qemu/target-alpha/cpu.h
<<
>>
Prefs
   1/*
   2 *  Alpha emulation cpu definitions for qemu.
   3 *
   4 *  Copyright (c) 2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#if !defined (__CPU_ALPHA_H__)
  21#define __CPU_ALPHA_H__
  22
  23#include "config.h"
  24#include "qemu-common.h"
  25
  26#define TARGET_LONG_BITS 64
  27
  28#define CPUArchState struct CPUAlphaState
  29
  30#include "exec/cpu-defs.h"
  31
  32#include "fpu/softfloat.h"
  33
  34#define TARGET_HAS_ICE 1
  35
  36#define ELF_MACHINE     EM_ALPHA
  37
  38#define ICACHE_LINE_SIZE 32
  39#define DCACHE_LINE_SIZE 32
  40
  41#define TARGET_PAGE_BITS 13
  42
  43#ifdef CONFIG_USER_ONLY
  44/* ??? The kernel likes to give addresses in high memory.  If the host has
  45   more virtual address space than the guest, this can lead to impossible
  46   allocations.  Honor the long-standing assumption that only kernel addrs
  47   are negative, but otherwise allow allocations anywhere.  This could lead
  48   to tricky emulation problems for programs doing tagged addressing, but
  49   that's far fewer than encounter the impossible allocation problem.  */
  50#define TARGET_PHYS_ADDR_SPACE_BITS  63
  51#define TARGET_VIRT_ADDR_SPACE_BITS  63
  52#else
  53/* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44.  */
  54#define TARGET_PHYS_ADDR_SPACE_BITS  44
  55#define TARGET_VIRT_ADDR_SPACE_BITS  (30 + TARGET_PAGE_BITS)
  56#endif
  57
  58/* Alpha major type */
  59enum {
  60    ALPHA_EV3  = 1,
  61    ALPHA_EV4  = 2,
  62    ALPHA_SIM  = 3,
  63    ALPHA_LCA  = 4,
  64    ALPHA_EV5  = 5, /* 21164 */
  65    ALPHA_EV45 = 6, /* 21064A */
  66    ALPHA_EV56 = 7, /* 21164A */
  67};
  68
  69/* EV4 minor type */
  70enum {
  71    ALPHA_EV4_2 = 0,
  72    ALPHA_EV4_3 = 1,
  73};
  74
  75/* LCA minor type */
  76enum {
  77    ALPHA_LCA_1 = 1, /* 21066 */
  78    ALPHA_LCA_2 = 2, /* 20166 */
  79    ALPHA_LCA_3 = 3, /* 21068 */
  80    ALPHA_LCA_4 = 4, /* 21068 */
  81    ALPHA_LCA_5 = 5, /* 21066A */
  82    ALPHA_LCA_6 = 6, /* 21068A */
  83};
  84
  85/* EV5 minor type */
  86enum {
  87    ALPHA_EV5_1 = 1, /* Rev BA, CA */
  88    ALPHA_EV5_2 = 2, /* Rev DA, EA */
  89    ALPHA_EV5_3 = 3, /* Pass 3 */
  90    ALPHA_EV5_4 = 4, /* Pass 3.2 */
  91    ALPHA_EV5_5 = 5, /* Pass 4 */
  92};
  93
  94/* EV45 minor type */
  95enum {
  96    ALPHA_EV45_1 = 1, /* Pass 1 */
  97    ALPHA_EV45_2 = 2, /* Pass 1.1 */
  98    ALPHA_EV45_3 = 3, /* Pass 2 */
  99};
 100
 101/* EV56 minor type */
 102enum {
 103    ALPHA_EV56_1 = 1, /* Pass 1 */
 104    ALPHA_EV56_2 = 2, /* Pass 2 */
 105};
 106
 107enum {
 108    IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
 109    IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
 110    IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
 111    IMPLVER_21364 = 3, /* EV7 & EV79 */
 112};
 113
 114enum {
 115    AMASK_BWX      = 0x00000001,
 116    AMASK_FIX      = 0x00000002,
 117    AMASK_CIX      = 0x00000004,
 118    AMASK_MVI      = 0x00000100,
 119    AMASK_TRAP     = 0x00000200,
 120    AMASK_PREFETCH = 0x00001000,
 121};
 122
 123enum {
 124    VAX_ROUND_NORMAL = 0,
 125    VAX_ROUND_CHOPPED,
 126};
 127
 128enum {
