qemu/hw/sd/sdhci.c
<<
>>
Prefs
   1/*
   2 * SD Association Host Standard Specification v2.0 controller emulation
   3 *
   4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   5 * Mitsyanko Igor <i.mitsyanko@samsung.com>
   6 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
   7 *
   8 * Based on MMC controller for Samsung S5PC1xx-based board emulation
   9 * by Alexey Merkulov and Vladimir Monakhov.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2 of the License, or (at your
  14 * option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  19 * See the GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License along
  22 * with this program; if not, see <http://www.gnu.org/licenses/>.
  23 */
  24
  25#include "hw/hw.h"
  26#include "sysemu/blockdev.h"
  27#include "sysemu/dma.h"
  28#include "qemu/timer.h"
  29#include "qemu/bitops.h"
  30
  31#include "sdhci.h"
  32
  33/* host controller debug messages */
  34#ifndef SDHC_DEBUG
  35#define SDHC_DEBUG                        0
  36#endif
  37
  38#if SDHC_DEBUG == 0
  39    #define DPRINT_L1(fmt, args...)       do { } while (0)
  40    #define DPRINT_L2(fmt, args...)       do { } while (0)
  41    #define ERRPRINT(fmt, args...)        do { } while (0)
  42#elif SDHC_DEBUG == 1
  43    #define DPRINT_L1(fmt, args...)       \
  44        do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
  45    #define DPRINT_L2(fmt, args...)       do { } while (0)
  46    #define ERRPRINT(fmt, args...)        \
  47        do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0)
  48#else
  49    #define DPRINT_L1(fmt, args...)       \
  50        do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
  51    #define DPRINT_L2(fmt, args...)       \
  52        do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0)
  53    #define ERRPRINT(fmt, args...)        \
  54        do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0)
  55#endif
  56
  57/* Default SD/MMC host controller features information, which will be
  58 * presented in CAPABILITIES register of generic SD host controller at reset.
  59 * If not stated otherwise:
  60 * 0 - not supported, 1 - supported, other - prohibited.
  61 */
  62#define SDHC_CAPAB_64BITBUS       0ul        /* 64-bit System Bus Support */
  63#define SDHC_CAPAB_18V            1ul        /* Voltage support 1.8v */
  64#define SDHC_CAPAB_30V            0ul        /* Voltage support 3.0v */
  65#define SDHC_CAPAB_33V            1ul        /* Voltage support 3.3v */
  66#define SDHC_CAPAB_SUSPRESUME     0ul        /* Suspend/resume support */
  67#define SDHC_CAPAB_SDMA           1ul        /* SDMA support */
  68#define SDHC_CAPAB_HIGHSPEED      1ul        /* High speed support */
  69#define SDHC_CAPAB_ADMA1          1ul        /* ADMA1 support */
  70#define SDHC_CAPAB_ADMA2          1ul        /* ADMA2 support */
  71/* Maximum host controller R/W buffers size
  72 * Possible values: 512, 1024, 2048 bytes */
  73#define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
  74/* Maximum clock frequency for SDclock in MHz
  75 * value in range 10-63 MHz, 0 - not defined */
  76#define SDHC_CAPAB_BASECLKFREQ    0ul
  77#define SDHC_CAPAB_TOUNIT         1ul  /* Timeout clock unit 0 - kHz, 1 - MHz */
  78/* Timeout clock frequency 1-63, 0 - not defined */
  79#define SDHC_CAPAB_TOCLKFREQ      0ul
  80
  81/* Now check all parameters and calculate CAPABILITIES REGISTER value */
  82#if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 ||     \
  83    SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 ||  \
  84    SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
  85    SDHC_CAPAB_TOUNIT > 1
  86#error Capabilities features can have value 0 or 1 only!
  87#endif
  88
  89#if SDHC_CAPAB_MAXBLOCKLENGTH == 512
  90#define MAX_BLOCK_LENGTH 0ul
  91#elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
  92#define MAX_BLOCK_LENGTH 1ul
  93#elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
  94#define MAX_BLOCK_LENGTH 2ul
  95#else
  96#error Max host controller block size can have value 512, 1024 or 2048 only!
  97#endif
  98
  99#if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
 100    SDHC_CAPAB_BASECLKFREQ > 63
 101#error SDclock frequency can have value in range 0, 10-63 only!
 102#endif
 103
 104#if SDHC_CAPAB_TOCLKFREQ > 63
 105#error Timeout clock frequency can have value in range 0-63 only!
