qemu/include/fpu/softfloat.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * Derived from SoftFloat.
   5 */
   6
   7/*============================================================================
   8
   9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
  10Package, Release 2b.
  11
  12Written by John R. Hauser.  This work was made possible in part by the
  13International Computer Science Institute, located at Suite 600, 1947 Center
  14Street, Berkeley, California 94704.  Funding was partially provided by the
  15National Science Foundation under grant MIP-9311980.  The original version
  16of this code was written as part of a project to build a fixed-point vector
  17processor in collaboration with the University of California at Berkeley,
  18overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
  20arithmetic/SoftFloat.html'.
  21
  22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
  23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
  24RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
  25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
  26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
  27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
  28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
  29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
  30
  31Derivative works are acceptable, even for commercial purposes, so long as
  32(1) the source code for the derivative work includes prominent notice that
  33the work is derivative, and (2) the source code includes prominent notice with
  34these four paragraphs for those parts of this code that are retained.
  35
  36=============================================================================*/
  37
  38#ifndef SOFTFLOAT_H
  39#define SOFTFLOAT_H
  40
  41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
  42#include <sunmath.h>
  43#endif
  44
  45#include <inttypes.h>
  46#include "config-host.h"
  47#include "qemu/osdep.h"
  48
  49/*----------------------------------------------------------------------------
  50| Each of the following `typedef's defines the most convenient type that holds
  51| integers of at least as many bits as specified.  For example, `uint8' should
  52| be the most convenient type that can hold unsigned integers of as many as
  53| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
  54| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
  55| to the same as `int'.
  56*----------------------------------------------------------------------------*/
  57typedef uint8_t flag;
  58typedef uint8_t uint8;
  59typedef int8_t int8;
  60typedef unsigned int uint32;
  61typedef signed int int32;
  62typedef uint64_t uint64;
  63typedef int64_t int64;
  64
  65#define LIT64( a ) a##LL
  66#define INLINE static inline
  67
  68#define STATUS_PARAM , float_status *status
  69#define STATUS(field) status->field
  70#define STATUS_VAR , status
  71
  72/*----------------------------------------------------------------------------
  73| Software IEC/IEEE floating-point ordering relations
  74*----------------------------------------------------------------------------*/
  75enum {
  76    float_relation_less      = -1,
  77    float_relation_equal     =  0,
  78    float_relation_greater   =  1,
  79    float_relation_unordered =  2
  80};
  81
  82/*----------------------------------------------------------------------------
  83| Software IEC/IEEE floating-point types.
  84*----------------------------------------------------------------------------*/
  85/* Use structures for soft-float types.  This prevents accidentally mixing
  86   them with native int/float types.  A sufficiently clever compiler and
  87   sane ABI should be able to see though these structs.  However
  88   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
  89//#define USE_SOFTFLOAT_STRUCT_TYPES
  90#ifdef USE_SOFTFLOAT_STRUCT_TYPES
  91typedef struct {
  92    uint16_t v;
  93} float16;
  94#define float16_val(x) (((float16)(x)).v)
  95#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
  96#define const_float16(x) { x }
  97typedef struct {
  98    uint32_t v;
  99} float32;
 100/* The cast ensures an error if the wrong type is passed.  */
 101#define float32_val(x) (((float32)(x)).v)
 102#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
 103#define const_float32(x) { x }
 104typedef struct {
 105    uint64_t v;
 106} float64;
 107#define float64_val(x) (((float64)(x)).v)
 108#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
 109#define const_float64(x) { x }
 110#else
 111typedef uint16_t float16;
 112typedef uint32_t float32;
 113typedef uint64_t float64;
 114#define float16_val(x) (x)
 115#define float32_val(x) (x)
 116#define float64_val(x) (x)
 117#define make_float16(x) (x)
 118#define make_float32(x) (x)
 119#define make_float64(x) (x)
 120#define const_float16(x) (x)
 121#define const_float32(x) (x)
 122#define const_float64(x) (x)
 123#endif
 124typedef struct {
 125    uint64_t low;
 126    uint16_t high;
 127} floatx80;
 128#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
 129#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
 130typedef struct {
 131#ifdef HOST_WORDS_BIGENDIAN
 132    uint64_t high, low;
 133#else
 134    uint64_t low, high;
 135#endif
 136} float128;
 137#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
 138#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
 139
 140/*----------------------------------------------------------------------------
 141| Software IEC/IEEE floating-point underflow tininess-detection mode.
