qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qemu-common.h"
  30#include "block/block_int.h"
  31#include "block/qcow2.h"
  32#include "qemu/bswap.h"
  33#include "trace.h"
  34
  35int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  36                        bool exact_size)
  37{
  38    BDRVQcow2State *s = bs->opaque;
  39    int new_l1_size2, ret, i;
  40    uint64_t *new_l1_table;
  41    int64_t old_l1_table_offset, old_l1_size;
  42    int64_t new_l1_table_offset, new_l1_size;
  43    uint8_t data[12];
  44
  45    if (min_size <= s->l1_size)
  46        return 0;
  47
  48    /* Do a sanity check on min_size before trying to calculate new_l1_size
  49     * (this prevents overflows during the while loop for the calculation of
  50     * new_l1_size) */
  51    if (min_size > INT_MAX / sizeof(uint64_t)) {
  52        return -EFBIG;
  53    }
  54
  55    if (exact_size) {
  56        new_l1_size = min_size;
  57    } else {
  58        /* Bump size up to reduce the number of times we have to grow */
  59        new_l1_size = s->l1_size;
  60        if (new_l1_size == 0) {
  61            new_l1_size = 1;
  62        }
  63        while (min_size > new_l1_size) {
  64            new_l1_size = (new_l1_size * 3 + 1) / 2;
  65        }
  66    }
  67
  68    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
  69    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
  70        return -EFBIG;
  71    }
  72
  73#ifdef DEBUG_ALLOC2
  74    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
  75            s->l1_size, new_l1_size);
  76#endif
  77
  78    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
  79    new_l1_table = qemu_try_blockalign(bs->file->bs,
  80                                       align_offset(new_l1_size2, 512));
  81    if (new_l1_table == NULL) {
  82        return -ENOMEM;
  83    }
  84    memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
  85
  86    if (s->l1_size) {
  87        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
  88    }
  89
  90    /* write new table (align to cluster) */
  91    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
  92    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
  93    if (new_l1_table_offset < 0) {
  94        qemu_vfree(new_l1_table);
  95        return new_l1_table_offset;
  96    }
  97
  98    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
  99    if (ret < 0) {
 100        goto fail;
 101    }
 102
 103    /* the L1 position has not yet been updated, so these clusters must
 104     * indeed be completely free */
 105    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 106                                        new_l1_size2);
 107    if (ret < 0) {
 108        goto fail;
 109    }
 110
 111    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 112    for(i = 0; i < s->l1_size; i++)
 113        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 114    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 115                           new_l1_table, new_l1_size2);
 116    if (ret < 0)
 117        goto fail;
 118    for(i = 0; i < s->l1_size; i++)
 119        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 120
 121    /* set new table */
 122    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 123    stl_be_p(data, new_l1_size);
 124    stq_be_p(data + 4, new_l1_table_offset);
 125    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 126                           data, sizeof(data));
 127    if (ret < 0) {
 128        goto fail;
 129    }
 130    qemu_vfree(s->l1_table);
 131    old_l1_table_offset = s->l1_table_offset;
 132    s->l1_table_offset = new_l1_table_offset;
 133    s->l1_table = new_l1_table;
 134    old_l1_size = s->l1_size;
 135    s->l1_size = new_l1_size;
 136    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 137                        QCOW2_DISCARD_OTHER);
 138    return 0;
 139 fail:
 140    qemu_vfree(new_l1_table);
 141    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 142                        QCOW2_DISCARD_OTHER);
 143    return ret;
 144}
 145
 146/*
 147 * l2_load
 148 *
 149 * Loads a L2 table into memory. If the table is in the cache, the cache
 150 * is used; otherwise the L2 table is loaded from the image file.
 151 *
 152 * Returns a pointer to the L2 table on success, or NULL if the read from
 153 * the image file failed.
