qemu/accel/kvm/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include "qemu/osdep.h"
  17#include <sys/ioctl.h>
  18
  19#include <linux/kvm.h>
  20
  21#include "qemu-common.h"
  22#include "qemu/atomic.h"
  23#include "qemu/option.h"
  24#include "qemu/config-file.h"
  25#include "qemu/error-report.h"
  26#include "qapi/error.h"
  27#include "hw/hw.h"
  28#include "hw/pci/msi.h"
  29#include "hw/pci/msix.h"
  30#include "hw/s390x/adapter.h"
  31#include "exec/gdbstub.h"
  32#include "sysemu/kvm_int.h"
  33#include "sysemu/cpus.h"
  34#include "qemu/bswap.h"
  35#include "exec/memory.h"
  36#include "exec/ram_addr.h"
  37#include "exec/address-spaces.h"
  38#include "qemu/event_notifier.h"
  39#include "trace.h"
  40#include "hw/irq.h"
  41
  42#include "hw/boards.h"
  43
  44/* This check must be after config-host.h is included */
  45#ifdef CONFIG_EVENTFD
  46#include <sys/eventfd.h>
  47#endif
  48
  49/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
  50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
  51 */
  52#define PAGE_SIZE getpagesize()
  53
  54//#define DEBUG_KVM
  55
  56#ifdef DEBUG_KVM
  57#define DPRINTF(fmt, ...) \
  58    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  59#else
  60#define DPRINTF(fmt, ...) \
  61    do { } while (0)
  62#endif
  63
  64#define KVM_MSI_HASHTAB_SIZE    256
  65
  66struct KVMParkedVcpu {
  67    unsigned long vcpu_id;
  68    int kvm_fd;
  69    QLIST_ENTRY(KVMParkedVcpu) node;
  70};
  71
  72struct KVMState
  73{
  74    AccelState parent_obj;
  75
  76    int nr_slots;
  77    int fd;
  78    int vmfd;
  79    int coalesced_mmio;
  80    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  81    bool coalesced_flush_in_progress;
  82    int broken_set_mem_region;
  83    int vcpu_events;
  84    int robust_singlestep;
  85    int debugregs;
  86#ifdef KVM_CAP_SET_GUEST_DEBUG
  87    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  88#endif
  89    int many_ioeventfds;
  90    int intx_set_mask;
  91    /* The man page (and posix) say ioctl numbers are signed int, but
  92     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
  93     * unsigned, and treating them as signed here can break things */
  94    unsigned irq_set_ioctl;
  95    unsigned int sigmask_len;
  96    GHashTable *gsimap;
  97#ifdef KVM_CAP_IRQ_ROUTING
  98    struct kvm_irq_routing *irq_routes;
  99    int nr_allocated_irq_routes;
 100    unsigned long *used_gsi_bitmap;
 101    unsigned int gsi_count;
 102    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
 103#endif
 104    KVMMemoryListener memory_listener;
 105    QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
 106};
 107
 108KVMState *kvm_state;
 109bool kvm_kernel_irqchip;
 110bool kvm_split_irqchip;
 111bool kvm_async_interrupts_allowed;
 112bool kvm_halt_in_kernel_allowed;
 113bool kvm_eventfds_allowed;
 114bool kvm_irqfds_allowed;
 115bool kvm_resamplefds_allowed;
 116bool kvm_msi_via_irqfd_allowed;
 117bool kvm_gsi_routing_allowed;
 118bool kvm_gsi_direct_mapping;
 119bool kvm_allowed;
 120bool kvm_readonly_mem_allowed;
 121bool kvm_vm_attributes_allowed;
 122bool kvm_direct_msi_allowed;
 123bool kvm_ioeventfd_any_length_allowed;
 124bool kvm_msi_use_devid;
 125static bool kvm_immediate_exit;
 126
 127static const KVMCapabilityInfo kvm_required_capabilites[] = {
 128    KVM_CAP_INFO(USER_MEMORY),
 129    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 130    KVM_CAP_LAST_INFO
 131};
 132
 133int kvm_get_max_memslots(void)
 134{
 135    KVMState *s = KVM_STATE(current_machine->accelerator);
 136
 137    return s->nr_slots;
 138}
 139
 140static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 141{
 142    KVMState *s = kvm_state;
 143    int i;
 144
 145    for (i = 0; i < s->nr_slots; i++) {
 146        if (kml->slots[i].memory_size == 0) {
 147            return &kml->slots[i];
 148        }
 149    }
 150
 151    return NULL;
 152}
 153
 154bool kvm_has_free_slot(MachineState *ms)
 155{
 156    KVMState *s = KVM_STATE(ms->accelerator);
 157
 158    return kvm_get_free_slot(&s->memory_listener);
 159}
 160
 161static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 162{
 163    KVMSlot *slot = kvm_get_free_slot(kml);
 164
 165    if (slot) {
 166        return slot;
 167    }
 168
 169    fprintf(stderr, "%s: no free slot available\n", __func__);
 170    abort();
 171}
 172
 173static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 174                                         hwaddr start_addr,
 175                                         hwaddr end_addr)
 176{
 177    KVMState *s = kvm_state;
 178    int i;
 179
 180    for (i = 0; i < s->nr_slots; i++) {
 181        KVMSlot *mem = &kml->slots[i];
 182
 183        if (start_addr == mem->start_addr &&
 184            end_addr == mem->start_addr + mem->memory_size) {
 185            return mem;
 186        }
 187    }
 188
 189    return NULL;
 190}
 191
 192/*
 193 * Find overlapping slot with lowest start address
 194 */
 195static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
 196                                            hwaddr start_addr,
 197                                            hwaddr end_addr)
 198{
 199    KVMState *s = kvm_state;
 200    KVMSlot *found = NULL;
 201    int i;
 202
 203    for (i = 0; i < s->nr_slots; i++) {
 204        KVMSlot *mem = &kml->slots[i];
 205
 206        if (mem->memory_size == 0 ||
 207            (found && found->start_addr < mem->start_addr)) {
 208            continue;
 209        }
 210
 211        if (end_addr > mem->start_addr &&
 212            start_addr < mem->start_addr + mem->memory_size) {
 213            found = mem;
 214        }
 215    }
 216
 217    return found;
 218}
 219
 220int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 221                                       hwaddr *phys_addr)
 222{
 223    KVMMemoryListener *kml = &s->memory_listener;
 224    int i;
 225
 226    for (i = 0; i < s->nr_slots; i++) {
 227        KVMSlot *mem = &kml->slots[i];
 228
 229        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 230            *phys_addr = mem->start_addr + (ram - mem->ram);
 231            return 1;
 232        }
 233    }
 234
 235    return 0;
 236}
 237
 238static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
 239{
 240    KVMState *s = kvm_state;
 241    struct kvm_userspace_memory_region mem;
 242
 243    mem.slot = slot->slot | (kml->as_id << 16);
 244    mem.guest_phys_addr = slot->start_addr;
 245    mem.userspace_addr = (unsigned long)slot->ram;
 246    mem.flags = slot->flags;
 247
 248    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
 249        /* Set the slot size to 0 before setting the slot to the desired
 250         * value. This is needed based on KVM commit 75d61fbc. */
 251        mem.memory_size = 0;
 252        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 253    }
 254    mem.memory_size = slot->memory_size;
 255    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 256}
 257
 258int kvm_destroy_vcpu(CPUState *cpu)
 259{
 260    KVMState *s = kvm_state;
 261    long mmap_size;
 262    struct KVMParkedVcpu *vcpu = NULL;
 263    int ret = 0;
 264
 265    DPRINTF("kvm_destroy_vcpu\n");
 266
 267    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 268    if (mmap_size < 0) {
 269        ret = mmap_size;
 270        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 271        goto err;
 272    }
 273
 274    ret = munmap(cpu->kvm_run, mmap_size);
 275    if (ret < 0) {
 276        goto err;
 277    }
 278
 279    vcpu = g_malloc0(sizeof(*vcpu));
 280    vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
 281    vcpu->kvm_fd = cpu->kvm_fd;
 282    QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
 283err:
 284    return ret;
 285}
 286
 287static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
 288{
 289    struct KVMParkedVcpu *cpu;
 290
 291    QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
 292        if (cpu->vcpu_id == vcpu_id) {
 293            int kvm_fd;
 294
 295            QLIST_REMOVE(cpu, node);
 296            kvm_fd = cpu->kvm_fd;
 297            g_free(cpu);
 298            return kvm_fd;
 299        }
 300    }
 301
 302    return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
 303}
 304
 305int kvm_init_vcpu(CPUState *cpu)
 306{
 307    KVMState *s = kvm_state;
 308    long mmap_size;
 309    int ret;
 310
 311    DPRINTF("kvm_init_vcpu\n");
 312
 313    ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
 314    if (ret < 0) {
 315        DPRINTF("kvm_create_vcpu failed\n");
 316        goto err;
 317    }
 318
 319    cpu->kvm_fd = ret;
 320    cpu->kvm_state = s;
 321    cpu->vcpu_dirty = true;
 322
 323    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 324    if (mmap_size < 0) {
 325        ret = mmap_size;
 326        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 327        goto err;
 328    }
 329
 330    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 331                        cpu->kvm_fd, 0);
 332    if (cpu->kvm_run == MAP_FAILED) {
 333        ret = -errno;
 334        DPRINTF("mmap'ing vcpu state failed\n");
 335        goto err;
 336    }
 337
 338    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 339        s->coalesced_mmio_ring =
 340            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 341    }
 342
 343    ret = kvm_arch_init_vcpu(cpu);
 344err:
 345    return ret;
 346}
 347
 348/*
 349 * dirty pages logging control
 350 */
 351