 142*----------------------------------------------------------------------------*/
 143enum {
 144    float_tininess_after_rounding  = 0,
 145    float_tininess_before_rounding = 1
 146};
 147
 148/*----------------------------------------------------------------------------
 149| Software IEC/IEEE floating-point rounding mode.
 150*----------------------------------------------------------------------------*/
 151enum {
 152    float_round_nearest_even = 0,
 153    float_round_down         = 1,
 154    float_round_up           = 2,
 155    float_round_to_zero      = 3
 156};
 157
 158/*----------------------------------------------------------------------------
 159| Software IEC/IEEE floating-point exception flags.
 160*----------------------------------------------------------------------------*/
 161enum {
 162    float_flag_invalid   =  1,
 163    float_flag_divbyzero =  4,
 164    float_flag_overflow  =  8,
 165    float_flag_underflow = 16,
 166    float_flag_inexact   = 32,
 167    float_flag_input_denormal = 64,
 168    float_flag_output_denormal = 128
 169};
 170
 171typedef struct float_status {
 172    signed char float_detect_tininess;
 173    signed char float_rounding_mode;
 174    signed char float_exception_flags;
 175    signed char floatx80_rounding_precision;
 176    /* should denormalised results go to zero and set the inexact flag? */
 177    flag flush_to_zero;
 178    /* should denormalised inputs go to zero and set the input_denormal flag? */
 179    flag flush_inputs_to_zero;
 180    flag default_nan_mode;
 181} float_status;
 182
 183void set_float_rounding_mode(int val STATUS_PARAM);
 184void set_float_exception_flags(int val STATUS_PARAM);
 185INLINE void set_float_detect_tininess(int val STATUS_PARAM)
 186{
 187    STATUS(float_detect_tininess) = val;
 188}
 189INLINE void set_flush_to_zero(flag val STATUS_PARAM)
 190{
 191    STATUS(flush_to_zero) = val;
 192}
 193INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
 194{
 195    STATUS(flush_inputs_to_zero) = val;
 196}
 197INLINE void set_default_nan_mode(flag val STATUS_PARAM)
 198{
 199    STATUS(default_nan_mode) = val;
 200}
 201INLINE int get_float_exception_flags(float_status *status)
 202{
 203    return STATUS(float_exception_flags);
 204}
 205void set_floatx80_rounding_precision(int val STATUS_PARAM);
 206
 207/*----------------------------------------------------------------------------
 208| Routine to raise any or all of the software IEC/IEEE floating-point
 209| exception flags.
 210*----------------------------------------------------------------------------*/
 211void float_raise( int8 flags STATUS_PARAM);
 212
 213/*----------------------------------------------------------------------------
 214| Options to indicate which negations to perform in float*_muladd()
 215| Using these differs from negating an input or output before calling
 216| the muladd function in that this means that a NaN doesn't have its
 217| sign bit inverted before it is propagated.
 218*----------------------------------------------------------------------------*/
 219enum {
 220    float_muladd_negate_c = 1,
 221    float_muladd_negate_product = 2,
 222    float_muladd_negate_result = 4,
 223};
 224
 225/*----------------------------------------------------------------------------
 226| Software IEC/IEEE integer-to-floating-point conversion routines.