 154 */
 155
 156static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
 157    uint64_t **l2_table)
 158{
 159    BDRVQcow2State *s = bs->opaque;
 160
 161    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
 162                           (void **)l2_table);
 163}
 164
 165/*
 166 * Writes one sector of the L1 table to the disk (can't update single entries
 167 * and we really don't want bdrv_pread to perform a read-modify-write)
 168 */
 169#define L1_ENTRIES_PER_SECTOR (512 / 8)
 170int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 171{
 172    BDRVQcow2State *s = bs->opaque;
 173    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 174    int l1_start_index;
 175    int i, ret;
 176
 177    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 178    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 179         i++)
 180    {
 181        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 182    }
 183
 184    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 185            s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
 186    if (ret < 0) {
 187        return ret;
 188    }
 189
 190    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 191    ret = bdrv_pwrite_sync(bs->file,
 192                           s->l1_table_offset + 8 * l1_start_index,
 193                           buf, sizeof(buf));
 194    if (ret < 0) {
 195        return ret;
 196    }
 197
 198    return 0;
 199}
 200
 201/*
 202 * l2_allocate
 203 *
 204 * Allocate a new l2 entry in the file. If l1_index points to an already
 205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 206 * table) copy the contents of the old L2 table into the newly allocated one.
 207 * Otherwise the new table is initialized with zeros.
 208 *
 209 */
 210
 211static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
 212{
 213    BDRVQcow2State *s = bs->opaque;
 214    uint64_t old_l2_offset;
 215    uint64_t *l2_table = NULL;
 216    int64_t l2_offset;
 217    int ret;
 218
 219    old_l2_offset = s->l1_table[l1_index];
 220
 221    trace_qcow2_l2_allocate(bs, l1_index);
 222
 223    /* allocate a new l2 entry */
 224
 225    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 226    if (l2_offset < 0) {
 227        ret = l2_offset;
 228        goto fail;
 229    }
 230
 231    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 232    if (ret < 0) {
 233        goto fail;
 234    }
 235
 236    /* allocate a new entry in the l2 cache */
 237
 238    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 239    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
 240    if (ret < 0) {
 241        goto fail;
 242    }
 243
 244    l2_table = *table;
 245
 246    if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 247        /* if there was no old l2 table, clear the new table */
 248        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
 249    } else {
 250        uint64_t* old_table;
 251
 252        /* if there was an old l2 table, read it from the disk */
 253        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 254        ret = qcow2_cache_get(bs, s->l2_table_cache,
 255            old_l2_offset & L1E_OFFSET_MASK,
 256            (void**) &old_table);
 257        if (ret < 0) {
 258            goto fail;
 259        }
 260
 261        memcpy(l2_table, old_table, s->cluster_size);
 262
 263        qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
 264    }
 265
 266    /* write the l2 table to the file */
 267    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 268
 269    trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 270    qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
 271    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 272    if (ret < 0) {
 273        goto fail;
 274    }
 275
 276    /* update the L1 entry */
 277    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 278    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 279    ret = qcow2_write_l1_entry(bs, l1_index);
 280    if (ret < 0) {
 281        goto fail;
 282    }
 283
 284    *table = l2_table;
 285    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 286    return 0;
 287
 288fail:
 289    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 290    if (l2_table != NULL) {
 291        qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
 292    }
 293    s->l1_table[l1_index] = old_l2_offset;
 294    if (l2_offset > 0) {
 295        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 296                            QCOW2_DISCARD_ALWAYS);
 297    }
 298    return ret;
 299}
 300
 301/*
 302 * Checks how many clusters in a given L2 table are contiguous in the image
 303 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 304 * to the first cluster, the search is stopped and the cluster is not counted
 305 * as contiguous. (This allows it, for example, to stop at the first compressed
 306 * cluster which may require a different handling)
 307 */
 308static int count_contiguous_clusters(int nb_clusters, int cluster_size,
 309        uint64_t *l2_table, uint64_t stop_flags)
 310{
 311    int i;
 312    QCow2ClusterType first_cluster_type;
 313    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 314    uint64_t first_entry = be64_to_cpu(l2_table[0]);
 315    uint64_t offset = first_entry & mask;
 316
 317    if (!offset) {
 318        return 0;
 319    }
 320
 321    /* must be allocated */
 322    first_cluster_type = qcow2_get_cluster_type(first_entry);
 323    assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
 324           first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
 325
 326    for (i = 0; i < nb_clusters; i++) {
 327        uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
 328        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 329            break;
 330        }
 331    }
 332
 333        return i;
 334}
 335
 336/*
 337 * Checks how many consecutive unallocated clusters in a given L2
 338 * table have the same cluster type.