 352static int kvm_mem_flags(MemoryRegion *mr)
 353{
 354    bool readonly = mr->readonly || memory_region_is_romd(mr);
 355    int flags = 0;
 356
 357    if (memory_region_get_dirty_log_mask(mr) != 0) {
 358        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 359    }
 360    if (readonly && kvm_readonly_mem_allowed) {
 361        flags |= KVM_MEM_READONLY;
 362    }
 363    return flags;
 364}
 365
 366static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 367                                 MemoryRegion *mr)
 368{
 369    int old_flags;
 370
 371    old_flags = mem->flags;
 372    mem->flags = kvm_mem_flags(mr);
 373
 374    /* If nothing changed effectively, no need to issue ioctl */
 375    if (mem->flags == old_flags) {
 376        return 0;
 377    }
 378
 379    return kvm_set_user_memory_region(kml, mem);
 380}
 381
 382static int kvm_section_update_flags(KVMMemoryListener *kml,
 383                                    MemoryRegionSection *section)
 384{
 385    hwaddr phys_addr = section->offset_within_address_space;
 386    ram_addr_t size = int128_get64(section->size);
 387    KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
 388
 389    if (mem == NULL)  {
 390        return 0;
 391    } else {
 392        return kvm_slot_update_flags(kml, mem, section->mr);
 393    }
 394}
 395
 396static void kvm_log_start(MemoryListener *listener,
 397                          MemoryRegionSection *section,
 398                          int old, int new)
 399{
 400    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 401    int r;
 402
 403    if (old != 0) {
 404        return;
 405    }
 406
 407    r = kvm_section_update_flags(kml, section);
 408    if (r < 0) {
 409        abort();
 410    }
 411}
 412
 413static void kvm_log_stop(MemoryListener *listener,
 414                          MemoryRegionSection *section,
 415                          int old, int new)
 416{
 417    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 418    int r;
 419
 420    if (new != 0) {
 421        return;
 422    }
 423
 424    r = kvm_section_update_flags(kml, section);
 425    if (r < 0) {
 426        abort();
 427    }
 428}
 429
 430/* get kvm's dirty pages bitmap and update qemu's */
 431static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 432                                         unsigned long *bitmap)
 433{
 434    ram_addr_t start = section->offset_within_region +
 435                       memory_region_get_ram_addr(section->mr);
 436    ram_addr_t pages = int128_get64(section->size) / getpagesize();
 437
 438    cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
 439    return 0;
 440}
 441
 442#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 443
 444/**
 445 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 446 * This function updates qemu's dirty bitmap using
 447 * memory_region_set_dirty().  This means all bits are set
 448 * to dirty.
 449 *
 450 * @start_add: start of logged region.
 451 * @end_addr: end of logged region.
 452 */
 453static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 454                                          MemoryRegionSection *section)
 455{
 456    KVMState *s = kvm_state;
 457    unsigned long size, allocated_size = 0;
 458    struct kvm_dirty_log d = {};
 459    KVMSlot *mem;
 460    int ret = 0;
 461    hwaddr start_addr = section->offset_within_address_space;
 462    hwaddr end_addr = start_addr + int128_get64(section->size);
 463
 464    d.dirty_bitmap = NULL;
 465    while (start_addr < end_addr) {
 466        mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
 467        if (mem == NULL) {
 468            break;
 469        }
 470
 471        /* XXX bad kernel interface alert
 472         * For dirty bitmap, kernel allocates array of size aligned to
 473         * bits-per-long.  But for case when the kernel is 64bits and
 474         * the userspace is 32bits, userspace can't align to the same
 475         * bits-per-long, since sizeof(long) is different between kernel
 476         * and user space.  This way, userspace will provide buffer which
 477         * may be 4 bytes less than the kernel will use, resulting in
 478         * userspace memory corruption (which is not detectable by valgrind
 479         * too, in most cases).
 480         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 481         * a hope that sizeof(long) won't become >8 any time soon.
 482         */
 483        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 484                     /*HOST_LONG_BITS*/ 64) / 8;
 485        if (!d.dirty_bitmap) {
 486            d.dirty_bitmap = g_malloc(size);
 487        } else if (size > allocated_size) {
 488            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 489        }
 490        allocated_size = size;
 491        memset(d.dirty_bitmap, 0, allocated_size);
 492
 493        d.slot = mem->slot | (kml->as_id << 16);
 494        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 495            DPRINTF("ioctl failed %d\n", errno);
 496            ret = -1;
 497            break;
 498        }
 499
 500        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 501        start_addr = mem->start_addr + mem->memory_size;
 502    }
 503    g_free(d.dirty_bitmap);
 504
 505    return ret;
 506}
 507
 508static void kvm_coalesce_mmio_region(MemoryListener *listener,
 509                                     MemoryRegionSection *secion,
 510                                     hwaddr start, hwaddr size)
 511{
 512    KVMState *s = kvm_state;
 513
 514    if (s->coalesced_mmio) {
 515        struct kvm_coalesced_mmio_zone zone;
 516
 517        zone.addr = start;
 518        zone.size = size;
 519        zone.pad = 0;
 520
 521        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 522    }
 523}
 524
 525static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 526                                       MemoryRegionSection *secion,
 527                                       hwaddr start, hwaddr size)
 528{
 529    KVMState *s = kvm_state;
 530
 531    if (s->coalesced_mmio) {
 532        struct kvm_coalesced_mmio_zone zone;
 533
 534        zone.addr = start;
 535        zone.size = size;
 536        zone.pad = 0;
 537
 538        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 539    }
 540}
 541
 542int kvm_check_extension(KVMState *s, unsigned int extension)
 543{
 544    int ret;
 545
 546    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 547    if (ret < 0) {
 548        ret = 0;
 549    }
 550
 551    return ret;
 552}
 553
 554int kvm_vm_check_extension(KVMState *s, unsigned int extension)
 555{
 556    int ret;
 557
 558    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 559    if (ret < 0) {
 560        /* VM wide version not implemented, use global one instead */
 561        ret = kvm_check_extension(s, extension);
 562    }
 563
 564    return ret;
 565}
 566
 567static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
 568{
 569#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 570    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
 571     * endianness, but the memory core hands them in target endianness.
 572     * For example, PPC is always treated as big-endian even if running
 573     * on KVM and on PPC64LE.  Correct here.
 574     */
 575    switch (size) {
 576    case 2:
 577        val = bswap16(val);
 578        break;
 579    case 4:
 580        val = bswap32(val);
 581        break;
 582    }
 583#endif
 584    return val;
 585}
 586
 587static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 588                                  bool assign, uint32_t size, bool datamatch)
 589{
 590    int ret;
 591    struct kvm_ioeventfd iofd = {
 592        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 593        .addr = addr,
 594        .len = size,
 595        .flags = 0,
 596        .fd = fd,
 597    };
 598
 599    if (!kvm_enabled()) {
 600        return -ENOSYS;
 601    }
 602
 603    if (datamatch) {
 604        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 605    }
 606    if (!assign) {
 607        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 608    }
 609
 610    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 611
 612    if (ret < 0) {
 613        return -errno;
 614    }
 615
 616    return 0;
 617}
 618
 619static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
 620                                 bool assign, uint32_t size, bool datamatch)
 621{
 622    struct kvm_ioeventfd kick = {
 623        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 624        .addr = addr,
 625        .flags = KVM_IOEVENTFD_FLAG_PIO,
 626        .len = size,
 627        .fd = fd,
 628    };
 629    int r;
 630    if (!kvm_enabled()) {
 631        return -ENOSYS;
 632    }
 633    if (datamatch) {
 634        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 635    }
 636    if (!assign) {
 637        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 638    }
 639    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 640    if (r < 0) {
 641        return r;
 642    }
 643    return 0;
 644}
 645
 646
 647static int kvm_check_many_ioeventfds(void)
 648{
 649    /* Userspace can use ioeventfd for io notification.  This requires a host
 650     * that supports eventfd(2) and an I/O thread; since eventfd does not
 651     * support SIGIO it cannot interrupt the vcpu.
 652     *
 653     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 654     * can avoid creating too many ioeventfds.