 129    IEEE_ROUND_NORMAL = 0,
 130    IEEE_ROUND_DYNAMIC,
 131    IEEE_ROUND_PLUS,
 132    IEEE_ROUND_MINUS,
 133    IEEE_ROUND_CHOPPED,
 134};
 135
 136/* IEEE floating-point operations encoding */
 137/* Trap mode */
 138enum {
 139    FP_TRAP_I   = 0x0,
 140    FP_TRAP_U   = 0x1,
 141    FP_TRAP_S  = 0x4,
 142    FP_TRAP_SU  = 0x5,
 143    FP_TRAP_SUI = 0x7,
 144};
 145
 146/* Rounding mode */
 147enum {
 148    FP_ROUND_CHOPPED = 0x0,
 149    FP_ROUND_MINUS   = 0x1,
 150    FP_ROUND_NORMAL  = 0x2,
 151    FP_ROUND_DYNAMIC = 0x3,
 152};
 153
 154/* FPCR bits */
 155#define FPCR_SUM                (1ULL << 63)
 156#define FPCR_INED               (1ULL << 62)
 157#define FPCR_UNFD               (1ULL << 61)
 158#define FPCR_UNDZ               (1ULL << 60)
 159#define FPCR_DYN_SHIFT          58
 160#define FPCR_DYN_CHOPPED        (0ULL << FPCR_DYN_SHIFT)
 161#define FPCR_DYN_MINUS          (1ULL << FPCR_DYN_SHIFT)
 162#define FPCR_DYN_NORMAL         (2ULL << FPCR_DYN_SHIFT)
 163#define FPCR_DYN_PLUS           (3ULL << FPCR_DYN_SHIFT)
 164#define FPCR_DYN_MASK           (3ULL << FPCR_DYN_SHIFT)
 165#define FPCR_IOV                (1ULL << 57)
 166#define FPCR_INE                (1ULL << 56)
 167#define FPCR_UNF                (1ULL << 55)
 168#define FPCR_OVF                (1ULL << 54)
 169#define FPCR_DZE                (1ULL << 53)
 170#define FPCR_INV                (1ULL << 52)
 171#define FPCR_OVFD               (1ULL << 51)
 172#define FPCR_DZED               (1ULL << 50)
 173#define FPCR_INVD               (1ULL << 49)
 174#define FPCR_DNZ                (1ULL << 48)
 175#define FPCR_DNOD               (1ULL << 47)
 176#define FPCR_STATUS_MASK        (FPCR_IOV | FPCR_INE | FPCR_UNF \
 177                                 | FPCR_OVF | FPCR_DZE | FPCR_INV)
 178
 179/* The silly software trap enables implemented by the kernel emulation.
 180   These are more or less architecturally required, since the real hardware
 181   has read-as-zero bits in the FPCR when the features aren't implemented.
 182   For the purposes of QEMU, we pretend the FPCR can hold everything.  */
 183#define SWCR_TRAP_ENABLE_INV    (1ULL << 1)
 184#define SWCR_TRAP_ENABLE_DZE    (1ULL << 2)
 185#define SWCR_TRAP_ENABLE_OVF    (1ULL << 3)
 186#define SWCR_TRAP_ENABLE_UNF    (1ULL << 4)
 187#define SWCR_TRAP_ENABLE_INE    (1ULL << 5)
 188#define SWCR_TRAP_ENABLE_DNO    (1ULL << 6)
 189#define SWCR_TRAP_ENABLE_MASK   ((1ULL << 7) - (1ULL << 1))
 190
 191#define SWCR_MAP_DMZ            (1ULL << 12)
 192#define SWCR_MAP_UMZ            (1ULL << 13)
 193#define SWCR_MAP_MASK           (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
 194
 195#define SWCR_STATUS_INV         (1ULL << 17)
 196#define SWCR_STATUS_DZE         (1ULL << 18)
 197#define SWCR_STATUS_OVF         (1ULL << 19)
 198#define SWCR_STATUS_UNF         (1ULL << 20)
 199#define SWCR_STATUS_INE         (1ULL << 21)
 200#define SWCR_STATUS_DNO         (1ULL << 22)
 201#define SWCR_STATUS_MASK        ((1ULL << 23) - (1ULL << 17))
 202
 203#define SWCR_MASK  (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
 204
 205/* MMU modes definitions */
 206
 207/* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user.