 106#endif
 107
 108#define SDHC_CAPAB_REG_DEFAULT                                 \
 109   ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) |     \
 110    (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) |          \
 111    (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) |  \
 112    (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) |  \
 113    (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) |      \
 114    (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
 115    (SDHC_CAPAB_TOCLKFREQ))
 116
 117#define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
 118
 119static uint8_t sdhci_slotint(SDHCIState *s)
 120{
 121    return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
 122         ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
 123         ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
 124}
 125
 126static inline void sdhci_update_irq(SDHCIState *s)
 127{
 128    qemu_set_irq(s->irq, sdhci_slotint(s));
 129}
 130
 131static void sdhci_raise_insertion_irq(void *opaque)
 132{
 133    SDHCIState *s = (SDHCIState *)opaque;
 134
 135    if (s->norintsts & SDHC_NIS_REMOVE) {
 136        timer_mod(s->insert_timer,
 137                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
 138    } else {
 139        s->prnsts = 0x1ff0000;
 140        if (s->norintstsen & SDHC_NISEN_INSERT) {
 141            s->norintsts |= SDHC_NIS_INSERT;
 142        }
 143        sdhci_update_irq(s);
 144    }
 145}
 146
 147static void sdhci_insert_eject_cb(void *opaque, int irq, int level)
 148{
 149    SDHCIState *s = (SDHCIState *)opaque;
 150    DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
 151
 152    if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
 153        /* Give target some time to notice card ejection */
 154        timer_mod(s->insert_timer,
 155                       qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
 156    } else {
 157        if (level) {
 158            s->prnsts = 0x1ff0000;
 159            if (s->norintstsen & SDHC_NISEN_INSERT) {
 160                s->norintsts |= SDHC_NIS_INSERT;
 161            }
 162        } else {
 163            s->prnsts = 0x1fa0000;
 164            s->pwrcon &= ~SDHC_POWER_ON;
 165            s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
 166            if (s->norintstsen & SDHC_NISEN_REMOVE) {
 167                s->norintsts |= SDHC_NIS_REMOVE;
 168            }
 169        }
 170        sdhci_update_irq(s);
 171    }
 172}
 173
 174static void sdhci_card_readonly_cb(void *opaque, int irq, int level)
 175{
 176    SDHCIState *s = (SDHCIState *)opaque;
 177
 178    if (level) {
 179        s->prnsts &= ~SDHC_WRITE_PROTECT;
 180    } else {
 181        /* Write enabled */
 182        s->prnsts |= SDHC_WRITE_PROTECT;
 183    }
 184}
 185
 186static void sdhci_reset(SDHCIState *s)
 187{
 188    timer_del(s->insert_timer);
 189    timer_del(s->transfer_timer);
 190    /* Set all registers to 0. Capabilities registers are not cleared
 191     * and assumed to always preserve their value, given to them during
 192     * initialization */
 193    memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
 194
 195    sd_set_cb(s->card, s->ro_cb, s->eject_cb);
 196    s->data_count = 0;
 197    s->stopped_state = sdhc_not_stopped;
 198}
 199
 200static void sdhci_do_data_transfer(void *opaque)
 201{
 202    SDHCIState *s = (SDHCIState *)opaque;
 203
 204    SDHCI_GET_CLASS(s)->data_transfer(s);
 205}
 206
 207static void sdhci_send_command(SDHCIState *s)
 208{
 209    SDRequest request;
 210    uint8_t response[16];
 211    int rlen;
 212
 213    s->errintsts = 0;
 214    s->acmd12errsts = 0;
 215    request.cmd = s->cmdreg >> 8;
 216    request.arg = s->argument;
 217    DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
 218    rlen = sd_do_command(s->card, &request, response);
 219
 220    if (s->cmdreg & SDHC_CMD_RESPONSE) {
 221        if (rlen == 4) {
 222            s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
 223                           (response[2] << 8)  |  response[3];
 224            s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
 225            DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
 226        } else if (rlen == 16) {
 227            s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
 228                           (response[13] << 8) |  response[14];
 229            s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
 230                           (response[9] << 8)  |  response[10];
 231            s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
 232                           (response[5] << 8)  |  response[6];
 233            s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
 234                            response[2];
 235            DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
 236                  "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
 237                  s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
 238        } else {
 239            ERRPRINT("Timeout waiting for command response\n");
 240            if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
 241                s->errintsts |= SDHC_EIS_CMDTIMEOUT;
 242                s->norintsts |= SDHC_NIS_ERR;
 243            }
 244        }
 245
 246        if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
 247            (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
 248            s->norintsts |= SDHC_NIS_TRSCMP;
 249        }
 250    } else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) {
 251        s->errintsts |= SDHC_EIS_CMDIDX;
 252        s->norintsts |= SDHC_NIS_ERR;
 253    }
 254
 255    if (s->norintstsen & SDHC_NISEN_CMDCMP) {
 256        s->norintsts |= SDHC_NIS_CMDCMP;
 257    }
 258
 259    sdhci_update_irq(s);
 260
 261    if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
 262        s->data_count = 0;
 263        sdhci_do_data_transfer(s);
 264    }
 265}
 266
 267static void sdhci_end_transfer(SDHCIState *s)
 268{
 269    /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
 270    if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
 271        SDRequest request;
 272        uint8_t response[16];
 273
 274        request.cmd = 0x0C;
 275        request.arg = 0;
 276        DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
