int ioeventfd_nb; 210 struct MemoryRegionIoeventfd *ioeventfds; 211 struct AddressSpaceDispatch *dispatch; 212 struct AddressSpaceDispatch *next_dispatch; 213 MemoryListener dispatch_listener; 214 215 QTAILQ_ENTRY(AddressSpace) address_spaces_link; 216}; 217 218/** 219 * MemoryRegionSection: describes a fragment of a #MemoryRegion 220 * 221 * @mr: the region, or %NULL if empty 222 * @address_space: the address space the region is mapped in 223 * @offset_within_region: the beginning of the section, relative to @mr's start 224 * @size: the size of the section; will not exceed @mr's boundaries 225 * @offset_within_address_space: the address of the first byte of the section 226 * relative to the region's address space 227 * @readonly: writes to this section are ignored 228 */ 229struct MemoryRegionSection { 230 MemoryRegion *mr; 231 AddressSpace *address_space; 232 hwaddr offset_within_region; 233 Int128 size; 234 hwaddr offset_within_address_space; 235 bool readonly; 236}; 237 238/** 239 * memory_region_init: Initialize a memory region 240 * 241 * The region typically acts as a container for other memory regions. Use 242 * memory_region_add_subregion() to add subregions. 243 * 244 * @mr: the #MemoryRegion to be initialized 245 * @owner: the object that tracks the region's reference count 246 * @name: used for debugging; not visible to the user or ABI 247 * @size: size of the region; any subregions beyond this size will be clipped 248 */ 249void memory_region_init(MemoryRegion *mr, 250 struct Object *owner, 251 const char *name, 252 uint64_t size); 253 254/** 255 * memory_region_ref: Add 1 to a memory region's reference count 256 * 257 * Whenever memory regions are accessed outside the BQL, they need to be 258 * preserved against hot-unplug. MemoryRegions actually do not have their 259 * own reference count; they piggyback on a QOM object, their "owner". 260 * This function adds a reference to the owner. 261 * 262 * All MemoryRegions must have an owner if they can disappear, even if the 263 * device they belong to operates exclusively under the BQL. This is because 264 * the region could be returned at any time by memory_region_find, and this 265 * is usually under guest control. 266 * 267 * @mr: the #MemoryRegion 268 */ 269void memory_region_ref(MemoryRegion *mr); 270 271/** 272 * memory_region_unref: Remove 1 to a memory region's reference count 273 * 274 * Whenever memory regions are accessed outside the BQL, they need to be 275 * preserved against hot-unplug. MemoryRegions actually do not have their 276 * own reference count; they piggyback on a QOM object, their "owner". 277 * This function removes a reference to the owner and possibly destroys it. 278 * 279 * @mr: the #MemoryRegion 280 */ 281void memory_region_unref(MemoryRegion *mr); 282 283/** 284 * memory_region_init_io: Initialize an I/O memory region. 285 * 286 * Accesses into the region will cause the callbacks in @ops to be called. 287 * if @size is nonzero, subregions will be clipped to @size. 288 * 289 * @mr: the #MemoryRegion to be initialized. 290 * @owner: the object that tracks the region's reference count 291 * @ops: a structure containing read and write callbacks to be used when 292 * I/O is performed on the region. 293 * @opaque: passed to to the read and write callbacks of the @ops structure. 294 * @name: used for debugging; not visible to the user or ABI 295 * @size: size of the region. 296 */ 297void memory_region_init_io(MemoryRegion *mr, 298 struct Object *owner, 299 const MemoryRegionOps *ops, 300 void *opaque, 301 const char *name, 302 uint64_t size); 303 304/** 305 * memory_region_init_ram: Initialize RAM memory region. Accesses into the 306 * region will modify memory directly. 307 * 308 * @mr: the #MemoryRegion to be initialized. 309 * @owner: the object that tracks the region's reference count 310 * @name: the name of the region. 311 * @size: size of the region. 312 */ 313void memory_region_init_ram(MemoryRegion *mr, 314 struct Object *owner, 315 const char *name, 316 uint64_t size); 317 318/** 319 * memory_region_init_ram_ptr: Initialize RAM memory region from a 320 * user-provided pointer. Accesses into the 321 * region will modify memory directly. 322 * 323 * @mr: the #MemoryRegion to be initialized. 324 * @owner: the object that tracks the region's reference count 325 * @name: the name of the region. 