 227*----------------------------------------------------------------------------*/
 228float32 int32_to_float32( int32 STATUS_PARAM );
 229float64 int32_to_float64( int32 STATUS_PARAM );
 230float32 uint32_to_float32( uint32 STATUS_PARAM );
 231float64 uint32_to_float64( uint32 STATUS_PARAM );
 232floatx80 int32_to_floatx80( int32 STATUS_PARAM );
 233float128 int32_to_float128( int32 STATUS_PARAM );
 234float32 int64_to_float32( int64 STATUS_PARAM );
 235float32 uint64_to_float32( uint64 STATUS_PARAM );
 236float64 int64_to_float64( int64 STATUS_PARAM );
 237float64 uint64_to_float64( uint64 STATUS_PARAM );
 238floatx80 int64_to_floatx80( int64 STATUS_PARAM );
 239float128 int64_to_float128( int64 STATUS_PARAM );
 240float128 uint64_to_float128( uint64 STATUS_PARAM );
 241
 242/*----------------------------------------------------------------------------
 243| Software half-precision conversion routines.
 244*----------------------------------------------------------------------------*/
 245float16 float32_to_float16( float32, flag STATUS_PARAM );
 246float32 float16_to_float32( float16, flag STATUS_PARAM );
 247
 248/*----------------------------------------------------------------------------
 249| Software half-precision operations.
 250*----------------------------------------------------------------------------*/
 251int float16_is_quiet_nan( float16 );
 252int float16_is_signaling_nan( float16 );
 253float16 float16_maybe_silence_nan( float16 );
 254
 255INLINE int float16_is_any_nan(float16 a)
 256{
 257    return ((float16_val(a) & ~0x8000) > 0x7c00);
 258}
 259
 260/*----------------------------------------------------------------------------
 261| The pattern for a default generated half-precision NaN.
 262*----------------------------------------------------------------------------*/
 263extern const float16 float16_default_nan;
 264
 265/*----------------------------------------------------------------------------
 266| Software IEC/IEEE single-precision conversion routines.
 267*----------------------------------------------------------------------------*/
 268int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
 269uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
 270int32 float32_to_int32( float32 STATUS_PARAM );
 271int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
 272uint32 float32_to_uint32( float32 STATUS_PARAM );
 273uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
 274int64 float32_to_int64( float32 STATUS_PARAM );
 275int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
 276float64 float32_to_float64( float32 STATUS_PARAM );
 277floatx80 float32_to_floatx80( float32 STATUS_PARAM );
 278float128 float32_to_float128( float32 STATUS_PARAM );
 279
 280/*----------------------------------------------------------------------------
 281| Software IEC/IEEE single-precision operations.
 282*----------------------------------------------------------------------------*/
 283float32 float32_round_to_int( float32 STATUS_PARAM );
 284float32 float32_add( float32, float32 STATUS_PARAM );
 285float32 float32_sub( float32, float32 STATUS_PARAM );
 286float32 float32_mul( float32, float32 STATUS_PARAM );
 287float32 float32_div( float32, float32 STATUS_PARAM );
 288float32 float32_rem( float32, float32 STATUS_PARAM );
 289float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
 290float32 float32_sqrt( float32 STATUS_PARAM );
 291float32 float32_exp2( float32 STATUS_PARAM );
 292float32 float32_log2( float32 STATUS_PARAM );
 293int float32_eq( float32, float32 STATUS_PARAM );
 294int float32_le( float32, float32 STATUS_PARAM );
 295int float32_lt( float32, float32 STATUS_PARAM );
 296int float32_unordered( float32, float32 STATUS_PARAM );
 297int float32_eq_quiet( float32, float32 STATUS_PARAM );
 298int float32_le_quiet( float32, float32 STATUS_PARAM );
 299int float32_lt_quiet( float32, float32 STATUS_PARAM );
 300int float32_unordered_quiet( float32, float32 STATUS_PARAM );
 301int float32_compare( float32, float32 STATUS_PARAM );
 302int float32_compare_quiet( float32, float32 STATUS_PARAM );
 303float32 float32_min(float32, float32 STATUS_PARAM);
 304float32 float32_max(float32, float32 STATUS_PARAM);
 305int float32_is_quiet_nan( float32 );
 306int float32_is_signaling_nan( float32 );
 307float32 float32_maybe_silence_nan( float32 );
 308float32 float32_scalbn( float32, int STATUS_PARAM );
 309
 310INLINE float32 float32_abs(float32 a)
 311{
 312    /* Note that abs does *not* handle NaN specially, nor does
 313     * it flush denormal inputs to zero.