 277        sd_do_command(s->card, &request, response);
 278        /* Auto CMD12 response goes to the upper Response register */
 279        s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
 280                (response[2] << 8) | response[3];
 281    }
 282
 283    s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
 284            SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
 285            SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
 286
 287    if (s->norintstsen & SDHC_NISEN_TRSCMP) {
 288        s->norintsts |= SDHC_NIS_TRSCMP;
 289    }
 290
 291    sdhci_update_irq(s);
 292}
 293
 294/*
 295 * Programmed i/o data transfer
 296 */
 297
 298/* Fill host controller's read buffer with BLKSIZE bytes of data from card */
 299static void sdhci_read_block_from_card(SDHCIState *s)
 300{
 301    int index = 0;
 302
 303    if ((s->trnmod & SDHC_TRNS_MULTI) &&
 304            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
 305        return;
 306    }
 307
 308    for (index = 0; index < (s->blksize & 0x0fff); index++) {
 309        s->fifo_buffer[index] = sd_read_data(s->card);
 310    }
 311
 312    /* New data now available for READ through Buffer Port Register */
 313    s->prnsts |= SDHC_DATA_AVAILABLE;
 314    if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
 315        s->norintsts |= SDHC_NIS_RBUFRDY;
 316    }
 317
 318    /* Clear DAT line active status if that was the last block */
 319    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
 320            ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
 321        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
 322    }
 323
 324    /* If stop at block gap request was set and it's not the last block of
 325     * data - generate Block Event interrupt */
 326    if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
 327            s->blkcnt != 1)    {
 328        s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
 329        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
 330            s->norintsts |= SDHC_EIS_BLKGAP;
 331        }
 332    }
 333
 334    sdhci_update_irq(s);
 335}
 336
 337/* Read @size byte of data from host controller @s BUFFER DATA PORT register */
 338static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
 339{
 340    uint32_t value = 0;
 341    int i;
 342
 343    /* first check that a valid data exists in host controller input buffer */
 344    if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
 345        ERRPRINT("Trying to read from empty buffer\n");
 346        return 0;
 347    }
 348
 349    for (i = 0; i < size; i++) {
 350        value |= s->fifo_buffer[s->data_count] << i * 8;
 351        s->data_count++;
 352        /* check if we've read all valid data (blksize bytes) from buffer */
 353        if ((s->data_count) >= (s->blksize & 0x0fff)) {
 354            DPRINT_L2("All %u bytes of data have been read from input buffer\n",
 355                    s->data_count);
 356            s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
 357            s->data_count = 0;  /* next buff read must start at position [0] */
 358
 359            if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 360                s->blkcnt--;
 361            }
 362
 363            /* if that was the last block of data */
 364            if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
 365                ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
 366                 /* stop at gap request */
 367                (s->stopped_state == sdhc_gap_read &&
 368                 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
 369                SDHCI_GET_CLASS(s)->end_data_transfer(s);
 370            } else { /* if there are more data, read next block from card */
 371                SDHCI_GET_CLASS(s)->read_block_from_card(s);
 372            }
 373            break;
 374        }
 375    }
 376
 377    return value;
 378}
 379
 380/* Write data from host controller FIFO to card */
 381static void sdhci_write_block_to_card(SDHCIState *s)
 382{
 383    int index = 0;
 384
 385    if (s->prnsts & SDHC_SPACE_AVAILABLE) {
 386        if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
 387            s->norintsts |= SDHC_NIS_WBUFRDY;
 388        }
 389        sdhci_update_irq(s);
 390        return;
 391    }
 392
 393    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 394        if (s->blkcnt == 0) {
 395            return;
 396        } else {
 397            s->blkcnt--;
 398        }
 399    }
 400
 401    for (index = 0; index < (s->blksize & 0x0fff); index++) {
 402        sd_write_data(s->card, s->fifo_buffer[index]);
 403    }
 404
 405    /* Next data can be written through BUFFER DATORT register */
 406    s->prnsts |= SDHC_SPACE_AVAILABLE;
 407
 408    /* Finish transfer if that was the last block of data */
 409    if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
 410            ((s->trnmod & SDHC_TRNS_MULTI) &&
 411            (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
 412        SDHCI_GET_CLASS(s)->end_data_transfer(s);
 413    } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
 414        s->norintsts |= SDHC_NIS_WBUFRDY;
 415    }
 416
 417    /* Generate Block Gap Event if requested and if not the last block */
 418    if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
 419            s->blkcnt > 0) {
 420        s->prnsts &= ~SDHC_DOING_WRITE;
 421        if (s->norintstsen & SDHC_EISEN_BLKGAP) {
 422            s->norintsts |= SDHC_EIS_BLKGAP;
 423        }
 424        SDHCI_GET_CLASS(s)->end_data_transfer(s);
 425    }
 426
 427    sdhci_update_irq(s);
 428}
 429
 430/* Write @size bytes of @value data to host controller @s Buffer Data Port
 431 * register */
 432static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
 433{
 434    unsigned i;
 435
 436    /* Check that there is free space left in a buffer */
 437    if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
 438        ERRPRINT("Can't write to data buffer: buffer full\n");
 439        return;
 440    }
 441
 442    for (i = 0; i < size; i++) {
 443        s->fifo_buffer[s->data_count] = value & 0xFF;
 444        s->data_count++;
 445        value >>= 8;
 446        if (s->data_count >= (s->blksize & 0x0fff)) {
 447            DPRINT_L2("write buffer filled with %u bytes of data\n",