326 * @size: size of the region. 327 * @ptr: memory to be mapped; must contain at least @size bytes. 328 */ 329void memory_region_init_ram_ptr(MemoryRegion *mr, 330 struct Object *owner, 331 const char *name, 332 uint64_t size, 333 void *ptr); 334 335/** 336 * memory_region_init_alias: Initialize a memory region that aliases all or a 337 * part of another memory region. 338 * 339 * @mr: the #MemoryRegion to be initialized. 340 * @owner: the object that tracks the region's reference count 341 * @name: used for debugging; not visible to the user or ABI 342 * @orig: the region to be referenced; @mr will be equivalent to 343 * @orig between @offset and @offset + @size - 1. 344 * @offset: start of the section in @orig to be referenced. 345 * @size: size of the region. 346 */ 347void memory_region_init_alias(MemoryRegion *mr, 348 struct Object *owner, 349 const char *name, 350 MemoryRegion *orig, 351 hwaddr offset, 352 uint64_t size); 353 354/** 355 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are 356 * handled via callbacks. 357 * 358 * @mr: the #MemoryRegion to be initialized. 359 * @owner: the object that tracks the region's reference count 360 * @ops: callbacks for write access handling. 361 * @name: the name of the region. 362 * @size: size of the region. 363 */ 364void memory_region_init_rom_device(MemoryRegion *mr, 365 struct Object *owner, 366 const MemoryRegionOps *ops, 367 void *opaque, 368 const char *name, 369 uint64_t size); 370 371/** 372 * memory_region_init_reservation: Initialize a memory region that reserves 373 * I/O space. 374 * 375 * A reservation region primariy serves debugging purposes. It claims I/O 376 * space that is not supposed to be handled by QEMU itself. Any access via 377 * the memory API will cause an abort(). 378 * 379 * @mr: the #MemoryRegion to be initialized 380 * @owner: the object that tracks the region's reference count 381 * @name: used for debugging; not visible to the user or ABI 382 * @size: size of the region. 383 */ 384void memory_region_init_reservation(MemoryRegion *mr, 385 struct Object *owner, 386 const char *name, 387 uint64_t size); 388 389/** 390 * memory_region_init_iommu: Initialize a memory region that translates 391 * addresses 392 * 393 * An IOMMU region translates addresses and forwards accesses to a target 394 * memory region. 395 * 396 * @mr: the #MemoryRegion to be initialized 397 * @owner: the object that tracks the region's reference count 398 * @ops: a function that translates addresses into the @target region 399 * @name: used for debugging; not visible to the user or ABI 400 * @size: size of the region. 401 */ 402void memory_region_init_iommu(MemoryRegion *mr, 403 struct Object *owner, 404 const MemoryRegionIOMMUOps *ops, 405 const char *name, 406 uint64_t size); 407 408/** 409 * memory_region_destroy: Destroy a memory region and reclaim all resources. 410 * 411 * @mr: the region to be destroyed. May not currently be a subregion 412 * (see memory_region_add_subregion()) or referenced in an alias 413 * (see memory_region_init_alias()). 414 */ 415void memory_region_destroy(MemoryRegion *mr); 416 417/** 418 * memory_region_owner: get a memory region's owner. 419 * 420 * @mr: the memory region being queried. 421 */ 422struct Object *memory_region_owner(MemoryRegion *mr); 423 424/** 425 * memory_region_size: get a memory region's size. 426 * 427 * @mr: the memory region being queried. 428 */ 429uint64_t memory_region_size(MemoryRegion *mr); 430 431/** 432 * memory_region_is_ram: check whether a memory region is random access 433 * 434 * Returns %true is a memory region is random access. 435 * 436 * @mr: the memory region being queried 437 */ 438bool memory_region_is_ram(MemoryRegion *mr); 439 440/** 441 * memory_region_is_romd: check whether a memory region is in ROMD mode 442 * 443 * Returns %true if a memory region is a ROM device and currently set to allow 444 * direct reads. 445 * 446 * @mr: the memory region being queried 447 */ 448static inline bool memory_region_is_romd(MemoryRegion *mr) 449{ 450 return mr->rom_device && mr->romd_mode; 451} 452 453/** 454 * memory_region_is_iommu: check whether a memory region is an iommu 455 * 456 * Returns %true is a memory region is an iommu. 457 * 458 * @mr: the memory region being queried 459 */ 460bool memory_region_is_iommu(MemoryRegion *mr); 461 462/** 463 * memory_region_notify_iommu: notify a change in an IOMMU translation entry. 