 339 */
 340static int count_contiguous_clusters_unallocated(int nb_clusters,
 341                                                 uint64_t *l2_table,
 342                                                 QCow2ClusterType wanted_type)
 343{
 344    int i;
 345
 346    assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
 347           wanted_type == QCOW2_CLUSTER_UNALLOCATED);
 348    for (i = 0; i < nb_clusters; i++) {
 349        uint64_t entry = be64_to_cpu(l2_table[i]);
 350        QCow2ClusterType type = qcow2_get_cluster_type(entry);
 351
 352        if (type != wanted_type) {
 353            break;
 354        }
 355    }
 356
 357    return i;
 358}
 359
 360static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 361                                            uint64_t src_cluster_offset,
 362                                            unsigned offset_in_cluster,
 363                                            QEMUIOVector *qiov)
 364{
 365    int ret;
 366
 367    if (qiov->size == 0) {
 368        return 0;
 369    }
 370
 371    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 372
 373    if (!bs->drv) {
 374        return -ENOMEDIUM;
 375    }
 376
 377    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 378     * interface.  This avoids double I/O throttling and request tracking,
 379     * which can lead to deadlock when block layer copy-on-read is enabled.
 380     */
 381    ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
 382                                  qiov->size, qiov, 0);
 383    if (ret < 0) {
 384        return ret;
 385    }
 386
 387    return 0;
 388}
 389
 390static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
 391                                                uint64_t src_cluster_offset,
 392                                                uint64_t cluster_offset,
 393                                                unsigned offset_in_cluster,
 394                                                uint8_t *buffer,
 395                                                unsigned bytes)
 396{
 397    if (bytes && bs->encrypted) {
 398        BDRVQcow2State *s = bs->opaque;
 399        int64_t sector = (s->crypt_physical_offset ?
 400                          (cluster_offset + offset_in_cluster) :
 401                          (src_cluster_offset + offset_in_cluster))
 402                         >> BDRV_SECTOR_BITS;
 403        assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
 404        assert((bytes & ~BDRV_SECTOR_MASK) == 0);
 405        assert(s->crypto);
 406        if (qcrypto_block_encrypt(s->crypto, sector, buffer,
 407                                  bytes, NULL) < 0) {
 408            return false;
 409        }
 410    }
 411    return true;
 412}
 413
 414static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 415                                             uint64_t cluster_offset,
 416                                             unsigned offset_in_cluster,
 417                                             QEMUIOVector *qiov)
 418{
 419    int ret;
 420
 421    if (qiov->size == 0) {
 422        return 0;
 423    }
 424
 425    ret = qcow2_pre_write_overlap_check(bs, 0,
 426            cluster_offset + offset_in_cluster, qiov->size);
 427    if (ret < 0) {
 428        return ret;
 429    }
 430
 431    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 432    ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
 433                          qiov->size, qiov, 0);
 434    if (ret < 0) {
 435        return ret;
 436    }
 437
 438    return 0;
 439}
 440
 441
 442/*
 443 * get_cluster_offset
 444 *
 445 * For a given offset of the virtual disk, find the cluster type and offset in
 446 * the qcow2 file. The offset is stored in *cluster_offset.
 447 *
 448 * On entry, *bytes is the maximum number of contiguous bytes starting at
 449 * offset that we are interested in.
 450 *
 451 * On exit, *bytes is the number of bytes starting at offset that have the same
 452 * cluster type and (if applicable) are stored contiguously in the image file.
 453 * Compressed clusters are always returned one by one.
 454 *
 455 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 456 * cases.