 448                    s->data_count);
 449            s->data_count = 0;
 450            s->prnsts &= ~SDHC_SPACE_AVAILABLE;
 451            if (s->prnsts & SDHC_DOING_WRITE) {
 452                SDHCI_GET_CLASS(s)->write_block_to_card(s);
 453            }
 454        }
 455    }
 456}
 457
 458/*
 459 * Single DMA data transfer
 460 */
 461
 462/* Multi block SDMA transfer */
 463static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
 464{
 465    bool page_aligned = false;
 466    unsigned int n, begin;
 467    const uint16_t block_size = s->blksize & 0x0fff;
 468    uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
 469    uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
 470
 471    /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
 472     * possible stop at page boundary if initial address is not page aligned,
 473     * allow them to work properly */
 474    if ((s->sdmasysad % boundary_chk) == 0) {
 475        page_aligned = true;
 476    }
 477
 478    if (s->trnmod & SDHC_TRNS_READ) {
 479        s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
 480                SDHC_DAT_LINE_ACTIVE;
 481        while (s->blkcnt) {
 482            if (s->data_count == 0) {
 483                for (n = 0; n < block_size; n++) {
 484                    s->fifo_buffer[n] = sd_read_data(s->card);
 485                }
 486            }
 487            begin = s->data_count;
 488            if (((boundary_count + begin) < block_size) && page_aligned) {
 489                s->data_count = boundary_count + begin;
 490                boundary_count = 0;
 491             } else {
 492                s->data_count = block_size;
 493                boundary_count -= block_size - begin;
 494                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 495                    s->blkcnt--;
 496                }
 497            }
 498            dma_memory_write(&address_space_memory, s->sdmasysad,
 499                             &s->fifo_buffer[begin], s->data_count - begin);
 500            s->sdmasysad += s->data_count - begin;
 501            if (s->data_count == block_size) {
 502                s->data_count = 0;
 503            }
 504            if (page_aligned && boundary_count == 0) {
 505                break;
 506            }
 507        }
 508    } else {
 509        s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
 510                SDHC_DAT_LINE_ACTIVE;
 511        while (s->blkcnt) {
 512            begin = s->data_count;
 513            if (((boundary_count + begin) < block_size) && page_aligned) {
 514                s->data_count = boundary_count + begin;
 515                boundary_count = 0;
 516             } else {
 517                s->data_count = block_size;
 518                boundary_count -= block_size - begin;
 519            }
 520            dma_memory_read(&address_space_memory, s->sdmasysad,
 521                            &s->fifo_buffer[begin], s->data_count);
 522            s->sdmasysad += s->data_count - begin;
 523            if (s->data_count == block_size) {
 524                for (n = 0; n < block_size; n++) {
 525                    sd_write_data(s->card, s->fifo_buffer[n]);
 526                }
 527                s->data_count = 0;
 528                if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 529                    s->blkcnt--;
 530                }
 531            }
 532            if (page_aligned && boundary_count == 0) {
 533                break;
 534            }
 535        }
 536    }
 537
 538    if (s->blkcnt == 0) {
 539        SDHCI_GET_CLASS(s)->end_data_transfer(s);
 540    } else {
 541        if (s->norintstsen & SDHC_NISEN_DMA) {
 542            s->norintsts |= SDHC_NIS_DMA;
 543        }
 544        sdhci_update_irq(s);
 545    }
 546}
 547
 548/* single block SDMA transfer */
 549
 550static void sdhci_sdma_transfer_single_block(SDHCIState *s)
 551{
 552    int n;
 553    uint32_t datacnt = s->blksize & 0x0fff;
 554
 555    if (s->trnmod & SDHC_TRNS_READ) {
 556        for (n = 0; n < datacnt; n++) {
 557            s->fifo_buffer[n] = sd_read_data(s->card);
 558        }
 559        dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
 560                         datacnt);
 561    } else {
 562        dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
 563                        datacnt);
 564        for (n = 0; n < datacnt; n++) {
 565            sd_write_data(s->card, s->fifo_buffer[n]);
 566        }
 567    }
 568
 569    if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 570        s->blkcnt--;
 571    }
 572
 573    SDHCI_GET_CLASS(s)->end_data_transfer(s);
 574}
 575
 576typedef struct ADMADescr {
 577    hwaddr addr;
 578    uint16_t length;
 579    uint8_t attr;
 580    uint8_t incr;
 581} ADMADescr;
 582
 583static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
 584{
 585    uint32_t adma1 = 0;
 586    uint64_t adma2 = 0;
 587    hwaddr entry_addr = (hwaddr)s->admasysaddr;
 588    switch (SDHC_DMA_TYPE(s->hostctl)) {
 589    case SDHC_CTRL_ADMA2_32:
 590        dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
 591                        sizeof(adma2));
 592        adma2 = le64_to_cpu(adma2);
 593        /* The spec does not specify endianness of descriptor table.
 594         * We currently assume that it is LE.
 595         */
 596        dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
 597        dscr->length = (uint16_t)extract64(adma2, 16, 16);
 598        dscr->attr = (uint8_t)extract64(adma2, 0, 7);
 599        dscr->incr = 8;
 600        break;
 601    case SDHC_CTRL_ADMA1_32:
 602        dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
 603                        sizeof(adma1));
 604        adma1 = le32_to_cpu(adma1);
 605        dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
 606        dscr->attr = (uint8_t)extract32(adma1, 0, 7);
 607        dscr->incr = 4;
 608        if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
 609            dscr->length = (uint16_t)extract32(adma1, 12, 16);
 610        } else {
 611            dscr->length = 4096;
 612        }
 613        break;
 614    case SDHC_CTRL_ADMA2_64:
 615        dma_memory_read(&address_space_memory, entry_addr,
 616                        (uint8_t *)(&dscr->attr), 1);