464 * 465 * @mr: the memory region that was changed 466 * @entry: the new entry in the IOMMU translation table. The entry 467 * replaces all old entries for the same virtual I/O address range. 468 * Deleted entries have .@perm == 0. 469 */ 470void memory_region_notify_iommu(MemoryRegion *mr, 471 IOMMUTLBEntry entry); 472 473/** 474 * memory_region_register_iommu_notifier: register a notifier for changes to 475 * IOMMU translation entries. 476 * 477 * @mr: the memory region to observe 478 * @n: the notifier to be added; the notifier receives a pointer to an 479 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be 480 * valid on exit from the notifier. 481 */ 482void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n); 483 484/** 485 * memory_region_unregister_iommu_notifier: unregister a notifier for 486 * changes to IOMMU translation entries. 487 * 488 * @n: the notifier to be removed. 489 */ 490void memory_region_unregister_iommu_notifier(Notifier *n); 491 492/** 493 * memory_region_name: get a memory region's name 494 * 495 * Returns the string that was used to initialize the memory region. 496 * 497 * @mr: the memory region being queried 498 */ 499const char *memory_region_name(MemoryRegion *mr); 500 501/** 502 * memory_region_is_logging: return whether a memory region is logging writes 503 * 504 * Returns %true if the memory region is logging writes 505 * 506 * @mr: the memory region being queried 507 */ 508bool memory_region_is_logging(MemoryRegion *mr); 509 510/** 511 * memory_region_is_rom: check whether a memory region is ROM 512 * 513 * Returns %true is a memory region is read-only memory. 514 * 515 * @mr: the memory region being queried 516 */ 517bool memory_region_is_rom(MemoryRegion *mr); 518 519/** 520 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. 521 * 522 * Returns a host pointer to a RAM memory region (created with 523 * memory_region_init_ram() or memory_region_init_ram_ptr()). Use with 524 * care. 525 * 526 * @mr: the memory region being queried. 527 */ 528void *memory_region_get_ram_ptr(MemoryRegion *mr); 529 530/** 531 * memory_region_set_log: Turn dirty logging on or off for a region. 532 * 533 * Turns dirty logging on or off for a specified client (display, migration). 534 * Only meaningful for RAM regions. 535 * 536 * @mr: the memory region being updated. 537 * @log: whether dirty logging is to be enabled or disabled. 538 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 539 * %DIRTY_MEMORY_VGA. 540 */ 541void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); 542 543/** 544 * memory_region_get_dirty: Check whether a range of bytes is dirty 545 * for a specified client. 546 * 547 * Checks whether a range of bytes has been written to since the last 548 * call to memory_region_reset_dirty() with the same @client. Dirty logging 549 * must be enabled. 550 * 551 * @mr: the memory region being queried. 552 * @addr: the address (relative to the start of the region) being queried. 553 * @size: the size of the range being queried. 554 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 555 * %DIRTY_MEMORY_VGA. 556 */ 557bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr, 558 hwaddr size, unsigned client); 559 560/** 561 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. 562 * 563 * Marks a range of bytes as dirty, after it has been dirtied outside 564 * guest code. 565 * 566 * @mr: the memory region being dirtied. 567 * @addr: the address (relative to the start of the region) being dirtied. 568 * @size: size of the range being dirtied. 569 */ 570void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, 571 hwaddr size); 572 573/** 574 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty 575 * for a specified client. It clears them. 576 * 577 * Checks whether a range of bytes has been written to since the last 578 * call to memory_region_reset_dirty() with the same @client. Dirty logging 579 * must be enabled. 580 * 581 * @mr: the memory region being queried. 582 * @addr: the address (relative to the start of the region) being queried. 583 * @size: the size of the range being queried. 