 655     */
 656#if defined(CONFIG_EVENTFD)
 657    int ioeventfds[7];
 658    int i, ret = 0;
 659    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 660        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 661        if (ioeventfds[i] < 0) {
 662            break;
 663        }
 664        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
 665        if (ret < 0) {
 666            close(ioeventfds[i]);
 667            break;
 668        }
 669    }
 670
 671    /* Decide whether many devices are supported or not */
 672    ret = i == ARRAY_SIZE(ioeventfds);
 673
 674    while (i-- > 0) {
 675        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
 676        close(ioeventfds[i]);
 677    }
 678    return ret;
 679#else
 680    return 0;
 681#endif
 682}
 683
 684static const KVMCapabilityInfo *
 685kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 686{
 687    while (list->name) {
 688        if (!kvm_check_extension(s, list->value)) {
 689            return list;
 690        }
 691        list++;
 692    }
 693    return NULL;
 694}
 695
 696static void kvm_set_phys_mem(KVMMemoryListener *kml,
 697                             MemoryRegionSection *section, bool add)
 698{
 699    KVMState *s = kvm_state;
 700    KVMSlot *mem, old;
 701    int err;
 702    MemoryRegion *mr = section->mr;
 703    bool writeable = !mr->readonly && !mr->rom_device;
 704    hwaddr start_addr = section->offset_within_address_space;
 705    ram_addr_t size = int128_get64(section->size);
 706    void *ram = NULL;
 707    unsigned delta;
 708
 709    /* kvm works in page size chunks, but the function may be called
 710       with sub-page size and unaligned start address. Pad the start
 711       address to next and truncate size to previous page boundary. */
 712    delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
 713    delta &= ~qemu_real_host_page_mask;
 714    if (delta > size) {
 715        return;
 716    }
 717    start_addr += delta;
 718    size -= delta;
 719    size &= qemu_real_host_page_mask;
 720    if (!size || (start_addr & ~qemu_real_host_page_mask)) {
 721        return;
 722    }
 723
 724    if (!memory_region_is_ram(mr)) {
 725        if (writeable || !kvm_readonly_mem_allowed) {
 726            return;
 727        } else if (!mr->romd_mode) {
 728            /* If the memory device is not in romd_mode, then we actually want
 729             * to remove the kvm memory slot so all accesses will trap. */
 730            add = false;
 731        }
 732    }
 733
 734    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 735
 736    while (1) {
 737        mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
 738        if (!mem) {
 739            break;
 740        }
 741
 742        if (add && start_addr >= mem->start_addr &&
 743            (start_addr + size <= mem->start_addr + mem->memory_size) &&
 744            (ram - start_addr == mem->ram - mem->start_addr)) {
 745            /* The new slot fits into the existing one and comes with
 746             * identical parameters - update flags and done. */
 747            kvm_slot_update_flags(kml, mem, mr);
 748            return;
 749        }
 750
 751        old = *mem;
 752
 753        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 754            kvm_physical_sync_dirty_bitmap(kml, section);
 755        }
 756
 757        /* unregister the overlapping slot */
 758        mem->memory_size = 0;
 759        err = kvm_set_user_memory_region(kml, mem);
 760        if (err) {
 761            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 762                    __func__, strerror(-err));
 763            abort();
 764        }
 765
 766        /* Workaround for older KVM versions: we can't join slots, even not by
 767         * unregistering the previous ones and then registering the larger
 768         * slot. We have to maintain the existing fragmentation. Sigh.
 769         *
 770         * This workaround assumes that the new slot starts at the same
 771         * address as the first existing one. If not or if some overlapping
 772         * slot comes around later, we will fail (not seen in practice so far)
 773         * - and actually require a recent KVM version. */
 774        if (s->broken_set_mem_region &&
 775            old.start_addr == start_addr && old.memory_size < size && add) {
 776            mem = kvm_alloc_slot(kml);
 777            mem->memory_size = old.memory_size;
 778            mem->start_addr = old.start_addr;
 779            mem->ram = old.ram;
 780            mem->flags = kvm_mem_flags(mr);
 781
 782            err = kvm_set_user_memory_region(kml, mem);
 783            if (err) {
 784                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 785                        strerror(-err));
 786                abort();
 787            }
 788
 789            start_addr += old.memory_size;
 790            ram += old.memory_size;
 791            size -= old.memory_size;
 792            continue;
 793        }
 794
 795        /* register prefix slot */
 796        if (old.start_addr < start_addr) {
 797            mem = kvm_alloc_slot(kml);
 798            mem->memory_size = start_addr - old.start_addr;
 799            mem->start_addr = old.start_addr;
 800            mem->ram = old.ram;
 801            mem->flags =  kvm_mem_flags(mr);
 802
 803            err = kvm_set_user_memory_region(kml, mem);
 804            if (err) {
 805                fprintf(stderr, "%s: error registering prefix slot: %s\n",
 806                        __func__, strerror(-err));
 807#ifdef TARGET_PPC
 808                fprintf(stderr, "%s: This is probably because your kernel's " \
 809                                "PAGE_SIZE is too big. Please try to use 4k " \
 810                                "PAGE_SIZE!\n", __func__);
 811#endif
 812                abort();
 813            }
 814        }
 815
 816        /* register suffix slot */
 817        if (old.start_addr + old.memory_size > start_addr + size) {
 818            ram_addr_t size_delta;
 819
 820            mem = kvm_alloc_slot(kml);
 821            mem->start_addr = start_addr + size;
 822            size_delta = mem->start_addr - old.start_addr;
 823            mem->memory_size = old.memory_size - size_delta;
 824            mem->ram = old.ram + size_delta;
 825            mem->flags = kvm_mem_flags(mr);
 826
 827            err = kvm_set_user_memory_region(kml, mem);
 828            if (err) {
 829                fprintf(stderr, "%s: error registering suffix slot: %s\n",
 830                        __func__, strerror(-err));
 831                abort();
 832            }
 833        }
 834    }
 835
 836    /* in case the KVM bug workaround already "consumed" the new slot */
 837    if (!size) {
 838        return;
 839    }
 840    if (!add) {
 841        return;
 842    }
 843    mem = kvm_alloc_slot(kml);
 844    mem->memory_size = size;
 845    mem->start_addr = start_addr;
 846    mem->ram = ram;
 847    mem->flags = kvm_mem_flags(mr);
 848
 849    err = kvm_set_user_memory_region(kml, mem);
 850    if (err) {
 851        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 852                strerror(-err));
 853        abort();
 854    }
 855}
 856
 857static void kvm_region_add(MemoryListener *listener,
 858                           MemoryRegionSection *section)
 859{
 860    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 861
 862    memory_region_ref(section->mr);
 863    kvm_set_phys_mem(kml, section, true);
 864}
 865
 866static void kvm_region_del(MemoryListener *listener,
 867                           MemoryRegionSection *section)
 868{
 869    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 870
 871    kvm_set_phys_mem(kml, section, false);
 872    memory_region_unref(section->mr);
 873}
 874
 875static void kvm_log_sync(MemoryListener *listener,
 876                         MemoryRegionSection *section)
 877{
 878    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 879    int r;
 880
 881    r = kvm_physical_sync_dirty_bitmap(kml, section);
 882    if (r < 0) {
 883        abort();
 884    }
 885}
 886
 887static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 888                                  MemoryRegionSection *section,
 889                                  bool match_data, uint64_t data,
 890                                  EventNotifier *e)
 891{
 892    int fd = event_notifier_get_fd(e);
 893    int r;
 894
 895    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 896                               data, true, int128_get64(section->size),
 897                               match_data);
 898    if (r < 0) {
 899        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 900                __func__, strerror(-r));
 901        abort();
 902    }
 903}
 904
 905static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 906                                  MemoryRegionSection *section,
 907                                  bool match_data, uint64_t data,
 908                                  EventNotifier *e)
 909{
 910    int fd = event_notifier_get_fd(e);
 911    int r;
 912
 913    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 914                               data, false, int128_get64(section->size),
 915                               match_data);
 916    if (r < 0) {
 917        abort();
 918    }
 919}
 920
 921static void kvm_io_ioeventfd_add(MemoryListener *listener,
 922                                 MemoryRegionSection *section,
 923                                 bool match_data, uint64_t data,
 924                                 EventNotifier *e)
 925{
 926    int fd = event_notifier_get_fd(e);