 617        dma_memory_read(&address_space_memory, entry_addr + 2,
 618                        (uint8_t *)(&dscr->length), 2);
 619        dscr->length = le16_to_cpu(dscr->length);
 620        dma_memory_read(&address_space_memory, entry_addr + 4,
 621                        (uint8_t *)(&dscr->addr), 8);
 622        dscr->attr = le64_to_cpu(dscr->attr);
 623        dscr->attr &= 0xfffffff8;
 624        dscr->incr = 12;
 625        break;
 626    }
 627}
 628
 629/* Advanced DMA data transfer */
 630
 631static void sdhci_do_adma(SDHCIState *s)
 632{
 633    unsigned int n, begin, length;
 634    const uint16_t block_size = s->blksize & 0x0fff;
 635    ADMADescr dscr;
 636    int i;
 637
 638    for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
 639        s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
 640
 641        get_adma_description(s, &dscr);
 642        DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
 643                dscr.addr, dscr.length, dscr.attr);
 644
 645        if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
 646            /* Indicate that error occurred in ST_FDS state */
 647            s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
 648            s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
 649
 650            /* Generate ADMA error interrupt */
 651            if (s->errintstsen & SDHC_EISEN_ADMAERR) {
 652                s->errintsts |= SDHC_EIS_ADMAERR;
 653                s->norintsts |= SDHC_NIS_ERR;
 654            }
 655
 656            sdhci_update_irq(s);
 657            return;
 658        }
 659
 660        length = dscr.length ? dscr.length : 65536;
 661
 662        switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
 663        case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
 664
 665            if (s->trnmod & SDHC_TRNS_READ) {
 666                while (length) {
 667                    if (s->data_count == 0) {
 668                        for (n = 0; n < block_size; n++) {
 669                            s->fifo_buffer[n] = sd_read_data(s->card);
 670                        }
 671                    }
 672                    begin = s->data_count;
 673                    if ((length + begin) < block_size) {
 674                        s->data_count = length + begin;
 675                        length = 0;
 676                     } else {
 677                        s->data_count = block_size;
 678                        length -= block_size - begin;
 679                    }
 680                    dma_memory_write(&address_space_memory, dscr.addr,
 681                                     &s->fifo_buffer[begin],
 682                                     s->data_count - begin);
 683                    dscr.addr += s->data_count - begin;
 684                    if (s->data_count == block_size) {
 685                        s->data_count = 0;
 686                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 687                            s->blkcnt--;
 688                            if (s->blkcnt == 0) {
 689                                break;
 690                            }
 691                        }
 692                    }
 693                }
 694            } else {
 695                while (length) {
 696                    begin = s->data_count;
 697                    if ((length + begin) < block_size) {
 698                        s->data_count = length + begin;
 699                        length = 0;
 700                     } else {
 701                        s->data_count = block_size;
 702                        length -= block_size - begin;
 703                    }
 704                    dma_memory_read(&address_space_memory, dscr.addr,
 705                                    &s->fifo_buffer[begin], s->data_count);
 706                    dscr.addr += s->data_count - begin;
 707                    if (s->data_count == block_size) {
 708                        for (n = 0; n < block_size; n++) {
 709                            sd_write_data(s->card, s->fifo_buffer[n]);
 710                        }
 711                        s->data_count = 0;
 712                        if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
 713                            s->blkcnt--;
 714                            if (s->blkcnt == 0) {
 715                                break;
 716                            }
 717                        }
 718                    }
 719                }
 720            }
 721            s->admasysaddr += dscr.incr;
 722            break;
 723        case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
 724            s->admasysaddr = dscr.addr;
 725            DPRINT_L1("ADMA link: admasysaddr=0x%lx\n", s->admasysaddr);
 726            break;
 727        default:
 728            s->admasysaddr += dscr.incr;
 729            break;
 730        }
 731
 732        if (dscr.attr & SDHC_ADMA_ATTR_INT) {
 733            DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr);
 734            if (s->norintstsen & SDHC_NISEN_DMA) {
 735                s->norintsts |= SDHC_NIS_DMA;
 736            }
 737
 738            sdhci_update_irq(s);
 739        }
 740
 741        /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
 742        if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
 743                    (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
 744            DPRINT_L2("ADMA transfer completed\n");
 745            if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
 746                (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
 747                s->blkcnt != 0)) {
 748                ERRPRINT("SD/MMC host ADMA length mismatch\n");
 749                s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
 750                        SDHC_ADMAERR_STATE_ST_TFR;
 751                if (s->errintstsen & SDHC_EISEN_ADMAERR) {
 752                    ERRPRINT("Set ADMA error flag\n");
 753                    s->errintsts |= SDHC_EIS_ADMAERR;
 754                    s->norintsts |= SDHC_NIS_ERR;
 755                }
 756
 757                sdhci_update_irq(s);
 758            }
 759            SDHCI_GET_CLASS(s)->end_data_transfer(s);
 760            return;
 761        }
 762
 763    }
 764
 765    /* we have unfinished business - reschedule to continue ADMA */
 766    timer_mod(s->transfer_timer,