 208   The Unix PALcode only exposes the kernel and user modes; presumably
 209   executive and supervisor are used by VMS.
 210
 211   PALcode itself uses physical mode for code and kernel mode for data;
 212   there are PALmode instructions that can access data via physical mode
 213   or via an os-installed "alternate mode", which is one of the 4 above.
 214
 215   QEMU does not currently properly distinguish between code/data when
 216   looking up addresses.  To avoid having to address this issue, our
 217   emulated PALcode will cheat and use the KSEG mapping for its code+data
 218   rather than physical addresses.
 219
 220   Moreover, we're only emulating Unix PALcode, and not attempting VMS.
 221
 222   All of which allows us to drop all but kernel and user modes.
 223   Elide the unused MMU modes to save space.  */
 224
 225#define NB_MMU_MODES 2
 226
 227#define MMU_MODE0_SUFFIX _kernel
 228#define MMU_MODE1_SUFFIX _user
 229#define MMU_KERNEL_IDX   0
 230#define MMU_USER_IDX     1
 231
 232typedef struct CPUAlphaState CPUAlphaState;
 233
 234struct CPUAlphaState {
 235    uint64_t ir[31];
 236    float64 fir[31];
 237    uint64_t pc;
 238    uint64_t unique;
 239    uint64_t lock_addr;
 240    uint64_t lock_st_addr;
 241    uint64_t lock_value;
 242    float_status fp_status;
 243    /* The following fields make up the FPCR, but in FP_STATUS format.  */
 244    uint8_t fpcr_exc_status;
 245    uint8_t fpcr_exc_mask;
 246    uint8_t fpcr_dyn_round;
 247    uint8_t fpcr_flush_to_zero;
 248    uint8_t fpcr_dnod;
 249    uint8_t fpcr_undz;
 250
 251    /* The Internal Processor Registers.  Some of these we assume always
 252       exist for use in user-mode.  */
 253    uint8_t ps;
 254    uint8_t intr_flag;
 255    uint8_t pal_mode;
 256    uint8_t fen;
 257
 258    uint32_t pcc_ofs;
 259
 260    /* These pass data from the exception logic in the translator and
 261       helpers to the OS entry point.  This is used for both system
 262       emulation and user-mode.  */
 263    uint64_t trap_arg0;
 264    uint64_t trap_arg1;
 265    uint64_t trap_arg2;
 266
 267#if !defined(CONFIG_USER_ONLY)
 268    /* The internal data required by our emulation of the Unix PALcode.  */
 269    uint64_t exc_addr;
 270    uint64_t palbr;
 271    uint64_t ptbr;
 272    uint64_t vptptr;
 273    uint64_t sysval;
 274    uint64_t usp;
 275    uint64_t shadow[8];
 276    uint64_t scratch[24];
 277#endif
 278
 279    /* This alarm doesn't exist in real hardware; we wish it did.  */
 280    uint64_t alarm_expire;
 281
 282    /* Those resources are used only in QEMU core */
 283    CPU_COMMON
 284
 285    int error_code;
 286
 287    uint32_t features;
 288    uint32_t amask;
 289    int implver;
 290};
 291
 292#define cpu_list alpha_cpu_list
 293#define cpu_exec cpu_alpha_exec
 294#define cpu_gen_code cpu_alpha_gen_code
 295#define cpu_signal_handler cpu_alpha_signal_handler
 296
 297#include "exec/cpu-all.h"
 298#include "cpu-qom.h"
 299
 300enum {
 301    FEATURE_ASN    = 0x00000001,
 302    FEATURE_SPS    = 0x00000002,
 303    FEATURE_VIRBND = 0x00000004,
 304    FEATURE_TBCHK  = 0x00000008,
 305};
 306
 307enum {
 308    EXCP_RESET,
 309    EXCP_MCHK,
 310    EXCP_SMP_INTERRUPT,
 311    EXCP_CLK_INTERRUPT,
 312    EXCP_DEV_INTERRUPT,
 313    EXCP_MMFAULT,