 927    int r;
 928
 929    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 930                              data, true, int128_get64(section->size),
 931                              match_data);
 932    if (r < 0) {
 933        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 934                __func__, strerror(-r));
 935        abort();
 936    }
 937}
 938
 939static void kvm_io_ioeventfd_del(MemoryListener *listener,
 940                                 MemoryRegionSection *section,
 941                                 bool match_data, uint64_t data,
 942                                 EventNotifier *e)
 943
 944{
 945    int fd = event_notifier_get_fd(e);
 946    int r;
 947
 948    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 949                              data, false, int128_get64(section->size),
 950                              match_data);
 951    if (r < 0) {
 952        abort();
 953    }
 954}
 955
 956void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
 957                                  AddressSpace *as, int as_id)
 958{
 959    int i;
 960
 961    kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
 962    kml->as_id = as_id;
 963
 964    for (i = 0; i < s->nr_slots; i++) {
 965        kml->slots[i].slot = i;
 966    }
 967
 968    kml->listener.region_add = kvm_region_add;
 969    kml->listener.region_del = kvm_region_del;
 970    kml->listener.log_start = kvm_log_start;
 971    kml->listener.log_stop = kvm_log_stop;
 972    kml->listener.log_sync = kvm_log_sync;
 973    kml->listener.priority = 10;
 974
 975    memory_listener_register(&kml->listener, as);
 976}
 977
 978static MemoryListener kvm_io_listener = {
 979    .eventfd_add = kvm_io_ioeventfd_add,
 980    .eventfd_del = kvm_io_ioeventfd_del,
 981    .priority = 10,
 982};
 983
 984int kvm_set_irq(KVMState *s, int irq, int level)
 985{
 986    struct kvm_irq_level event;
 987    int ret;
 988
 989    assert(kvm_async_interrupts_enabled());
 990
 991    event.level = level;
 992    event.irq = irq;
 993    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 994    if (ret < 0) {
 995        perror("kvm_set_irq");
 996        abort();
 997    }
 998
 999    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1000}
1001
1002#ifdef KVM_CAP_IRQ_ROUTING
1003typedef struct KVMMSIRoute {
1004    struct kvm_irq_routing_entry kroute;
1005    QTAILQ_ENTRY(KVMMSIRoute) entry;
1006} KVMMSIRoute;
1007
1008static void set_gsi(KVMState *s, unsigned int gsi)
1009{
1010    set_bit(gsi, s->used_gsi_bitmap);
1011}
1012
1013static void clear_gsi(KVMState *s, unsigned int gsi)
1014{
1015    clear_bit(gsi, s->used_gsi_bitmap);
1016}
1017
1018void kvm_init_irq_routing(KVMState *s)
1019{
1020    int gsi_count, i;
1021
1022    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1023    if (gsi_count > 0) {
1024        /* Round up so we can search ints using ffs */
1025        s->used_gsi_bitmap = bitmap_new(gsi_count);
1026        s->gsi_count = gsi_count;
1027    }
1028
1029    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1030    s->nr_allocated_irq_routes = 0;
1031
1032    if (!kvm_direct_msi_allowed) {
1033        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1034            QTAILQ_INIT(&s->msi_hashtab[i]);
1035        }
1036    }
1037
1038    kvm_arch_init_irq_routing(s);
1039}
1040
1041void kvm_irqchip_commit_routes(KVMState *s)
1042{
1043    int ret;
1044
1045    if (kvm_gsi_direct_mapping()) {
1046        return;
1047    }
1048
1049    if (!kvm_gsi_routing_enabled()) {
1050        return;
1051    }
1052
1053    s->irq_routes->flags = 0;
1054    trace_kvm_irqchip_commit_routes();
1055    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1056    assert(ret == 0);
1057}
1058
1059static void kvm_add_routing_entry(KVMState *s,
1060                                  struct kvm_irq_routing_entry *entry)
1061{
1062    struct kvm_irq_routing_entry *new;
1063    int n, size;
1064
1065    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1066        n = s->nr_allocated_irq_routes * 2;
1067        if (n < 64) {
1068            n = 64;
1069        }
1070        size = sizeof(struct kvm_irq_routing);
1071        size += n * sizeof(*new);
1072        s->irq_routes = g_realloc(s->irq_routes, size);
1073        s->nr_allocated_irq_routes = n;
1074    }
1075    n = s->irq_routes->nr++;
1076    new = &s->irq_routes->entries[n];
1077
1078    *new = *entry;
1079
1080    set_gsi(s, entry->gsi);
1081}
1082
1083static int kvm_update_routing_entry(KVMState *s,
1084                                    struct kvm_irq_routing_entry *new_entry)
1085{
1086    struct kvm_irq_routing_entry *entry;
1087    int n;
1088
1089    for (n = 0; n < s->irq_routes->nr; n++) {
1090        entry = &s->irq_routes->entries[n];
1091        if (entry->gsi != new_entry->gsi) {
1092            continue;
1093        }
1094
1095        if(!memcmp(entry, new_entry, sizeof *entry)) {
1096            return 0;
1097        }
1098
1099        *entry = *new_entry;
1100
1101        return 0;
1102    }
1103
1104    return -ESRCH;
1105}
1106
1107void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1108{
1109    struct kvm_irq_routing_entry e = {};
1110
1111    assert(pin < s->gsi_count);
1112
1113    e.gsi = irq;
1114    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1115    e.flags = 0;
1116    e.u.irqchip.irqchip = irqchip;
1117    e.u.irqchip.pin = pin;
1118    kvm_add_routing_entry(s, &e);
1119}
1120
1121void kvm_irqchip_release_virq(KVMState *s, int virq)
1122{
1123    struct kvm_irq_routing_entry *e;
1124    int i;
1125
1126    if (kvm_gsi_direct_mapping()) {
1127        return;
1128    }
1129
1130    for (i = 0; i < s->irq_routes->nr; i++) {
1131        e = &s->irq_routes->entries[i];
1132        if (e->gsi == virq) {
1133            s->irq_routes->nr--;
1134            *e = s->irq_routes->entries[s->irq_routes->nr];
1135        }
1136    }
1137    clear_gsi(s, virq);
1138    kvm_arch_release_virq_post(virq);
1139    trace_kvm_irqchip_release_virq(virq);
1140}
1141
1142static unsigned int kvm_hash_msi(uint32_t data)
1143{
1144    /* This is optimized for IA32 MSI layout. However, no other arch shall
1145     * repeat the mistake of not providing a direct MSI injection API. */
1146    return data & 0xff;
1147}
1148
1149static void kvm_flush_dynamic_msi_routes(KVMState *s)
1150{
1151    KVMMSIRoute *route, *next;
1152    unsigned int hash;
1153
1154    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1155        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1156            kvm_irqchip_release_virq(s, route->kroute.gsi);
1157            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1158            g_free(route);
1159        }
1160    }
1161}
1162
1163static int kvm_irqchip_get_virq(KVMState *s)
1164{
1165    int next_virq;
1166
1167    /*
1168     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1169     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1170     * number can succeed even though a new route entry cannot be added.
1171     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1172     */
1173    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1174        kvm_flush_dynamic_msi_routes(s);
1175    }
1176
1177    /* Return the lowest unused GSI in the bitmap */
1178    next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1179    if (next_virq >= s->gsi_count) {
1180        return -ENOSPC;
1181    } else {
1182        return next_virq;
1183    }
1184}
1185
1186static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1187{
1188    unsigned int hash = kvm_hash_msi(msg.data);
1189    KVMMSIRoute *route;
1190
1191    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1192        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1193            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1194            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1195            return route;
1196        }
1197    }
1198    return NULL;
1199}
1200
1201int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1202{
1203    struct kvm_msi msi;
1204    KVMMSIRoute *route;
1205
1206    if (kvm_direct_msi_allowed) {
1207        msi.address_lo = (uint32_t)msg.address;
1208        msi.address_hi = msg.address >> 32;
1209        msi.data = le32_to_cpu(msg.data);
1210        msi.flags = 0;
1211        memset(msi.pad, 0, sizeof(msi.pad));
1212
1213        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1214    }
1215
1216    route = kvm_lookup_msi_route(s, msg);
1217    if (!route) {
1218        int virq;
1219
1220        virq = kvm_irqchip_get_virq(s);
1221        if (virq < 0) {
1222            return virq;
1223        }
1224
1225        route = g_malloc0(sizeof(KVMMSIRoute));
1226        route->kroute.gsi = virq;
1227        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1228        route->kroute.flags = 0;
1229        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1230        route->kroute.u.msi.address_hi = msg.address >> 32;
1231        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1232
1233        kvm_add_routing_entry(s, &route->kroute);
1234        kvm_irqchip_commit_routes(s);
1235
1236        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1237                           entry);
1238    }
1239
1240    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1241
1242    return kvm_set_irq(s, route->kroute.gsi, 1);
1243}
1244
1245int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1246{
1247    struct kvm_irq_routing_entry kroute = {};
1248    int virq;
1249    MSIMessage msg = {0, 0};
1250
1251    if (dev) {
1252        msg = pci_get_msi_message(dev, vector);
1253    }
1254