 457 */
 458int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 459                             unsigned int *bytes, uint64_t *cluster_offset)
 460{
 461    BDRVQcow2State *s = bs->opaque;
 462    unsigned int l2_index;
 463    uint64_t l1_index, l2_offset, *l2_table;
 464    int l1_bits, c;
 465    unsigned int offset_in_cluster;
 466    uint64_t bytes_available, bytes_needed, nb_clusters;
 467    QCow2ClusterType type;
 468    int ret;
 469
 470    offset_in_cluster = offset_into_cluster(s, offset);
 471    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 472
 473    l1_bits = s->l2_bits + s->cluster_bits;
 474
 475    /* compute how many bytes there are between the start of the cluster
 476     * containing offset and the end of the l1 entry */
 477    bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
 478                    + offset_in_cluster;
 479
 480    if (bytes_needed > bytes_available) {
 481        bytes_needed = bytes_available;
 482    }
 483
 484    *cluster_offset = 0;
 485
 486    /* seek to the l2 offset in the l1 table */
 487
 488    l1_index = offset >> l1_bits;
 489    if (l1_index >= s->l1_size) {
 490        type = QCOW2_CLUSTER_UNALLOCATED;
 491        goto out;
 492    }
 493
 494    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 495    if (!l2_offset) {
 496        type = QCOW2_CLUSTER_UNALLOCATED;
 497        goto out;
 498    }
 499
 500    if (offset_into_cluster(s, l2_offset)) {
 501        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 502                                " unaligned (L1 index: %#" PRIx64 ")",
 503                                l2_offset, l1_index);
 504        return -EIO;
 505    }
 506
 507    /* load the l2 table in memory */
 508
 509    ret = l2_load(bs, l2_offset, &l2_table);
 510    if (ret < 0) {
 511        return ret;
 512    }
 513
 514    /* find the cluster offset for the given disk offset */
 515
 516    l2_index = offset_to_l2_index(s, offset);
 517    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
 518
 519    nb_clusters = size_to_clusters(s, bytes_needed);
 520    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 521     * integers; the minimum cluster size is 512, so this assertion is always
 522     * true */
 523    assert(nb_clusters <= INT_MAX);
 524
 525    type = qcow2_get_cluster_type(*cluster_offset);
 526    if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
 527                                type == QCOW2_CLUSTER_ZERO_ALLOC)) {
 528        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 529                                " in pre-v3 image (L2 offset: %#" PRIx64
 530                                ", L2 index: %#x)", l2_offset, l2_index);
 531        ret = -EIO;
 532        goto fail;
 533    }
 534    switch (type) {
 535    case QCOW2_CLUSTER_COMPRESSED:
 536        /* Compressed clusters can only be processed one by one */
 537        c = 1;
 538        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 539        break;
 540    case QCOW2_CLUSTER_ZERO_PLAIN:
 541    case QCOW2_CLUSTER_UNALLOCATED:
 542        /* how many empty clusters ? */
 543        c = count_contiguous_clusters_unallocated(nb_clusters,
 544                                                  &l2_table[l2_index], type);
 545        *cluster_offset = 0;
 546        break;
 547    case QCOW2_CLUSTER_ZERO_ALLOC:
 548    case QCOW2_CLUSTER_NORMAL:
 549        /* how many allocated clusters ? */
 550        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
 551                                      &l2_table[l2_index], QCOW_OFLAG_ZERO);
 552        *cluster_offset &= L2E_OFFSET_MASK;
 553        if (offset_into_cluster(s, *cluster_offset)) {
 554            qcow2_signal_corruption(bs, true, -1, -1,
 555                                    "Cluster allocation offset %#"
 556                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 557                                    ", L2 index: %#x)", *cluster_offset,
 558                                    l2_offset, l2_index);
 559            ret = -EIO;
 560            goto fail;
 561        }
 562        break;
 563    default:
 564        abort();
 565    }
 566
 567    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
 568
 569    bytes_available = (int64_t)c * s->cluster_size;
 570
 571out:
 572    if (bytes_available > bytes_needed) {
 573        bytes_available = bytes_needed;
 574    }
 575
 576    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 577     * subtracting offset_in_cluster will therefore definitely yield something
 578     * not exceeding UINT_MAX */
 579    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 580    *bytes = bytes_available - offset_in_cluster;
 581
 582    return type;
 583
 584fail:
 585    qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
 586    return ret;
 587}
 588
 589/*
 590 * get_cluster_table
 591 *
 592 * for a given disk offset, load (and allocate if needed)
 593 * the l2 table.
 594 *
 595 * the l2 table offset in the qcow2 file and the cluster index
 596 * in the l2 table are given to the caller.