 767                   qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
 768}
 769
 770/* Perform data transfer according to controller configuration */
 771
 772static void sdhci_data_transfer(SDHCIState *s)
 773{
 774    SDHCIClass *k = SDHCI_GET_CLASS(s);
 775
 776    if (s->trnmod & SDHC_TRNS_DMA) {
 777        switch (SDHC_DMA_TYPE(s->hostctl)) {
 778        case SDHC_CTRL_SDMA:
 779            if ((s->trnmod & SDHC_TRNS_MULTI) &&
 780                    (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
 781                break;
 782            }
 783
 784            if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
 785                k->do_sdma_single(s);
 786            } else {
 787                k->do_sdma_multi(s);
 788            }
 789
 790            break;
 791        case SDHC_CTRL_ADMA1_32:
 792            if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
 793                ERRPRINT("ADMA1 not supported\n");
 794                break;
 795            }
 796
 797            k->do_adma(s);
 798            break;
 799        case SDHC_CTRL_ADMA2_32:
 800            if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
 801                ERRPRINT("ADMA2 not supported\n");
 802                break;
 803            }
 804
 805            k->do_adma(s);
 806            break;
 807        case SDHC_CTRL_ADMA2_64:
 808            if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
 809                    !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
 810                ERRPRINT("64 bit ADMA not supported\n");
 811                break;
 812            }
 813
 814            k->do_adma(s);
 815            break;
 816        default:
 817            ERRPRINT("Unsupported DMA type\n");
 818            break;
 819        }
 820    } else {
 821        if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
 822            s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
 823                    SDHC_DAT_LINE_ACTIVE;
 824            SDHCI_GET_CLASS(s)->read_block_from_card(s);
 825        } else {
 826            s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
 827                    SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
 828            SDHCI_GET_CLASS(s)->write_block_to_card(s);
 829        }
 830    }
 831}
 832
 833static bool sdhci_can_issue_command(SDHCIState *s)
 834{
 835    if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) ||
 836        (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
 837        ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
 838        ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
 839        !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
 840        return false;
 841    }
 842
 843    return true;
 844}
 845
 846/* The Buffer Data Port register must be accessed in sequential and
 847 * continuous manner */
 848static inline bool
 849sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
 850{
 851    if ((s->data_count & 0x3) != byte_num) {
 852        ERRPRINT("Non-sequential access to Buffer Data Port register"
 853                "is prohibited\n");
 854        return false;
 855    }
 856    return true;
 857}
 858
 859static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size)
 860{
 861    uint32_t ret = 0;
 862
 863    switch (offset & ~0x3) {
 864    case SDHC_SYSAD:
 865        ret = s->sdmasysad;
 866        break;
 867    case SDHC_BLKSIZE:
 868        ret = s->blksize | (s->blkcnt << 16);
 869        break;
 870    case SDHC_ARGUMENT:
 871        ret = s->argument;
 872        break;
 873    case SDHC_TRNMOD:
 874        ret = s->trnmod | (s->cmdreg << 16);
 875        break;
 876    case SDHC_RSPREG0 ... SDHC_RSPREG3:
 877        ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
 878        break;
 879    case  SDHC_BDATA:
 880        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
 881            ret = SDHCI_GET_CLASS(s)->bdata_read(s, size);
 882            DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset,
 883                      ret, ret);
 884            return ret;
 885        }
 886        break;
 887    case SDHC_PRNSTS:
 888        ret = s->prnsts;
 889        break;
 890    case SDHC_HOSTCTL:
 891        ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
 892              (s->wakcon << 24);
 893        break;
 894    case SDHC_CLKCON:
 895        ret = s->clkcon | (s->timeoutcon << 16);
 896        break;
 897    case SDHC_NORINTSTS:
 898        ret = s->norintsts | (s->errintsts << 16);
 899        break;
 900    case SDHC_NORINTSTSEN:
 901        ret = s->norintstsen | (s->errintstsen << 16);
 902        break;
 903    case SDHC_NORINTSIGEN:
 904        ret = s->norintsigen | (s->errintsigen << 16);
 905        break;
 906    case SDHC_ACMD12ERRSTS:
 907        ret = s->acmd12errsts;
 908        break;
 909    case SDHC_CAPAREG:
 910        ret = s->capareg;
 911        break;
 912    case SDHC_MAXCURR:
 913        ret = s->maxcurr;
 914        break;
 915    case SDHC_ADMAERR:
 916        ret =  s->admaerr;
 917        break;
 918    case SDHC_ADMASYSADDR:
 919        ret = (uint32_t)s->admasysaddr;
 920        break;
 921    case SDHC_ADMASYSADDR + 4:
 922        ret = (uint32_t)(s->admasysaddr >> 32);
 923        break;
 924    case SDHC_SLOT_INT_STATUS:
 925        ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
 926        break;
 927    default:
 928        ERRPRINT("bad %ub read: addr[0x%04x]\n", size, offset);
 929        break;
 930    }
 931
 932    ret >>= (offset & 0x3) * 8;
 933    ret &= (1ULL << (size * 8)) - 1;
 934    DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret);
 935    return ret;
 936}
 937
 938static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
 939{
 940    if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
 941        return;
 942    }
 943    s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
 944
 945    if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
 946            (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
 947        if (s->stopped_state == sdhc_gap_read) {
 948            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
 949            SDHCI_GET_CLASS(s)->read_block_from_card(s);
 950        } else {
 951            s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