1255    if (kvm_gsi_direct_mapping()) {
1256        return kvm_arch_msi_data_to_gsi(msg.data);
1257    }
1258
1259    if (!kvm_gsi_routing_enabled()) {
1260        return -ENOSYS;
1261    }
1262
1263    virq = kvm_irqchip_get_virq(s);
1264    if (virq < 0) {
1265        return virq;
1266    }
1267
1268    kroute.gsi = virq;
1269    kroute.type = KVM_IRQ_ROUTING_MSI;
1270    kroute.flags = 0;
1271    kroute.u.msi.address_lo = (uint32_t)msg.address;
1272    kroute.u.msi.address_hi = msg.address >> 32;
1273    kroute.u.msi.data = le32_to_cpu(msg.data);
1274    if (kvm_msi_devid_required()) {
1275        kroute.flags = KVM_MSI_VALID_DEVID;
1276        kroute.u.msi.devid = pci_requester_id(dev);
1277    }
1278    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1279        kvm_irqchip_release_virq(s, virq);
1280        return -EINVAL;
1281    }
1282
1283    trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1284                                    vector, virq);
1285
1286    kvm_add_routing_entry(s, &kroute);
1287    kvm_arch_add_msi_route_post(&kroute, vector, dev);
1288    kvm_irqchip_commit_routes(s);
1289
1290    return virq;
1291}
1292
1293int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1294                                 PCIDevice *dev)
1295{
1296    struct kvm_irq_routing_entry kroute = {};
1297
1298    if (kvm_gsi_direct_mapping()) {
1299        return 0;
1300    }
1301
1302    if (!kvm_irqchip_in_kernel()) {
1303        return -ENOSYS;
1304    }
1305
1306    kroute.gsi = virq;
1307    kroute.type = KVM_IRQ_ROUTING_MSI;
1308    kroute.flags = 0;
1309    kroute.u.msi.address_lo = (uint32_t)msg.address;
1310    kroute.u.msi.address_hi = msg.address >> 32;
1311    kroute.u.msi.data = le32_to_cpu(msg.data);
1312    if (kvm_msi_devid_required()) {
1313        kroute.flags = KVM_MSI_VALID_DEVID;
1314        kroute.u.msi.devid = pci_requester_id(dev);
1315    }
1316    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1317        return -EINVAL;
1318    }
1319
1320    trace_kvm_irqchip_update_msi_route(virq);
1321
1322    return kvm_update_routing_entry(s, &kroute);
1323}
1324
1325static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1326                                    bool assign)
1327{
1328    struct kvm_irqfd irqfd = {
1329        .fd = fd,
1330        .gsi = virq,
1331        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1332    };
1333
1334    if (rfd != -1) {
1335        irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1336        irqfd.resamplefd = rfd;
1337    }
1338
1339    if (!kvm_irqfds_enabled()) {
1340        return -ENOSYS;
1341    }
1342
1343    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1344}
1345
1346int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1347{
1348    struct kvm_irq_routing_entry kroute = {};
1349    int virq;
1350
1351    if (!kvm_gsi_routing_enabled()) {
1352        return -ENOSYS;
1353    }
1354
1355    virq = kvm_irqchip_get_virq(s);
1356    if (virq < 0) {
1357        return virq;
1358    }
1359
1360    kroute.gsi = virq;
1361    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1362    kroute.flags = 0;
1363    kroute.u.adapter.summary_addr = adapter->summary_addr;
1364    kroute.u.adapter.ind_addr = adapter->ind_addr;
1365    kroute.u.adapter.summary_offset = adapter->summary_offset;
1366    kroute.u.adapter.ind_offset = adapter->ind_offset;
1367    kroute.u.adapter.adapter_id = adapter->adapter_id;
1368
1369    kvm_add_routing_entry(s, &kroute);
1370
1371    return virq;
1372}
1373
1374int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1375{
1376    struct kvm_irq_routing_entry kroute = {};
1377    int virq;
1378
1379    if (!kvm_gsi_routing_enabled()) {
1380        return -ENOSYS;
1381    }
1382    if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1383        return -ENOSYS;
1384    }
1385    virq = kvm_irqchip_get_virq(s);
1386    if (virq < 0) {
1387        return virq;
1388    }
1389
1390    kroute.gsi = virq;
1391    kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1392    kroute.flags = 0;
1393    kroute.u.hv_sint.vcpu = vcpu;
1394    kroute.u.hv_sint.sint = sint;
1395
1396    kvm_add_routing_entry(s, &kroute);
1397    kvm_irqchip_commit_routes(s);
1398
1399    return virq;
1400}
1401
1402#else /* !KVM_CAP_IRQ_ROUTING */
1403
1404void kvm_init_irq_routing(KVMState *s)
1405{
1406}
1407
1408void kvm_irqchip_release_virq(KVMState *s, int virq)
1409{
1410}
1411
1412int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1413{
1414    abort();
1415}
1416
1417int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1418{
1419    return -ENOSYS;
1420}
1421
1422int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1423{
1424    return -ENOSYS;
1425}
1426
1427int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1428{
1429    return -ENOSYS;
1430}
1431
1432static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1433{
1434    abort();
1435}
1436
1437int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1438{
1439    return -ENOSYS;
1440}
1441#endif /* !KVM_CAP_IRQ_ROUTING */
1442
1443int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1444                                       EventNotifier *rn, int virq)
1445{
1446    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1447           rn ? event_notifier_get_fd(rn) : -1, virq, true);
1448}
1449
1450int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1451                                          int virq)
1452{
1453    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1454           false);
1455}
1456
1457int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1458                                   EventNotifier *rn, qemu_irq irq)
1459{
1460    gpointer key, gsi;
1461    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1462
1463    if (!found) {
1464        return -ENXIO;
1465    }
1466    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1467}
1468
1469int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1470                                      qemu_irq irq)
1471{
1472    gpointer key, gsi;
1473    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1474
1475    if (!found) {
1476        return -ENXIO;
1477    }
1478    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1479}
1480
1481void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1482{
1483    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1484}
1485
1486static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1487{
1488    int ret;
1489
1490    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1491        ;
1492    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1493        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1494        if (ret < 0) {
1495            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1496            exit(1);
1497        }
1498    } else {
1499        return;
1500    }
1501
1502    /* First probe and see if there's a arch-specific hook to create the
1503     * in-kernel irqchip for us */
1504    ret = kvm_arch_irqchip_create(machine, s);
1505    if (ret == 0) {
1506        if (machine_kernel_irqchip_split(machine)) {
1507            perror("Split IRQ chip mode not supported.");
1508            exit(1);
1509        } else {
1510            ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1511        }
1512    }
1513    if (ret < 0) {
1514        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1515        exit(1);
1516    }
1517
1518    kvm_kernel_irqchip = true;
1519    /* If we have an in-kernel IRQ chip then we must have asynchronous
1520     * interrupt delivery (though the reverse is not necessarily true)
1521     */
1522    kvm_async_interrupts_allowed = true;
1523    kvm_halt_in_kernel_allowed = true;
1524
1525    kvm_init_irq_routing(s);
1526
1527    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1528}
1529
1530/* Find number of supported CPUs using the recommended
1531 * procedure from the kernel API documentation to cope with
1532 * older kernels that may be missing capabilities.
1533 */
1534static int kvm_recommended_vcpus(KVMState *s)
1535{
1536    int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1537    return (ret) ? ret : 4;
1538}
1539
1540static int kvm_max_vcpus(KVMState *s)
1541{
1542    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1543    return (ret) ? ret : kvm_recommended_vcpus(s);
1544}
1545
1546static int kvm_max_vcpu_id(KVMState *s)
1547{
1548    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1549    return (ret) ? ret : kvm_max_vcpus(s);
1550}
1551
1552bool kvm_vcpu_id_is_valid(int vcpu_id)
1553{
1554    KVMState *s = KVM_STATE(current_machine->accelerator);
1555    return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1556}
1557
1558static int kvm_init(MachineState *ms)
1559{
1560    MachineClass *mc = MACHINE_GET_CLASS(ms);
1561    static const char upgrade_note[] =
1562        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1563        "(see http://sourceforge.net/projects/kvm).\n";
1564    struct {
1565        const char *name;
1566        int num;
1567    } num_cpus[] = {
1568        { "SMP",          smp_cpus },
1569        { "hotpluggable", max_cpus },
1570        { NULL, }
1571    }, *nc = num_cpus;
1572    int soft_vcpus_limit, hard_vcpus_limit;
1573    KVMState *s;
1574    const KVMCapabilityInfo *missing_cap;
1575    int ret;
1576    int type = 0;
1577    const char *kvm_type;
1578
1579    s = KVM_STATE(ms->accelerator);
1580
1581    /*
1582     * On systems where the kernel can support different base page
1583     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1584     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1585     * page size for the system though.