 597 *
 598 * Returns 0 on success, -errno in failure case
 599 */
 600static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 601                             uint64_t **new_l2_table,
 602                             int *new_l2_index)
 603{
 604    BDRVQcow2State *s = bs->opaque;
 605    unsigned int l2_index;
 606    uint64_t l1_index, l2_offset;
 607    uint64_t *l2_table = NULL;
 608    int ret;
 609
 610    /* seek to the l2 offset in the l1 table */
 611
 612    l1_index = offset >> (s->l2_bits + s->cluster_bits);
 613    if (l1_index >= s->l1_size) {
 614        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 615        if (ret < 0) {
 616            return ret;
 617        }
 618    }
 619
 620    assert(l1_index < s->l1_size);
 621    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 622    if (offset_into_cluster(s, l2_offset)) {
 623        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 624                                " unaligned (L1 index: %#" PRIx64 ")",
 625                                l2_offset, l1_index);
 626        return -EIO;
 627    }
 628
 629    /* seek the l2 table of the given l2 offset */
 630
 631    if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
 632        /* load the l2 table in memory */
 633        ret = l2_load(bs, l2_offset, &l2_table);
 634        if (ret < 0) {
 635            return ret;
 636        }
 637    } else {
 638        /* First allocate a new L2 table (and do COW if needed) */
 639        ret = l2_allocate(bs, l1_index, &l2_table);
 640        if (ret < 0) {
 641            return ret;
 642        }
 643
 644        /* Then decrease the refcount of the old table */
 645        if (l2_offset) {
 646            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 647                                QCOW2_DISCARD_OTHER);
 648        }
 649    }
 650
 651    /* find the cluster offset for the given disk offset */
 652
 653    l2_index = offset_to_l2_index(s, offset);
 654
 655    *new_l2_table = l2_table;
 656    *new_l2_index = l2_index;
 657
 658    return 0;
 659}
 660
 661/*
 662 * alloc_compressed_cluster_offset
 663 *
 664 * For a given offset of the disk image, return cluster offset in
 665 * qcow2 file.
 666 *
 667 * If the offset is not found, allocate a new compressed cluster.
 668 *
 669 * Return the cluster offset if successful,
 670 * Return 0, otherwise.
 671 *
 672 */
 673
 674uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 675                                               uint64_t offset,
 676                                               int compressed_size)
 677{
 678    BDRVQcow2State *s = bs->opaque;
 679    int l2_index, ret;
 680    uint64_t *l2_table;
 681    int64_t cluster_offset;
 682    int nb_csectors;
 683
 684    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
 685    if (ret < 0) {
 686        return 0;
 687    }
 688
 689    /* Compression can't overwrite anything. Fail if the cluster was already
 690     * allocated. */
 691    cluster_offset = be64_to_cpu(l2_table[l2_index]);
 692    if (cluster_offset & L2E_OFFSET_MASK) {
 693        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
 694        return 0;
 695    }
 696
 697    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 698    if (cluster_offset < 0) {
 699        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
 700        return 0;
 701    }
 702
 703    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
 704                  (cluster_offset >> 9);
 705
 706    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 707                      ((uint64_t)nb_csectors << s->csize_shift);
 708
 709    /* update L2 table */
 710
 711    /* compressed clusters never have the copied flag */
 712
 713    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 714    qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
 715    l2_table[l2_index] = cpu_to_be64(cluster_offset);
 716    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
 717
 718    return cluster_offset;
 719}
 720
 721static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 722{
 723    BDRVQcow2State *s = bs->opaque;
 724    Qcow2COWRegion *start = &m->cow_start;
 725    Qcow2COWRegion *end = &m->cow_end;
 726    unsigned buffer_size;
 727    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 728    bool merge_reads;
 729    uint8_t *start_buffer, *end_buffer;
 730    QEMUIOVector qiov;
 731    int ret;
 732
 733    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 734    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 735    assert(start->offset + start->nb_bytes <= end->offset);
 736    assert(!m->data_qiov || m->data_qiov->size == data_bytes);
 737
 738    if (start->nb_bytes == 0 && end->nb_bytes == 0) {
 739        return 0;
 740    }
 741
 742    /* If we have to read both the start and end COW regions and the
 743     * middle region is not too large then perform just one read
 744     * operation */
 745    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 746    if (merge_reads) {
 747        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 748    } else {
 749        /* If we have to do two reads, add some padding in the middle
 750         * if necessary to make sure that the end region is optimally