 952            SDHCI_GET_CLASS(s)->write_block_to_card(s);
 953        }
 954        s->stopped_state = sdhc_not_stopped;
 955    } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
 956        if (s->prnsts & SDHC_DOING_READ) {
 957            s->stopped_state = sdhc_gap_read;
 958        } else if (s->prnsts & SDHC_DOING_WRITE) {
 959            s->stopped_state = sdhc_gap_write;
 960        }
 961    }
 962}
 963
 964static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
 965{
 966    switch (value) {
 967    case SDHC_RESET_ALL:
 968        DEVICE_GET_CLASS(s)->reset(DEVICE(s));
 969        break;
 970    case SDHC_RESET_CMD:
 971        s->prnsts &= ~SDHC_CMD_INHIBIT;
 972        s->norintsts &= ~SDHC_NIS_CMDCMP;
 973        break;
 974    case SDHC_RESET_DATA:
 975        s->data_count = 0;
 976        s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
 977                SDHC_DOING_READ | SDHC_DOING_WRITE |
 978                SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
 979        s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
 980        s->stopped_state = sdhc_not_stopped;
 981        s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
 982                SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
 983        break;
 984    }
 985}
 986
 987static void
 988sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size)
 989{
 990    unsigned shift =  8 * (offset & 0x3);
 991    uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
 992    value <<= shift;
 993
 994    switch (offset & ~0x3) {
 995    case SDHC_SYSAD:
 996        s->sdmasysad = (s->sdmasysad & mask) | value;
 997        MASKED_WRITE(s->sdmasysad, mask, value);
 998        /* Writing to last byte of sdmasysad might trigger transfer */
 999        if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1000                s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1001            SDHCI_GET_CLASS(s)->do_sdma_multi(s);
1002        }
1003        break;
1004    case SDHC_BLKSIZE:
1005        if (!TRANSFERRING_DATA(s->prnsts)) {
1006            MASKED_WRITE(s->blksize, mask, value);
1007            MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1008        }
1009        break;
1010    case SDHC_ARGUMENT:
1011        MASKED_WRITE(s->argument, mask, value);
1012        break;
1013    case SDHC_TRNMOD:
1014        /* DMA can be enabled only if it is supported as indicated by
1015         * capabilities register */
1016        if (!(s->capareg & SDHC_CAN_DO_DMA)) {
1017            value &= ~SDHC_TRNS_DMA;
1018        }
1019        MASKED_WRITE(s->trnmod, mask, value);
1020        MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1021
1022        /* Writing to the upper byte of CMDREG triggers SD command generation */
1023        if ((mask & 0xFF000000) || !SDHCI_GET_CLASS(s)->can_issue_command(s)) {
1024            break;
1025        }
1026
1027        SDHCI_GET_CLASS(s)->send_command(s);
1028        break;
1029    case  SDHC_BDATA:
1030        if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1031            SDHCI_GET_CLASS(s)->bdata_write(s, value >> shift, size);
1032        }
1033        break;
1034    case SDHC_HOSTCTL:
1035        if (!(mask & 0xFF0000)) {
1036            sdhci_blkgap_write(s, value >> 16);
1037        }
1038        MASKED_WRITE(s->hostctl, mask, value);
1039        MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1040        MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1041        if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1042                !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1043            s->pwrcon &= ~SDHC_POWER_ON;
1044        }
1045        break;
1046    case SDHC_CLKCON:
1047        if (!(mask & 0xFF000000)) {
1048            sdhci_reset_write(s, value >> 24);
1049        }
1050        MASKED_WRITE(s->clkcon, mask, value);
1051        MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1052        if (s->clkcon & SDHC_CLOCK_INT_EN) {
1053            s->clkcon |= SDHC_CLOCK_INT_STABLE;
1054        } else {
1055            s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1056        }
1057        break;
1058    case SDHC_NORINTSTS:
1059        if (s->norintstsen & SDHC_NISEN_CARDINT) {
1060            value &= ~SDHC_NIS_CARDINT;
1061        }
1062        s->norintsts &= mask | ~value;
1063        s->errintsts &= (mask >> 16) | ~(value >> 16);
1064        if (s->errintsts) {
1065            s->norintsts |= SDHC_NIS_ERR;
1066        } else {
1067            s->norintsts &= ~SDHC_NIS_ERR;
1068        }
1069        sdhci_update_irq(s);
1070        break;
1071    case SDHC_NORINTSTSEN:
1072        MASKED_WRITE(s->norintstsen, mask, value);
1073        MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1074        s->norintsts &= s->norintstsen;
1075        s->errintsts &= s->errintstsen;
1076        if (s->errintsts) {
1077            s->norintsts |= SDHC_NIS_ERR;
1078        } else {
1079            s->norintsts &= ~SDHC_NIS_ERR;
1080        }
1081        sdhci_update_irq(s);
1082        break;
1083    case SDHC_NORINTSIGEN:
1084        MASKED_WRITE(s->norintsigen, mask, value);
1085        MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1086        sdhci_update_irq(s);
1087        break;
1088    case SDHC_ADMAERR:
1089        MASKED_WRITE(s->admaerr, mask, value);
1090        break;
1091    case SDHC_ADMASYSADDR:
1092        s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1093                (uint64_t)mask)) | (uint64_t)value;
1094        break;
1095    case SDHC_ADMASYSADDR + 4:
1096        s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1097                ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1098        break;
1099    case SDHC_FEAER:
1100        s->acmd12errsts |= value;
1101        s->errintsts |= (value >> 16) & s->errintstsen;
1102        if (s->acmd12errsts) {
1103            s->errintsts |= SDHC_EIS_CMD12ERR;
1104        }
1105        if (s->errintsts) {
1106            s->norintsts |= SDHC_NIS_ERR;
1107        }
1108        sdhci_update_irq(s);
1109        break;
1110    default:
1111        ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
1112                size, offset, value >> shift, value >> shift);
1113        break;
1114    }
1115    DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