 314     */
 315    return make_float32(float32_val(a) & 0x7fffffff);
 316}
 317
 318INLINE float32 float32_chs(float32 a)
 319{
 320    /* Note that chs does *not* handle NaN specially, nor does
 321     * it flush denormal inputs to zero.
 322     */
 323    return make_float32(float32_val(a) ^ 0x80000000);
 324}
 325
 326INLINE int float32_is_infinity(float32 a)
 327{
 328    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
 329}
 330
 331INLINE int float32_is_neg(float32 a)
 332{
 333    return float32_val(a) >> 31;
 334}
 335
 336INLINE int float32_is_zero(float32 a)
 337{
 338    return (float32_val(a) & 0x7fffffff) == 0;
 339}
 340
 341INLINE int float32_is_any_nan(float32 a)
 342{
 343    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
 344}
 345
 346INLINE int float32_is_zero_or_denormal(float32 a)
 347{
 348    return (float32_val(a) & 0x7f800000) == 0;
 349}
 350
 351INLINE float32 float32_set_sign(float32 a, int sign)
 352{
 353    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
 354}
 355
 356#define float32_zero make_float32(0)
 357#define float32_one make_float32(0x3f800000)
 358#define float32_ln2 make_float32(0x3f317218)
 359#define float32_pi make_float32(0x40490fdb)
 360#define float32_half make_float32(0x3f000000)
 361#define float32_infinity make_float32(0x7f800000)
 362
 363
 364/*----------------------------------------------------------------------------
 365| The pattern for a default generated single-precision NaN.
 366*----------------------------------------------------------------------------*/
 367extern const float32 float32_default_nan;
 368
 369/*----------------------------------------------------------------------------
 370| Software IEC/IEEE double-precision conversion routines.
 371*----------------------------------------------------------------------------*/
 372int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
 373uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
 374int32 float64_to_int32( float64 STATUS_PARAM );
 375int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
 376uint32 float64_to_uint32( float64 STATUS_PARAM );
 377uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
 378int64 float64_to_int64( float64 STATUS_PARAM );
 379int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
 380uint64 float64_to_uint64 (float64 a STATUS_PARAM);
 381uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
 382float32 float64_to_float32( float64 STATUS_PARAM );
 383floatx80 float64_to_floatx80( float64 STATUS_PARAM );
 384float128 float64_to_float128( float64 STATUS_PARAM );
 385
 386/*----------------------------------------------------------------------------
 387| Software IEC/IEEE double-precision operations.
 388*----------------------------------------------------------------------------*/
 389float64 float64_round_to_int( float64 STATUS_PARAM );
 390float64 float64_trunc_to_int( float64 STATUS_PARAM );
 391float64 float64_add( float64, float64 STATUS_PARAM );
 392float64 float64_sub( float64, float64 STATUS_PARAM );
 393float64 float64_mul( float64, float64 STATUS_PARAM );
 394float64 float64_div( float64, float64 STATUS_PARAM );
 395float64 float64_rem( float64, float64 STATUS_PARAM );
 396float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
 397float64 float64_sqrt( float64 STATUS_PARAM );
 398float64 float64_log2( float64 STATUS_PARAM );
 399int float64_eq( float64, float64 STATUS_PARAM );
 400int float64_le( float64, float64 STATUS_PARAM );
 401int float64_lt( float64, float64 STATUS_PARAM );
 402int float64_unordered( float64, float64 STATUS_PARAM );
 403int float64_eq_quiet( float64, float64 STATUS_PARAM );
 404int float64_le_quiet( float64, float64 STATUS_PARAM );
 405int float64_lt_quiet( float64, float64 STATUS_PARAM );
 406int float64_unordered_quiet( float64, float64 STATUS_PARAM );
 407int float64_compare( float64, float64 STATUS_PARAM );
 408int float64_compare_quiet( float64, float64 STATUS_PARAM );
 409float64 float64_min(float64, float64 STATUS_PARAM);
 410float64 float64_max(float64, float64 STATUS_PARAM);
 411int float64_is_quiet_nan( float64 a );
 412int float64_is_signaling_nan( float64 );
 413float64 float64_maybe_silence_nan( float64 );
 414float64 float64_scalbn( float64, int STATUS_PARAM );
 415
 416INLINE float64 float64_abs(float64 a)
 417{
 418    /* Note that abs does *not* handle NaN specially, nor does
 419     * it flush denormal inputs to zero.