 314    EXCP_UNALIGN,
 315    EXCP_OPCDEC,
 316    EXCP_ARITH,
 317    EXCP_FEN,
 318    EXCP_CALL_PAL,
 319    /* For Usermode emulation.  */
 320    EXCP_STL_C,
 321    EXCP_STQ_C,
 322};
 323
 324/* Alpha-specific interrupt pending bits.  */
 325#define CPU_INTERRUPT_TIMER     CPU_INTERRUPT_TGT_EXT_0
 326#define CPU_INTERRUPT_SMP       CPU_INTERRUPT_TGT_EXT_1
 327#define CPU_INTERRUPT_MCHK      CPU_INTERRUPT_TGT_EXT_2
 328
 329/* OSF/1 Page table bits.  */
 330enum {
 331    PTE_VALID = 0x0001,
 332    PTE_FOR   = 0x0002,  /* used for page protection (fault on read) */
 333    PTE_FOW   = 0x0004,  /* used for page protection (fault on write) */
 334    PTE_FOE   = 0x0008,  /* used for page protection (fault on exec) */
 335    PTE_ASM   = 0x0010,
 336    PTE_KRE   = 0x0100,
 337    PTE_URE   = 0x0200,
 338    PTE_KWE   = 0x1000,
 339    PTE_UWE   = 0x2000
 340};
 341
 342/* Hardware interrupt (entInt) constants.  */
 343enum {
 344    INT_K_IP,
 345    INT_K_CLK,
 346    INT_K_MCHK,
 347    INT_K_DEV,
 348    INT_K_PERF,
 349};
 350
 351/* Memory management (entMM) constants.  */
 352enum {
 353    MM_K_TNV,
 354    MM_K_ACV,
 355    MM_K_FOR,
 356    MM_K_FOE,
 357    MM_K_FOW
 358};
 359
 360/* Arithmetic exception (entArith) constants.  */
 361enum {
 362    EXC_M_SWC = 1,      /* Software completion */
 363    EXC_M_INV = 2,      /* Invalid operation */
 364    EXC_M_DZE = 4,      /* Division by zero */
 365    EXC_M_FOV = 8,      /* Overflow */
 366    EXC_M_UNF = 16,     /* Underflow */
 367    EXC_M_INE = 32,     /* Inexact result */
 368    EXC_M_IOV = 64      /* Integer Overflow */
 369};
 370
 371/* Processor status constants.  */
 372enum {
 373    /* Low 3 bits are interrupt mask level.  */
 374    PS_INT_MASK = 7,
 375
 376    /* Bits 4 and 5 are the mmu mode.  The VMS PALcode uses all 4 modes;
 377       The Unix PALcode only uses bit 4.  */
 378    PS_USER_MODE = 8
 379};
 380
 381static inline int cpu_mmu_index(CPUAlphaState *env)
 382{
 383    if (env->pal_mode) {
 384        return MMU_KERNEL_IDX;
 385    } else if (env->ps & PS_USER_MODE) {
 386        return MMU_USER_IDX;
 387    } else {
 388        return MMU_KERNEL_IDX;
 389    }
 390}
 391
 392enum {
 393    IR_V0   = 0,
 394    IR_T0   = 1,
 395    IR_T1   = 2,
 396    IR_T2   = 3,
 397    IR_T3   = 4,
 398    IR_T4   = 5,
 399    IR_T5   = 6,
 400    IR_T6   = 7,
 401    IR_T7   = 8,
 402    IR_S0   = 9,
 403    IR_S1   = 10,
 404    IR_S2   = 11,
 405    IR_S3   = 12,
 406    IR_S4   = 13,
 407    IR_S5   = 14,
 408    IR_S6   = 15,
 409    IR_FP   = IR_S6,
 410    IR_A0   = 16,
 411    IR_A1   = 17,
 412    IR_A2   = 18,
 413    IR_A3   = 19,
 414    IR_A4   = 20,
 415    IR_A5   = 21,
 416    IR_T8   = 22,
 417    IR_T9   = 23,
 418    IR_T10  = 24,
 419    IR_T11  = 25,
 420    IR_RA   = 26,
 421    IR_T12  = 27,
 422    IR_PV   = IR_T12,
 423    IR_AT   = 28,
 424    IR_GP   = 29,
 425    IR_SP   = 30,
 426    IR_ZERO = 31,
 427};
 428
 429void alpha_translate_init(void);
 430
 431AlphaCPU *cpu_alpha_init(const char *cpu_model);
 432
 433static inline CPUAlphaState *cpu_init(const char *cpu_model)
 434{
 435    AlphaCPU *cpu = cpu_alpha_init(cpu_model);
 436    if (cpu == NULL) {
 437        return NULL;
 438    }
 439    return &cpu->env;
 440}