1116            size, offset, value >> shift, value >> shift);
1117}
1118
1119static uint64_t
1120sdhci_readfn(void *opaque, hwaddr offset, unsigned size)
1121{
1122    SDHCIState *s = (SDHCIState *)opaque;
1123
1124    return SDHCI_GET_CLASS(s)->mem_read(s, offset, size);
1125}
1126
1127static void
1128sdhci_writefn(void *opaque, hwaddr off, uint64_t val, unsigned sz)
1129{
1130    SDHCIState *s = (SDHCIState *)opaque;
1131
1132    SDHCI_GET_CLASS(s)->mem_write(s, off, val, sz);
1133}
1134
1135static const MemoryRegionOps sdhci_mmio_ops = {
1136    .read = sdhci_readfn,
1137    .write = sdhci_writefn,
1138    .valid = {
1139        .min_access_size = 1,
1140        .max_access_size = 4,
1141        .unaligned = false
1142    },
1143    .endianness = DEVICE_LITTLE_ENDIAN,
1144};
1145
1146static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
1147{
1148    switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
1149    case 0:
1150        return 512;
1151    case 1:
1152        return 1024;
1153    case 2:
1154        return 2048;
1155    default:
1156        hw_error("SDHC: unsupported value for maximum block size\n");
1157        return 0;
1158    }
1159}
1160
1161static void sdhci_initfn(Object *obj)
1162{
1163    SDHCIState *s = SDHCI(obj);
1164    DriveInfo *di;
1165
1166    di = drive_get_next(IF_SD);
1167    s->card = sd_init(di ? di->bdrv : NULL, false);
1168    if (s->card == NULL) {
1169        exit(1);
1170    }
1171    s->eject_cb = qemu_allocate_irqs(sdhci_insert_eject_cb, s, 1)[0];
1172    s->ro_cb = qemu_allocate_irqs(sdhci_card_readonly_cb, s, 1)[0];
1173    sd_set_cb(s->card, s->ro_cb, s->eject_cb);
1174
1175    s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1176    s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_do_data_transfer, s);
1177}
1178
1179static void sdhci_uninitfn(Object *obj)
1180{
1181    SDHCIState *s = SDHCI(obj);
1182
1183    timer_del(s->insert_timer);
1184    timer_free(s->insert_timer);
1185    timer_del(s->transfer_timer);
1186    timer_free(s->transfer_timer);
1187    qemu_free_irqs(&s->eject_cb);
1188    qemu_free_irqs(&s->ro_cb);
1189
1190    if (s->fifo_buffer) {
1191        g_free(s->fifo_buffer);
1192        s->fifo_buffer = NULL;
1193    }
1194}
1195
1196const VMStateDescription sdhci_vmstate = {
1197    .name = "sdhci",
1198    .version_id = 1,
1199    .minimum_version_id = 1,
1200    .fields      = (VMStateField[]) {
1201        VMSTATE_UINT32(sdmasysad, SDHCIState),
1202        VMSTATE_UINT16(blksize, SDHCIState),
1203        VMSTATE_UINT16(blkcnt, SDHCIState),
1204        VMSTATE_UINT32(argument, SDHCIState),
1205        VMSTATE_UINT16(trnmod, SDHCIState),
1206        VMSTATE_UINT16(cmdreg, SDHCIState),
1207        VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1208        VMSTATE_UINT32(prnsts, SDHCIState),
1209        VMSTATE_UINT8(hostctl, SDHCIState),
1210        VMSTATE_UINT8(pwrcon, SDHCIState),
1211        VMSTATE_UINT8(blkgap, SDHCIState),
1212        VMSTATE_UINT8(wakcon, SDHCIState),
1213        VMSTATE_UINT16(clkcon, SDHCIState),
1214        VMSTATE_UINT8(timeoutcon, SDHCIState),
1215        VMSTATE_UINT8(admaerr, SDHCIState),
1216        VMSTATE_UINT16(norintsts, SDHCIState),
1217        VMSTATE_UINT16(errintsts, SDHCIState),
1218        VMSTATE_UINT16(norintstsen, SDHCIState),
1219        VMSTATE_UINT16(errintstsen, SDHCIState),
1220        VMSTATE_UINT16(norintsigen, SDHCIState),
1221        VMSTATE_UINT16(errintsigen, SDHCIState),
1222        VMSTATE_UINT16(acmd12errsts, SDHCIState),
1223        VMSTATE_UINT16(data_count, SDHCIState),
1224        VMSTATE_UINT64(admasysaddr, SDHCIState),
1225        VMSTATE_UINT8(stopped_state, SDHCIState),
1226        VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
1227        VMSTATE_TIMER(insert_timer, SDHCIState),
1228        VMSTATE_TIMER(transfer_timer, SDHCIState),
1229        VMSTATE_END_OF_LIST()
1230    }
1231};
1232
1233/* Capabilities registers provide information on supported features of this
1234 * specific host controller implementation */
1235static Property sdhci_properties[] = {
1236    DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1237            SDHC_CAPAB_REG_DEFAULT),
1238    DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1239    DEFINE_PROP_END_OF_LIST(),
1240};
1241
1242static void sdhci_realize(DeviceState *dev, Error ** errp)
1243{
1244    SDHCIState *s = SDHCI(dev);
1245    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1246
1247    s->buf_maxsz = sdhci_get_fifolen(s);
1248    s->fifo_buffer = g_malloc0(s->buf_maxsz);
1249    sysbus_init_irq(sbd, &s->irq);
1250    memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1251            SDHC_REGISTERS_MAP_SIZE);
1252    sysbus_init_mmio(sbd, &s->iomem);
1253}
1254
1255static void sdhci_generic_reset(DeviceState *ds)
1256{
1257    SDHCIState *s = SDHCI(ds);
1258    SDHCI_GET_CLASS(s)->reset(s);
1259}
1260
1261static void sdhci_class_init(ObjectClass *klass, void *data)
1262{
1263    DeviceClass *dc = DEVICE_CLASS(klass);
1264    SDHCIClass *k = SDHCI_CLASS(klass);
1265
1266    dc->vmsd = &sdhci_vmstate;
1267    dc->props = sdhci_properties;
1268    dc->reset = sdhci_generic_reset;
1269    dc->realize = sdhci_realize;
1270
1271    k->reset = sdhci_reset;
1272    k->mem_read = sdhci_read;
1273    k->mem_write = sdhci_write;
1274    k->send_command = sdhci_send_command;
1275    k->can_issue_command = sdhci_can_issue_command;
1276    k->data_transfer = sdhci_data_transfer;
1277    k->end_data_transfer = sdhci_end_transfer;
1278    k->do_sdma_single = sdhci_sdma_transfer_single_block;
1279    k->do_sdma_multi = sdhci_sdma_transfer_multi_blocks;
1280    k->do_adma = sdhci_do_adma;
1281    k->read_block_from_card = sdhci_read_block_from_card;
1282    k->write_block_to_card = sdhci_write_block_to_card;
1283    k->bdata_read = sdhci_read_dataport;
1284    k->bdata_write = sdhci_write_dataport;
1285}
1286
1287static const TypeInfo sdhci_type_info = {
1288    .name = TYPE_SDHCI,
1289    .parent = TYPE_SYS_BUS_DEVICE,
1290    .instance_size = sizeof(SDHCIState),
1291    .instance_init = sdhci_initfn,
1292    .instance_finalize = sdhci_uninitfn,
1293    .class_init = sdhci_class_init,
1294    .class_size = sizeof(SDHCIClass)
1295};
1296
1297static void sdhci_register_types(void)
1298{
1299    type_register_static(&sdhci_type_info);
1300}
1301
1302type_init(sdhci_register_types)
1303