 420     */
 421    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
 422}
 423
 424INLINE float64 float64_chs(float64 a)
 425{
 426    /* Note that chs does *not* handle NaN specially, nor does
 427     * it flush denormal inputs to zero.
 428     */
 429    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
 430}
 431
 432INLINE int float64_is_infinity(float64 a)
 433{
 434    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
 435}
 436
 437INLINE int float64_is_neg(float64 a)
 438{
 439    return float64_val(a) >> 63;
 440}
 441
 442INLINE int float64_is_zero(float64 a)
 443{
 444    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
 445}
 446
 447INLINE int float64_is_any_nan(float64 a)
 448{
 449    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
 450}
 451
 452INLINE int float64_is_zero_or_denormal(float64 a)
 453{
 454    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
 455}
 456
 457INLINE float64 float64_set_sign(float64 a, int sign)
 458{
 459    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
 460                        | ((int64_t)sign << 63));
 461}
 462
 463#define float64_zero make_float64(0)
 464#define float64_one make_float64(0x3ff0000000000000LL)
 465#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
 466#define float64_pi make_float64(0x400921fb54442d18LL)
 467#define float64_half make_float64(0x3fe0000000000000LL)
 468#define float64_infinity make_float64(0x7ff0000000000000LL)
 469
 470/*----------------------------------------------------------------------------
 471| The pattern for a default generated double-precision NaN.
 472*----------------------------------------------------------------------------*/
 473extern const float64 float64_default_nan;
 474
 475/*----------------------------------------------------------------------------
 476| Software IEC/IEEE extended double-precision conversion routines.
 477*----------------------------------------------------------------------------*/
 478int32 floatx80_to_int32( floatx80 STATUS_PARAM );
 479int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
 480int64 floatx80_to_int64( floatx80 STATUS_PARAM );
 481int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
 482float32 floatx80_to_float32( floatx80 STATUS_PARAM );
 483float64 floatx80_to_float64( floatx80 STATUS_PARAM );
 484float128 floatx80_to_float128( floatx80 STATUS_PARAM );
 485
 486/*----------------------------------------------------------------------------
 487| Software IEC/IEEE extended double-precision operations.
 488*----------------------------------------------------------------------------*/
 489floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
 490floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
 491floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
 492floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
 493floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
 494floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
 495floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
 496int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
 497int floatx80_le( floatx80, floatx80 STATUS_PARAM );
 498int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
 499int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
 500int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
 501int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
 502int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
 503int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
 504int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
 505int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
 506int floatx80_is_quiet_nan( floatx80 );
 507int floatx80_is_signaling_nan( floatx80 );
 508floatx80 floatx80_maybe_silence_nan( floatx80 );
 509floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
 510
 511INLINE floatx80 floatx80_abs(floatx80 a)
 512{
 513    a.high &= 0x7fff;
 514    return a;
 515}
 516
 517INLINE floatx80 floatx80_chs(floatx80 a)
 518{
 519    a.high ^= 0x8000;
 520    return a;
 521}
 522
 523INLINE int floatx80_is_infinity(floatx80 a)
 524{
 525    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
 526}
 527
 528INLINE int floatx80_is_neg(floatx80 a)
 529{
 530    return a.high >> 15;
 531}
 532
 533INLINE int floatx80_is_zero(floatx80 a)
 534{
 535    return (a.high & 0x7fff) == 0 && a.low == 0;
 536}
 537
 538INLINE int floatx80_is_zero_or_denormal(floatx80 a)
 539{
 540    return (a.high & 0x7fff) == 0;
 541}
 542
 543INLINE int floatx80_is_any_nan(floatx80 a)
 544{
 545    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
 546}
 547
 548#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
 549#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
 550#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
 551#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
 552#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
 553#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
 554
 555/*----------------------------------------------------------------------------
 556| The pattern for a default generated extended double-precision NaN.