 441
 442void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
 443int cpu_alpha_exec(CPUAlphaState *s);
 444/* you can call this signal handler from your SIGBUS and SIGSEGV
 445   signal handlers to inform the virtual CPU of exceptions. non zero
 446   is returned if the signal was handled by the virtual CPU.  */
 447int cpu_alpha_signal_handler(int host_signum, void *pinfo,
 448                             void *puc);
 449int cpu_alpha_handle_mmu_fault (CPUAlphaState *env, uint64_t address, int rw,
 450                                int mmu_idx);
 451#define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault
 452void do_restore_state(CPUAlphaState *, uintptr_t retaddr);
 453void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
 454void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
 455
 456uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
 457void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
 458#ifndef CONFIG_USER_ONLY
 459void swap_shadow_regs(CPUAlphaState *env);
 460QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
 461                                               bool is_write, bool is_exec,
 462                                               int unused, unsigned size);
 463#endif
 464
 465/* Bits in TB->FLAGS that control how translation is processed.  */
 466enum {
 467    TB_FLAGS_PAL_MODE = 1,
 468    TB_FLAGS_FEN = 2,
 469    TB_FLAGS_USER_MODE = 8,
 470
 471    TB_FLAGS_AMASK_SHIFT = 4,
 472    TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
 473    TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
 474    TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
 475    TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
 476    TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
 477    TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
 478};
 479
 480static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
 481                                        target_ulong *cs_base, int *pflags)
 482{
 483    int flags = 0;
 484
 485    *pc = env->pc;
 486    *cs_base = 0;
 487
 488    if (env->pal_mode) {
 489        flags = TB_FLAGS_PAL_MODE;
 490    } else {
 491        flags = env->ps & PS_USER_MODE;
 492    }
 493    if (env->fen) {
 494        flags |= TB_FLAGS_FEN;
 495    }
 496    flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
 497
 498    *pflags = flags;
 499}
 500
 501static inline bool cpu_has_work(CPUState *cpu)
 502{
 503    /* Here we are checking to see if the CPU should wake up from HALT.
 504       We will have gotten into this state only for WTINT from PALmode.  */
 505    /* ??? I'm not sure how the IPL state works with WTINT to keep a CPU
 506       asleep even if (some) interrupts have been asserted.  For now,
 507       assume that if a CPU really wants to stay asleep, it will mask
 508       interrupts at the chipset level, which will prevent these bits
 509       from being set in the first place.  */
 510    return cpu->interrupt_request & (CPU_INTERRUPT_HARD
 511                                     | CPU_INTERRUPT_TIMER
 512                                     | CPU_INTERRUPT_SMP
 513                                     | CPU_INTERRUPT_MCHK);
 514}
 515
 516#include "exec/exec-all.h"
 517
 518#endif /* !defined (__CPU_ALPHA_H__) */
 519