584 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 585 * %DIRTY_MEMORY_VGA. 586 */ 587bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr, 588 hwaddr size, unsigned client); 589/** 590 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with 591 * any external TLBs (e.g. kvm) 592 * 593 * Flushes dirty information from accelerators such as kvm and vhost-net 594 * and makes it available to users of the memory API. 595 * 596 * @mr: the region being flushed. 597 */ 598void memory_region_sync_dirty_bitmap(MemoryRegion *mr); 599 600/** 601 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified 602 * client. 603 * 604 * Marks a range of pages as no longer dirty. 605 * 606 * @mr: the region being updated. 607 * @addr: the start of the subrange being cleaned. 608 * @size: the size of the subrange being cleaned. 609 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or 610 * %DIRTY_MEMORY_VGA. 611 */ 612void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, 613 hwaddr size, unsigned client); 614 615/** 616 * memory_region_set_readonly: Turn a memory region read-only (or read-write) 617 * 618 * Allows a memory region to be marked as read-only (turning it into a ROM). 619 * only useful on RAM regions. 620 * 621 * @mr: the region being updated. 622 * @readonly: whether rhe region is to be ROM or RAM. 623 */ 624void memory_region_set_readonly(MemoryRegion *mr, bool readonly); 625 626/** 627 * memory_region_rom_device_set_romd: enable/disable ROMD mode 628 * 629 * Allows a ROM device (initialized with memory_region_init_rom_device() to 630 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the 631 * device is mapped to guest memory and satisfies read access directly. 632 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. 633 * Writes are always handled by the #MemoryRegion.write function. 634 * 635 * @mr: the memory region to be updated 636 * @romd_mode: %true to put the region into ROMD mode 637 */ 638void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); 639 640/** 641 * memory_region_set_coalescing: Enable memory coalescing for the region. 642 * 643 * Enabled writes to a region to be queued for later processing. MMIO ->write 644 * callbacks may be delayed until a non-coalesced MMIO is issued. 645 * Only useful for IO regions. Roughly similar to write-combining hardware. 646 * 647 * @mr: the memory region to be write coalesced 648 */ 649void memory_region_set_coalescing(MemoryRegion *mr); 650 651/** 652 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of 653 * a region. 654 * 655 * Like memory_region_set_coalescing(), but works on a sub-range of a region. 656 * Multiple calls can be issued coalesced disjoint ranges. 657 * 658 * @mr: the memory region to be updated. 659 * @offset: the start of the range within the region to be coalesced. 660 * @size: the size of the subrange to be coalesced. 661 */ 662void memory_region_add_coalescing(MemoryRegion *mr, 663 hwaddr offset, 664 uint64_t size); 665 666/** 667 * memory_region_clear_coalescing: Disable MMIO coalescing for the region. 668 * 669 * Disables any coalescing caused by memory_region_set_coalescing() or 670 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory 671 * hardware. 672 * 673 * @mr: the memory region to be updated. 674 */ 675void memory_region_clear_coalescing(MemoryRegion *mr); 676 677/** 678 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before 679 * accesses. 680 * 681 * Ensure that pending coalesced MMIO request are flushed before the memory 682 * region is accessed. This property is automatically enabled for all regions 683 * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). 684 * 685 * @mr: the memory region to be updated. 686 */ 687void memory_region_set_flush_coalesced(MemoryRegion *mr); 688 689/** 690 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before 691 * accesses. 692 * 693 * Clear the automatic coalesced MMIO flushing enabled via 694 * memory_region_set_flush_coalesced. Note that this service has no effect on 695 * memory regions that have MMIO coalescing enabled for themselves. For them, 696 * automatic flushing will stop once coalescing is disabled. 697 * 698 * @mr: the memory region to be updated. 699 */ 700void memory_region_clear_flush_coalesced(MemoryRegion *mr); 701 702/** 703 * memory_region_add_eventfd: Request an eventfd to be triggered when a word 704 * is written to a location. 705 * 706 * Marks a word in an IO region (initialized with memory_region_init_io()) 707 * as a trigger for an eventfd event. The I/O callback will not be called. 