 557*----------------------------------------------------------------------------*/
 558extern const floatx80 floatx80_default_nan;
 559
 560/*----------------------------------------------------------------------------
 561| Software IEC/IEEE quadruple-precision conversion routines.
 562*----------------------------------------------------------------------------*/
 563int32 float128_to_int32( float128 STATUS_PARAM );
 564int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
 565int64 float128_to_int64( float128 STATUS_PARAM );
 566int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
 567float32 float128_to_float32( float128 STATUS_PARAM );
 568float64 float128_to_float64( float128 STATUS_PARAM );
 569floatx80 float128_to_floatx80( float128 STATUS_PARAM );
 570
 571/*----------------------------------------------------------------------------
 572| Software IEC/IEEE quadruple-precision operations.
 573*----------------------------------------------------------------------------*/
 574float128 float128_round_to_int( float128 STATUS_PARAM );
 575float128 float128_add( float128, float128 STATUS_PARAM );
 576float128 float128_sub( float128, float128 STATUS_PARAM );
 577float128 float128_mul( float128, float128 STATUS_PARAM );
 578float128 float128_div( float128, float128 STATUS_PARAM );
 579float128 float128_rem( float128, float128 STATUS_PARAM );
 580float128 float128_sqrt( float128 STATUS_PARAM );
 581int float128_eq( float128, float128 STATUS_PARAM );
 582int float128_le( float128, float128 STATUS_PARAM );
 583int float128_lt( float128, float128 STATUS_PARAM );
 584int float128_unordered( float128, float128 STATUS_PARAM );
 585int float128_eq_quiet( float128, float128 STATUS_PARAM );
 586int float128_le_quiet( float128, float128 STATUS_PARAM );
 587int float128_lt_quiet( float128, float128 STATUS_PARAM );
 588int float128_unordered_quiet( float128, float128 STATUS_PARAM );
 589int float128_compare( float128, float128 STATUS_PARAM );
 590int float128_compare_quiet( float128, float128 STATUS_PARAM );
 591int float128_is_quiet_nan( float128 );
 592int float128_is_signaling_nan( float128 );
 593float128 float128_maybe_silence_nan( float128 );
 594float128 float128_scalbn( float128, int STATUS_PARAM );
 595
 596INLINE float128 float128_abs(float128 a)
 597{
 598    a.high &= 0x7fffffffffffffffLL;
 599    return a;
 600}
 601
 602INLINE float128 float128_chs(float128 a)
 603{
 604    a.high ^= 0x8000000000000000LL;
 605    return a;
 606}
 607
 608INLINE int float128_is_infinity(float128 a)
 609{
 610    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
 611}
 612
 613INLINE int float128_is_neg(float128 a)
 614{
 615    return a.high >> 63;
 616}
 617
 618INLINE int float128_is_zero(float128 a)
 619{
 620    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
 621}
 622
 623INLINE int float128_is_zero_or_denormal(float128 a)
 624{
 625    return (a.high & 0x7fff000000000000LL) == 0;
 626}
 627
 628INLINE int float128_is_any_nan(float128 a)
 629{
 630    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
 631        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
 632}
 633
 634#define float128_zero make_float128(0, 0)
 635
 636/*----------------------------------------------------------------------------
 637| The pattern for a default generated quadruple-precision NaN.
 638*----------------------------------------------------------------------------*/
 639extern const float128 float128_default_nan;
 640
 641#endif /* !SOFTFLOAT_H */
 642