1586     */
1587    assert(TARGET_PAGE_SIZE <= getpagesize());
1588
1589    s->sigmask_len = 8;
1590
1591#ifdef KVM_CAP_SET_GUEST_DEBUG
1592    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1593#endif
1594    QLIST_INIT(&s->kvm_parked_vcpus);
1595    s->vmfd = -1;
1596    s->fd = qemu_open("/dev/kvm", O_RDWR);
1597    if (s->fd == -1) {
1598        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1599        ret = -errno;
1600        goto err;
1601    }
1602
1603    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1604    if (ret < KVM_API_VERSION) {
1605        if (ret >= 0) {
1606            ret = -EINVAL;
1607        }
1608        fprintf(stderr, "kvm version too old\n");
1609        goto err;
1610    }
1611
1612    if (ret > KVM_API_VERSION) {
1613        ret = -EINVAL;
1614        fprintf(stderr, "kvm version not supported\n");
1615        goto err;
1616    }
1617
1618    kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1619    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1620
1621    /* If unspecified, use the default value */
1622    if (!s->nr_slots) {
1623        s->nr_slots = 32;
1624    }
1625
1626    /* check the vcpu limits */
1627    soft_vcpus_limit = kvm_recommended_vcpus(s);
1628    hard_vcpus_limit = kvm_max_vcpus(s);
1629
1630    while (nc->name) {
1631        if (nc->num > soft_vcpus_limit) {
1632            fprintf(stderr,
1633                    "Warning: Number of %s cpus requested (%d) exceeds "
1634                    "the recommended cpus supported by KVM (%d)\n",
1635                    nc->name, nc->num, soft_vcpus_limit);
1636
1637            if (nc->num > hard_vcpus_limit) {
1638                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1639                        "the maximum cpus supported by KVM (%d)\n",
1640                        nc->name, nc->num, hard_vcpus_limit);
1641                exit(1);
1642            }
1643        }
1644        nc++;
1645    }
1646
1647    kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1648    if (mc->kvm_type) {
1649        type = mc->kvm_type(kvm_type);
1650    } else if (kvm_type) {
1651        ret = -EINVAL;
1652        fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1653        goto err;
1654    }
1655
1656    do {
1657        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1658    } while (ret == -EINTR);
1659
1660    if (ret < 0) {
1661        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1662                strerror(-ret));
1663
1664#ifdef TARGET_S390X
1665        if (ret == -EINVAL) {
1666            fprintf(stderr,
1667                    "Host kernel setup problem detected. Please verify:\n");
1668            fprintf(stderr, "- for kernels supporting the switch_amode or"
1669                    " user_mode parameters, whether\n");
1670            fprintf(stderr,
1671                    "  user space is running in primary address space\n");
1672            fprintf(stderr,
1673                    "- for kernels supporting the vm.allocate_pgste sysctl, "
1674                    "whether it is enabled\n");
1675        }
1676#endif
1677        goto err;
1678    }
1679
1680    s->vmfd = ret;
1681    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1682    if (!missing_cap) {
1683        missing_cap =
1684            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1685    }
1686    if (missing_cap) {
1687        ret = -EINVAL;
1688        fprintf(stderr, "kvm does not support %s\n%s",
1689                missing_cap->name, upgrade_note);
1690        goto err;
1691    }
1692
1693    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1694
1695    s->broken_set_mem_region = 1;
1696    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1697    if (ret > 0) {
1698        s->broken_set_mem_region = 0;
1699    }
1700
1701#ifdef KVM_CAP_VCPU_EVENTS
1702    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1703#endif
1704
1705    s->robust_singlestep =
1706        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1707
1708#ifdef KVM_CAP_DEBUGREGS
1709    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1710#endif
1711
1712#ifdef KVM_CAP_IRQ_ROUTING
1713    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1714#endif
1715
1716    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1717
1718    s->irq_set_ioctl = KVM_IRQ_LINE;
1719    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1720        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1721    }
1722
1723#ifdef KVM_CAP_READONLY_MEM
1724    kvm_readonly_mem_allowed =
1725        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1726#endif
1727
1728    kvm_eventfds_allowed =
1729        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1730
1731    kvm_irqfds_allowed =
1732        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1733
1734    kvm_resamplefds_allowed =
1735        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1736
1737    kvm_vm_attributes_allowed =
1738        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1739
1740    kvm_ioeventfd_any_length_allowed =
1741        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1742
1743    kvm_state = s;
1744
1745    ret = kvm_arch_init(ms, s);
1746    if (ret < 0) {
1747        goto err;
1748    }
1749
1750    if (machine_kernel_irqchip_allowed(ms)) {
1751        kvm_irqchip_create(ms, s);
1752    }
1753
1754    if (kvm_eventfds_allowed) {
1755        s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1756        s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1757    }
1758    s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1759    s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1760
1761    kvm_memory_listener_register(s, &s->memory_listener,
1762                                 &address_space_memory, 0);
1763    memory_listener_register(&kvm_io_listener,
1764                             &address_space_io);
1765
1766    s->many_ioeventfds = kvm_check_many_ioeventfds();
1767
1768    return 0;
1769
1770err:
1771    assert(ret < 0);
1772    if (s->vmfd >= 0) {
1773        close(s->vmfd);
1774    }
1775    if (s->fd != -1) {
1776        close(s->fd);
1777    }
1778    g_free(s->memory_listener.slots);
1779
1780    return ret;
1781}
1782
1783void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1784{
1785    s->sigmask_len = sigmask_len;
1786}
1787
1788static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1789                          int size, uint32_t count)
1790{
1791    int i;
1792    uint8_t *ptr = data;
1793
1794    for (i = 0; i < count; i++) {
1795        address_space_rw(&address_space_io, port, attrs,
1796                         ptr, size,
1797                         direction == KVM_EXIT_IO_OUT);
1798        ptr += size;
1799    }
1800}
1801
1802static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1803{
1804    fprintf(stderr, "KVM internal error. Suberror: %d\n",
1805            run->internal.suberror);
1806
1807    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1808        int i;
1809
1810        for (i = 0; i < run->internal.ndata; ++i) {
1811            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1812                    i, (uint64_t)run->internal.data[i]);
1813        }
1814    }
1815    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1816        fprintf(stderr, "emulation failure\n");
1817        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1818            cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1819            return EXCP_INTERRUPT;
1820        }
1821    }
1822    /* FIXME: Should trigger a qmp message to let management know
1823     * something went wrong.
1824     */
1825    return -1;
1826}
1827
1828void kvm_flush_coalesced_mmio_buffer(void)
1829{
1830    KVMState *s = kvm_state;
1831
1832    if (s->coalesced_flush_in_progress) {
1833        return;
1834    }
1835
1836    s->coalesced_flush_in_progress = true;
1837
1838    if (s->coalesced_mmio_ring) {
1839        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1840        while (ring->first != ring->last) {
1841            struct kvm_coalesced_mmio *ent;
1842
1843            ent = &ring->coalesced_mmio[ring->first];
1844
1845            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1846            smp_wmb();
1847            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1848        }
1849    }
1850
1851    s->coalesced_flush_in_progress = false;
1852}
1853
1854static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1855{
1856    if (!cpu->vcpu_dirty) {
1857        kvm_arch_get_registers(cpu);
1858        cpu->vcpu_dirty = true;
1859    }
1860}
1861
1862void kvm_cpu_synchronize_state(CPUState *cpu)
1863{
1864    if (!cpu->vcpu_dirty) {
1865        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1866    }
1867}
1868
1869static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1870{
1871    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1872    cpu->vcpu_dirty = false;
1873}
1874
1875void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1876{
1877    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1878}
1879
1880static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1881{
1882    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1883    cpu->vcpu_dirty = false;
1884}
1885
1886void kvm_cpu_synchronize_post_init(CPUState *cpu)
1887{
1888    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1889}
1890
1891static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1892{
1893    cpu->vcpu_dirty = true;
1894}
1895
1896void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1897{
1898    run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1899}
1900
1901#ifdef KVM_HAVE_MCE_INJECTION
1902static __thread void *pending_sigbus_addr;
1903static __thread int pending_sigbus_code;
1904static __thread bool have_sigbus_pending;
1905#endif
1906
1907static void kvm_cpu_kick(CPUState *cpu)
1908{
1909    atomic_set(&cpu->kvm_run->immediate_exit, 1);
1910}
1911
1912static void kvm_cpu_kick_self(void)
1913{
1914    if (kvm_immediate_exit) {
1915        kvm_cpu_kick(current_cpu);
1916    } else {
1917        qemu_cpu_kick_self();
1918    }
1919}
1920
1921static void kvm_eat_signals(CPUState *cpu)
1922{
1923    struct timespec ts = { 0, 0 };
1924    siginfo_t siginfo;
1925    sigset_t waitset;
1926    sigset_t chkset;
1927    int r;
1928
1929    if (kvm_immediate_exit) {
1930        atomic_set(&cpu->kvm_run->immediate_exit, 0);
1931        /* Write kvm_run->immediate_exit before the cpu->exit_request
1932         * write in kvm_cpu_exec.