708 * The caller must be prepared to handle failure (that is, take the required 709 * action if the callback _is_ called). 710 * 711 * @mr: the memory region being updated. 712 * @addr: the address within @mr that is to be monitored 713 * @size: the size of the access to trigger the eventfd 714 * @match_data: whether to match against @data, instead of just @addr 715 * @data: the data to match against the guest write 716 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 717 **/ 718void memory_region_add_eventfd(MemoryRegion *mr, 719 hwaddr addr, 720 unsigned size, 721 bool match_data, 722 uint64_t data, 723 EventNotifier *e); 724 725/** 726 * memory_region_del_eventfd: Cancel an eventfd. 727 * 728 * Cancels an eventfd trigger requested by a previous 729 * memory_region_add_eventfd() call. 730 * 731 * @mr: the memory region being updated. 732 * @addr: the address within @mr that is to be monitored 733 * @size: the size of the access to trigger the eventfd 734 * @match_data: whether to match against @data, instead of just @addr 735 * @data: the data to match against the guest write 736 * @fd: the eventfd to be triggered when @addr, @size, and @data all match. 737 */ 738void memory_region_del_eventfd(MemoryRegion *mr, 739 hwaddr addr, 740 unsigned size, 741 bool match_data, 742 uint64_t data, 743 EventNotifier *e); 744 745/** 746 * memory_region_add_subregion: Add a subregion to a container. 747 * 748 * Adds a subregion at @offset. The subregion may not overlap with other 749 * subregions (except for those explicitly marked as overlapping). A region 750 * may only be added once as a subregion (unless removed with 751 * memory_region_del_subregion()); use memory_region_init_alias() if you 752 * want a region to be a subregion in multiple locations. 753 * 754 * @mr: the region to contain the new subregion; must be a container 755 * initialized with memory_region_init(). 756 * @offset: the offset relative to @mr where @subregion is added. 757 * @subregion: the subregion to be added. 758 */ 759void memory_region_add_subregion(MemoryRegion *mr, 760 hwaddr offset, 761 MemoryRegion *subregion); 762/** 763 * memory_region_add_subregion_overlap: Add a subregion to a container 764 * with overlap. 765 * 766 * Adds a subregion at @offset. The subregion may overlap with other 767 * subregions. Conflicts are resolved by having a higher @priority hide a 768 * lower @priority. Subregions without priority are taken as @priority 0. 769 * A region may only be added once as a subregion (unless removed with 770 * memory_region_del_subregion()); use memory_region_init_alias() if you 771 * want a region to be a subregion in multiple locations. 772 * 773 * @mr: the region to contain the new subregion; must be a container 774 * initialized with memory_region_init(). 775 * @offset: the offset relative to @mr where @subregion is added. 776 * @subregion: the subregion to be added. 777 * @priority: used for resolving overlaps; highest priority wins. 778 */ 779void memory_region_add_subregion_overlap(MemoryRegion *mr, 780 hwaddr offset, 781 MemoryRegion *subregion, 782 int priority); 783 784/** 785 * memory_region_get_ram_addr: Get the ram address associated with a memory 786 * region 787 * 788 * DO NOT USE THIS FUNCTION. This is a temporary workaround while the Xen 789 * code is being reworked. 790 */ 791ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); 792 793/** 794 * memory_region_del_subregion: Remove a subregion. 795 * 796 * Removes a subregion from its container. 797 * 798 * @mr: the container to be updated. 799 * @subregion: the region being removed; must be a current subregion of @mr. 800 */ 801void memory_region_del_subregion(MemoryRegion *mr, 802 MemoryRegion *subregion); 803 804/* 805 * memory_region_set_enabled: dynamically enable or disable a region 806 * 807 * Enables or disables a memory region. A disabled memory region 808 * ignores all accesses to itself and its subregions. It does not 809 * obscure sibling subregions with lower priority - it simply behaves as 810 * if it was removed from the hierarchy. 811 * 812 * Regions default to being enabled. 813 * 814 * @mr: the region to be updated 815 * @enabled: whether to enable or disable the region 816 */ 817void memory_region_set_enabled(MemoryRegion *mr, bool enabled); 818 819/* 820 * memory_region_set_address: dynamically update the address of a region 821 * 822 * Dynamically updates the address of a region, relative to its parent. 