1933         */
1934        smp_wmb();
1935        return;
1936    }
1937
1938    sigemptyset(&waitset);
1939    sigaddset(&waitset, SIG_IPI);
1940
1941    do {
1942        r = sigtimedwait(&waitset, &siginfo, &ts);
1943        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1944            perror("sigtimedwait");
1945            exit(1);
1946        }
1947
1948        r = sigpending(&chkset);
1949        if (r == -1) {
1950            perror("sigpending");
1951            exit(1);
1952        }
1953    } while (sigismember(&chkset, SIG_IPI));
1954}
1955
1956int kvm_cpu_exec(CPUState *cpu)
1957{
1958    struct kvm_run *run = cpu->kvm_run;
1959    int ret, run_ret;
1960
1961    DPRINTF("kvm_cpu_exec()\n");
1962
1963    if (kvm_arch_process_async_events(cpu)) {
1964        atomic_set(&cpu->exit_request, 0);
1965        return EXCP_HLT;
1966    }
1967
1968    qemu_mutex_unlock_iothread();
1969    cpu_exec_start(cpu);
1970
1971    do {
1972        MemTxAttrs attrs;
1973
1974        if (cpu->vcpu_dirty) {
1975            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1976            cpu->vcpu_dirty = false;
1977        }
1978
1979        kvm_arch_pre_run(cpu, run);
1980        if (atomic_read(&cpu->exit_request)) {
1981            DPRINTF("interrupt exit requested\n");
1982            /*
1983             * KVM requires us to reenter the kernel after IO exits to complete
1984             * instruction emulation. This self-signal will ensure that we
1985             * leave ASAP again.
1986             */
1987            kvm_cpu_kick_self();
1988        }
1989
1990        /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
1991         * Matching barrier in kvm_eat_signals.
1992         */
1993        smp_rmb();
1994
1995        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1996
1997        attrs = kvm_arch_post_run(cpu, run);
1998
1999#ifdef KVM_HAVE_MCE_INJECTION
2000        if (unlikely(have_sigbus_pending)) {
2001            qemu_mutex_lock_iothread();
2002            kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2003                                    pending_sigbus_addr);
2004            have_sigbus_pending = false;
2005            qemu_mutex_unlock_iothread();
2006        }
2007#endif
2008
2009        if (run_ret < 0) {
2010            if (run_ret == -EINTR || run_ret == -EAGAIN) {
2011                DPRINTF("io window exit\n");
2012                kvm_eat_signals(cpu);
2013                ret = EXCP_INTERRUPT;
2014                break;
2015            }
2016            fprintf(stderr, "error: kvm run failed %s\n",
2017                    strerror(-run_ret));
2018#ifdef TARGET_PPC
2019            if (run_ret == -EBUSY) {
2020                fprintf(stderr,
2021                        "This is probably because your SMT is enabled.\n"
2022                        "VCPU can only run on primary threads with all "
2023                        "secondary threads offline.\n");
2024            }
2025#endif
2026            ret = -1;
2027            break;
2028        }
2029
2030        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2031        switch (run->exit_reason) {
2032        case KVM_EXIT_IO:
2033            DPRINTF("handle_io\n");
2034            /* Called outside BQL */
2035            kvm_handle_io(run->io.port, attrs,
2036                          (uint8_t *)run + run->io.data_offset,
2037                          run->io.direction,
2038                          run->io.size,
2039                          run->io.count);
2040            ret = 0;
2041            break;
2042        case KVM_EXIT_MMIO:
2043            DPRINTF("handle_mmio\n");
2044            /* Called outside BQL */
2045            address_space_rw(&address_space_memory,
2046                             run->mmio.phys_addr, attrs,
2047                             run->mmio.data,
2048                             run->mmio.len,
2049                             run->mmio.is_write);
2050            ret = 0;
2051            break;
2052        case KVM_EXIT_IRQ_WINDOW_OPEN:
2053            DPRINTF("irq_window_open\n");
2054            ret = EXCP_INTERRUPT;
2055            break;
2056        case KVM_EXIT_SHUTDOWN:
2057            DPRINTF("shutdown\n");
2058            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2059            ret = EXCP_INTERRUPT;
2060            break;
2061        case KVM_EXIT_UNKNOWN:
2062            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2063                    (uint64_t)run->hw.hardware_exit_reason);
2064            ret = -1;
2065            break;
2066        case KVM_EXIT_INTERNAL_ERROR:
2067            ret = kvm_handle_internal_error(cpu, run);
2068            break;
2069        case KVM_EXIT_SYSTEM_EVENT:
2070            switch (run->system_event.type) {
2071            case KVM_SYSTEM_EVENT_SHUTDOWN:
2072                qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2073                ret = EXCP_INTERRUPT;
2074                break;
2075            case KVM_SYSTEM_EVENT_RESET:
2076                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2077                ret = EXCP_INTERRUPT;
2078                break;
2079            case KVM_SYSTEM_EVENT_CRASH:
2080                kvm_cpu_synchronize_state(cpu);
2081                qemu_mutex_lock_iothread();
2082                qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2083                qemu_mutex_unlock_iothread();
2084                ret = 0;
2085                break;
2086            default:
2087                DPRINTF("kvm_arch_handle_exit\n");
2088                ret = kvm_arch_handle_exit(cpu, run);
2089                break;
2090            }
2091            break;
2092        default:
2093            DPRINTF("kvm_arch_handle_exit\n");
2094            ret = kvm_arch_handle_exit(cpu, run);
2095            break;
2096        }
2097    } while (ret == 0);
2098
2099    cpu_exec_end(cpu);
2100    qemu_mutex_lock_iothread();
2101
2102    if (ret < 0) {
2103        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2104        vm_stop(RUN_STATE_INTERNAL_ERROR);
2105    }
2106
2107    atomic_set(&cpu->exit_request, 0);
2108    return ret;
2109}
2110
2111int kvm_ioctl(KVMState *s, int type, ...)
2112{
2113    int ret;
2114    void *arg;
2115    va_list ap;
2116
2117    va_start(ap, type);
2118    arg = va_arg(ap, void *);
2119    va_end(ap);
2120
2121    trace_kvm_ioctl(type, arg);
2122    ret = ioctl(s->fd, type, arg);
2123    if (ret == -1) {
2124        ret = -errno;
2125    }
2126    return ret;
2127}
2128
2129int kvm_vm_ioctl(KVMState *s, int type, ...)
2130{
2131    int ret;
2132    void *arg;
2133    va_list ap;
2134
2135    va_start(ap, type);
2136    arg = va_arg(ap, void *);
2137    va_end(ap);
2138
2139    trace_kvm_vm_ioctl(type, arg);
2140    ret = ioctl(s->vmfd, type, arg);
2141    if (ret == -1) {
2142        ret = -errno;
2143    }
2144    return ret;
2145}
2146
2147int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2148{
2149    int ret;
2150    void *arg;
2151    va_list ap;
2152
2153    va_start(ap, type);
2154    arg = va_arg(ap, void *);
2155    va_end(ap);
2156
2157    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2158    ret = ioctl(cpu->kvm_fd, type, arg);
2159    if (ret == -1) {
2160        ret = -errno;
2161    }
2162    return ret;
2163}
2164
2165int kvm_device_ioctl(int fd, int type, ...)