823 * May be used on regions are currently part of a memory hierarchy. 824 * 825 * @mr: the region to be updated 826 * @addr: new address, relative to parent region 827 */ 828void memory_region_set_address(MemoryRegion *mr, hwaddr addr); 829 830/* 831 * memory_region_set_alias_offset: dynamically update a memory alias's offset 832 * 833 * Dynamically updates the offset into the target region that an alias points 834 * to, as if the fourth argument to memory_region_init_alias() has changed. 835 * 836 * @mr: the #MemoryRegion to be updated; should be an alias. 837 * @offset: the new offset into the target memory region 838 */ 839void memory_region_set_alias_offset(MemoryRegion *mr, 840 hwaddr offset); 841 842/** 843 * memory_region_present: translate an address/size relative to a 844 * MemoryRegion into a #MemoryRegionSection. 845 * 846 * Answer whether a #MemoryRegion within @parent covers the address 847 * @addr. 848 * 849 * @parent: a MemoryRegion within which @addr is a relative address 850 * @addr: the area within @parent to be searched 851 */ 852bool memory_region_present(MemoryRegion *parent, hwaddr addr); 853 854/** 855 * memory_region_find: translate an address/size relative to a 856 * MemoryRegion into a #MemoryRegionSection. 857 * 858 * Locates the first #MemoryRegion within @mr that overlaps the range 859 * given by @addr and @size. 860 * 861 * Returns a #MemoryRegionSection that describes a contiguous overlap. 862 * It will have the following characteristics: 863 * .@size = 0 iff no overlap was found 864 * .@mr is non-%NULL iff an overlap was found 865 * 866 * Remember that in the return value the @offset_within_region is 867 * relative to the returned region (in the .@mr field), not to the 868 * @mr argument. 869 * 870 * Similarly, the .@offset_within_address_space is relative to the 871 * address space that contains both regions, the passed and the 872 * returned one. However, in the special case where the @mr argument 873 * has no parent (and thus is the root of the address space), the 874 * following will hold: 875 * .@offset_within_address_space >= @addr 876 * .@offset_within_address_space + .@size <= @addr + @size 877 * 878 * @mr: a MemoryRegion within which @addr is a relative address 879 * @addr: start of the area within @as to be searched 880 * @size: size of the area to be searched 881 */ 882MemoryRegionSection memory_region_find(MemoryRegion *mr, 883 hwaddr addr, uint64_t size); 884 885/** 886 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory 887 * 888 * Synchronizes the dirty page log for an entire address space. 889 * @as: the address space that contains the memory being synchronized 890 */ 891void address_space_sync_dirty_bitmap(AddressSpace *as); 892 893/** 894 * memory_region_transaction_begin: Start a transaction. 895 * 896 * During a transaction, changes will be accumulated and made visible 897 * only when the transaction ends (is committed). 898 */ 899void memory_region_transaction_begin(void); 900 901/** 902 * memory_region_transaction_commit: Commit a transaction and make changes 903 * visible to the guest. 904 */ 905void memory_region_transaction_commit(void); 906 907/** 908 * memory_listener_register: register callbacks to be called when memory 909 * sections are mapped or unmapped into an address 910 * space 911 * 912 * @listener: an object containing the callbacks to be called 913 * @filter: if non-%NULL, only regions in this address space will be observed 914 */ 915void memory_listener_register(MemoryListener *listener, AddressSpace *filter); 916 917/** 918 * memory_listener_unregister: undo the effect of memory_listener_register() 919 * 920 * @listener: an object containing the callbacks to be removed 921 */ 922void memory_listener_unregister(MemoryListener *listener); 923 924/** 925 * memory_global_dirty_log_start: begin dirty logging for all regions 926 */ 927void memory_global_dirty_log_start(void); 928 929/** 930 * memory_global_dirty_log_stop: end dirty logging for all regions 931 */ 932void memory_global_dirty_log_stop(void); 933 934void mtree_info(fprintf_function mon_printf, void *f); 935 936/** 937 * address_space_init: initializes an address space 938 * 939 * @as: an uninitialized #AddressSpace 940 * @root: a #MemoryRegion that routes addesses for the address space 941 * @name: an address space name. The name is only used for debugging 942 * output. 