2166{
2167    int ret;
2168    void *arg;
2169    va_list ap;
2170
2171    va_start(ap, type);
2172    arg = va_arg(ap, void *);
2173    va_end(ap);
2174
2175    trace_kvm_device_ioctl(fd, type, arg);
2176    ret = ioctl(fd, type, arg);
2177    if (ret == -1) {
2178        ret = -errno;
2179    }
2180    return ret;
2181}
2182
2183int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2184{
2185    int ret;
2186    struct kvm_device_attr attribute = {
2187        .group = group,
2188        .attr = attr,
2189    };
2190
2191    if (!kvm_vm_attributes_allowed) {
2192        return 0;
2193    }
2194
2195    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2196    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2197    return ret ? 0 : 1;
2198}
2199
2200int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2201{
2202    struct kvm_device_attr attribute = {
2203        .group = group,
2204        .attr = attr,
2205        .flags = 0,
2206    };
2207
2208    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2209}
2210
2211int kvm_device_access(int fd, int group, uint64_t attr,
2212                      void *val, bool write, Error **errp)
2213{
2214    struct kvm_device_attr kvmattr;
2215    int err;
2216
2217    kvmattr.flags = 0;
2218    kvmattr.group = group;
2219    kvmattr.attr = attr;
2220    kvmattr.addr = (uintptr_t)val;
2221
2222    err = kvm_device_ioctl(fd,
2223                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2224                           &kvmattr);
2225    if (err < 0) {
2226        error_setg_errno(errp, -err,
2227                         "KVM_%s_DEVICE_ATTR failed: Group %d "
2228                         "attr 0x%016" PRIx64,
2229                         write ? "SET" : "GET", group, attr);
2230    }
2231    return err;
2232}
2233
2234/* Return 1 on success, 0 on failure */
2235int kvm_has_sync_mmu(void)
2236{
2237    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2238}
2239
2240int kvm_has_vcpu_events(void)
2241{
2242    return kvm_state->vcpu_events;
2243}
2244
2245int kvm_has_robust_singlestep(void)
2246{
2247    return kvm_state->robust_singlestep;
2248}
2249
2250int kvm_has_debugregs(void)
2251{
2252    return kvm_state->debugregs;
2253}
2254
2255int kvm_has_many_ioeventfds(void)
2256{
2257    if (!kvm_enabled()) {
2258        return 0;
2259    }
2260    return kvm_state->many_ioeventfds;
2261}
2262
2263int kvm_has_gsi_routing(void)
2264{
2265#ifdef KVM_CAP_IRQ_ROUTING
2266    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2267#else
2268    return false;
2269#endif
2270}
2271
2272int kvm_has_intx_set_mask(void)
2273{
2274    return kvm_state->intx_set_mask;
2275}
2276
2277bool kvm_arm_supports_user_irq(void)
2278{
2279    return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2280}
2281
2282#ifdef KVM_CAP_SET_GUEST_DEBUG
2283struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2284                                                 target_ulong pc)
2285{
2286    struct kvm_sw_breakpoint *bp;
2287
2288    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2289        if (bp->pc == pc) {
2290            return bp;
2291        }
2292    }
2293    return NULL;
2294}
2295
2296int kvm_sw_breakpoints_active(CPUState *cpu)
2297{
2298    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2299}
2300
2301struct kvm_set_guest_debug_data {
2302    struct kvm_guest_debug dbg;
2303    int err;
2304};
2305
2306static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2307{
2308    struct kvm_set_guest_debug_data *dbg_data =
2309        (struct kvm_set_guest_debug_data *) data.host_ptr;
2310
2311    dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2312                                   &dbg_data->dbg);
2313}
2314
2315int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2316{
2317    struct kvm_set_guest_debug_data data;
2318
2319    data.dbg.control = reinject_trap;
2320
2321    if (cpu->singlestep_enabled) {
2322        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2323    }
2324    kvm_arch_update_guest_debug(cpu, &data.dbg);
2325
2326    run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2327               RUN_ON_CPU_HOST_PTR(&data));
2328    return data.err;
2329}
2330
2331int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2332                          target_ulong len, int type)
2333{
2334    struct kvm_sw_breakpoint *bp;
2335    int err;
2336
2337    if (type == GDB_BREAKPOINT_SW) {
2338        bp = kvm_find_sw_breakpoint(cpu, addr);
2339        if (bp) {
2340            bp->use_count++;
2341            return 0;
2342        }
2343
2344        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2345        bp->pc = addr;
2346        bp->use_count = 1;
2347        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2348        if (err) {
2349            g_free(bp);
2350            return err;
2351        }
2352
2353        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2354    } else {
2355        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2356        if (err) {
2357            return err;
2358        }
2359    }
2360
2361    CPU_FOREACH(cpu) {
2362        err = kvm_update_guest_debug(cpu, 0);
2363        if (err) {
2364            return err;
2365        }
2366    }
2367    return 0;
2368}
2369
2370int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2371                          target_ulong len, int type)
2372{
2373    struct kvm_sw_breakpoint *bp;
2374    int err;
2375
2376    if (type == GDB_BREAKPOINT_SW) {
2377        bp = kvm_find_sw_breakpoint(cpu, addr);
2378        if (!bp) {
2379            return -ENOENT;
2380        }
2381
2382        if (bp->use_count > 1) {
2383            bp->use_count--;
2384            return 0;
2385        }
2386
2387        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2388        if (err) {
2389            return err;
2390        }
2391
2392        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2393        g_free(bp);
2394    } else {
2395        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2396        if (err) {
2397            return err;
2398        }
2399    }
2400
2401    CPU_FOREACH(cpu) {
2402        err = kvm_update_guest_debug(cpu, 0);
2403        if (err) {
2404            return err;
2405        }
2406    }
2407    return 0;
2408}
2409
2410void kvm_remove_all_breakpoints(CPUState *cpu)
2411{
2412    struct kvm_sw_breakpoint *bp, *next;
2413    KVMState *s = cpu->kvm_state;
2414    CPUState *tmpcpu;
2415
2416    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2417        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2418            /* Try harder to find a CPU that currently sees the breakpoint. */
2419            CPU_FOREACH(tmpcpu) {
2420                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2421                    break;
2422                }
2423            }
2424        }
2425        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2426        g_free(bp);
2427    }
2428    kvm_arch_remove_all_hw_breakpoints();
2429
2430    CPU_FOREACH(cpu) {
2431        kvm_update_guest_debug(cpu, 0);
2432    }
2433}
2434
2435#else /* !KVM_CAP_SET_GUEST_DEBUG */
2436
2437int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2438{
2439    return -EINVAL;
2440}
2441
2442int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2443                          target_ulong len, int type)
2444{
2445    return -EINVAL;
2446}
2447
2448int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2449                          target_ulong len, int type)
2450{
2451    return -EINVAL;
2452}
2453
2454void kvm_remove_all_breakpoints(CPUState *cpu)
2455{
2456}
2457#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2458
2459static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2460{
2461    KVMState *s = kvm_state;
2462    struct kvm_signal_mask *sigmask;
2463    int r;
2464
2465    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2466
2467    sigmask->len = s->sigmask_len;
2468    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2469    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2470    g_free(sigmask);
2471
2472    return r;
2473}
2474
2475static void kvm_ipi_signal(int sig)
2476{
2477    if (current_cpu) {
2478        assert(kvm_immediate_exit);
2479        kvm_cpu_kick(current_cpu);
2480    }
2481}
2482
2483void kvm_init_cpu_signals(CPUState *cpu)
2484{
2485    int r;
2486    sigset_t set;
2487    struct sigaction sigact;
2488
2489    memset(&sigact, 0, sizeof(sigact));
2490    sigact.sa_handler = kvm_ipi_signal;
2491    sigaction(SIG_IPI, &sigact, NULL);
2492
2493    pthread_sigmask(SIG_BLOCK, NULL, &set);
2494#if defined KVM_HAVE_MCE_INJECTION
2495    sigdelset(&set, SIGBUS);
2496    pthread_sigmask(SIG_SETMASK, &set, NULL);
2497#endif
2498    sigdelset(&set, SIG_IPI);
2499    if (kvm_immediate_exit) {
2500        r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2501    } else {
2502        r = kvm_set_signal_mask(cpu, &set);
2503    }
2504    if (r) {
2505        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2506        exit(1);
2507    }
2508}
2509
2510/* Called asynchronously in VCPU thread.  */
2511int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2512{
2513#ifdef KVM_HAVE_MCE_INJECTION
2514    if (have_sigbus_pending) {
2515        return 1;
2516    }
2517    have_sigbus_pending = true;
2518    pending_sigbus_addr = addr;
2519    pending_sigbus_code = code;
2520    atomic_set(&cpu->exit_request, 1);
2521    return 0;
2522#else
2523    return 1;
2524#endif
2525}
2526
2527/* Called synchronously (via signalfd) in main thread.  */
2528int kvm_on_sigbus(int code, void *addr)
2529{
2530#ifdef KVM_HAVE_MCE_INJECTION
2531    /* Action required MCE kills the process if SIGBUS is blocked.  Because
2532     * that's what happens in the I/O thread, where we handle MCE via signalfd,
2533     * we can only get action optional here.
2534     */
2535    assert(code != BUS_MCEERR_AR);
2536    kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2537    return 0;
2538#else
2539    return 1;
2540#endif
2541}
2542
2543int kvm_create_device(KVMState *s, uint64_t type, bool test)
2544{
2545    int ret;
2546    struct kvm_create_device create_dev;
2547
2548    create_dev.type = type;
2549    create_dev.fd = -1;
2550    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2551
2552    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2553        return -ENOTSUP;
2554    }
2555
2556    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2557    if (ret) {
2558        return ret;
2559    }
2560
2561    return test ? 0 : create_dev.fd;
2562}
2563
2564bool kvm_device_supported(int vmfd, uint64_t type)
2565{
2566    struct kvm_create_device create_dev = {
2567        .type = type,
2568        .fd = -1,
2569        .flags = KVM_CREATE_DEVICE_TEST,
2570    };
2571
2572    if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2573        return false;
2574    }
2575
2576    return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2577}
2578
2579int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2580{
2581    struct kvm_one_reg reg;
2582    int r;
2583
2584    reg.id = id;
2585    reg.addr = (uintptr_t) source;
2586    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2587    if (r) {
2588        trace_kvm_failed_reg_set(id, strerror(-r));
2589    }
2590    return r;
2591}
2592
2593int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2594{
2595    struct kvm_one_reg reg;
2596    int r;
2597
2598    reg.id = id;
2599    reg.addr = (uintptr_t) target;
2600    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2601    if (r) {
2602        trace_kvm_failed_reg_get(id, strerror(-r));
2603    }
2604    return r;
2605}
2606
2607static void kvm_accel_class_init(ObjectClass *oc, void *data)
2608{
2609    AccelClass *ac = ACCEL_CLASS(oc);
2610    ac->name = "KVM";
2611    ac->init_machine = kvm_init;
2612    ac->allowed = &kvm_allowed;
2613}
2614
2615static const TypeInfo kvm_accel_type = {
2616    .name = TYPE_KVM_ACCEL,
2617    .parent = TYPE_ACCEL,
2618    .class_init = kvm_accel_class_init,
2619    .instance_size = sizeof(KVMState),
2620};
2621
2622static void kvm_type_init(void)
2623{
2624    type_register_static(&kvm_accel_type);
2625}
2626
2627type_init(kvm_type_init);
2628