943 */ 944void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); 945 946 947/** 948 * address_space_destroy: destroy an address space 949 * 950 * Releases all resources associated with an address space. After an address space 951 * is destroyed, its root memory region (given by address_space_init()) may be destroyed 952 * as well. 953 * 954 * @as: address space to be destroyed 955 */ 956void address_space_destroy(AddressSpace *as); 957 958/** 959 * address_space_rw: read from or write to an address space. 960 * 961 * Return true if the operation hit any unassigned memory or encountered an 962 * IOMMU fault. 963 * 964 * @as: #AddressSpace to be accessed 965 * @addr: address within that address space 966 * @buf: buffer with the data transferred 967 * @is_write: indicates the transfer direction 968 */ 969bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf, 970 int len, bool is_write); 971 972/** 973 * address_space_write: write to address space. 974 * 975 * Return true if the operation hit any unassigned memory or encountered an 976 * IOMMU fault. 977 * 978 * @as: #AddressSpace to be accessed 979 * @addr: address within that address space 980 * @buf: buffer with the data transferred 981 */ 982bool address_space_write(AddressSpace *as, hwaddr addr, 983 const uint8_t *buf, int len); 984 985/** 986 * address_space_read: read from an address space. 987 * 988 * Return true if the operation hit any unassigned memory or encountered an 989 * IOMMU fault. 990 * 991 * @as: #AddressSpace to be accessed 992 * @addr: address within that address space 993 * @buf: buffer with the data transferred 994 */ 995bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len); 996 997/* address_space_translate: translate an address range into an address space 998 * into a MemoryRegion and an address range into that section 999 * 1000 * @as: #AddressSpace to be accessed
1001 * @addr: address within that address space 1002 * @xlat: pointer to address within the returned memory region section's 1003 * #MemoryRegion. 1004 * @len: pointer to length 1005 * @is_write: indicates the transfer direction 1006 */ 1007MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, 1008 hwaddr *xlat, hwaddr *len, 1009 bool is_write); 1010 1011/* address_space_access_valid: check for validity of accessing an address 1012 * space range 1013 * 1014 * Check whether memory is assigned to the given address space range, and 1015 * access is permitted by any IOMMU regions that are active for the address 1016 * space. 1017 * 1018 * For now, addr and len should be aligned to a page size. This limitation 1019 * will be lifted in the future. 1020 * 1021 * @as: #AddressSpace to be accessed 1022 * @addr: address within that address space 1023 * @len: length of the area to be checked 1024 * @is_write: indicates the transfer direction 1025 */ 1026bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write); 1027 1028/* address_space_map: map a physical memory region into a host virtual address 1029 * 1030 * May map a subset of the requested range, given by and returned in @plen. 1031 * May return %NULL if resources needed to perform the mapping are exhausted. 1032 * Use only for reads OR writes - not for read-modify-write operations. 1033 * Use cpu_register_map_client() to know when retrying the map operation is 1034 * likely to succeed. 1035 * 1036 * @as: #AddressSpace to be accessed 1037 * @addr: address within that address space 1038 * @plen: pointer to length of buffer; updated on return 1039 * @is_write: indicates the transfer direction 1040 */ 1041void *address_space_map(AddressSpace *as, hwaddr addr, 1042 hwaddr *plen, bool is_write); 1043 1044/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() 1045 * 1046 * Will also mark the memory as dirty if @is_write == %true. @access_len gives 1047 * the amount of memory that was actually read or written by the caller. 1048 * 1049 * @as: #AddressSpace used 1050 * @addr: address within that address space 1051 * @len: buffer length as returned by address_space_map() 1052 * @access_len: amount of data actually transferred 1053 * @is_write: indicates the transfer direction 1054 */ 1055void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 1056 int is_write, hwaddr access_len); 1057 1058 1059#endif 1060 1061#endif 1062