 751         * aligned. */
 752        size_t align = bdrv_opt_mem_align(bs);
 753        assert(align > 0 && align <= UINT_MAX);
 754        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 755               UINT_MAX - end->nb_bytes);
 756        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 757    }
 758
 759    /* Reserve a buffer large enough to store all the data that we're
 760     * going to read */
 761    start_buffer = qemu_try_blockalign(bs, buffer_size);
 762    if (start_buffer == NULL) {
 763        return -ENOMEM;
 764    }
 765    /* The part of the buffer where the end region is located */
 766    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 767
 768    qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
 769
 770    qemu_co_mutex_unlock(&s->lock);
 771    /* First we read the existing data from both COW regions. We
 772     * either read the whole region in one go, or the start and end
 773     * regions separately. */
 774    if (merge_reads) {
 775        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 776        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 777    } else {
 778        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 779        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 780        if (ret < 0) {
 781            goto fail;
 782        }
 783
 784        qemu_iovec_reset(&qiov);
 785        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 786        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 787    }
 788    if (ret < 0) {
 789        goto fail;
 790    }
 791
 792    /* Encrypt the data if necessary before writing it */
 793    if (bs->encrypted) {
 794        if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 795                                    start->offset, start_buffer,
 796                                    start->nb_bytes) ||
 797            !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 798                                    end->offset, end_buffer, end->nb_bytes)) {
 799            ret = -EIO;
 800            goto fail;
 801        }
 802    }
 803
 804    /* And now we can write everything. If we have the guest data we
 805     * can write everything in one single operation */
 806    if (m->data_qiov) {
 807        qemu_iovec_reset(&qiov);
 808        if (start->nb_bytes) {
 809            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 810        }
 811        qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
 812        if (end->nb_bytes) {
 813            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 814        }
 815        /* NOTE: we have a write_aio blkdebug event here followed by
 816         * a cow_write one in do_perform_cow_write(), but there's only
 817         * one single I/O operation */
 818        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 819        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 820    } else {
 821        /* If there's no guest data then write both COW regions separately */
 822        qemu_iovec_reset(&qiov);
 823        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 824        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 825        if (ret < 0) {
 826            goto fail;
 827        }
 828
 829        qemu_iovec_reset(&qiov);
 830        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 831        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 832    }
 833
 834fail:
 835    qemu_co_mutex_lock(&s->lock);
 836
 837    /*
 838     * Before we update the L2 table to actually point to the new cluster, we
 839     * need to be sure that the refcounts have been increased and COW was
 840     * handled.
 841     */
 842    if (ret == 0) {
 843        qcow2_cache_depends_on_flush(s->l2_table_cache);
 844    }
 845
 846    qemu_vfree(start_buffer);
 847    qemu_iovec_destroy(&qiov);
 848    return ret;
 849}
 850
 851int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 852{
 853    BDRVQcow2State *s = bs->opaque;
 854    int i, j = 0, l2_index, ret;
 855    uint64_t *old_cluster, *l2_table;
 856    uint64_t cluster_offset = m->alloc_offset;
 857
 858    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 859    assert(m->nb_clusters > 0);
 860
 861    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 862    if (old_cluster == NULL) {
 863        ret = -ENOMEM;
 864        goto err;
 865    }
 866
 867    /* copy content of unmodified sectors */
 868    ret = perform_cow(bs, m);
 869    if (ret < 0) {
 870        goto err;
 871    }
 872
 873    /* Update L2 table. */
 874    if (s->use_lazy_refcounts) {
 875        qcow2_mark_dirty(bs);
 876    }
 877    if (qcow2_need_accurate_refcounts(s)) {
 878        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 879                                   s->refcount_block_cache);
 880    }
 881
 882    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
 883    if (ret < 0) {
 884        goto err;
 885    }
 886    qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
 887
 888    assert(l2_index + m->nb_clusters <= s->l2_size);
 889    for (i = 0; i < m->nb_clusters; i++) {
 890        /* if two concurrent writes happen to the same unallocated cluster
 891         * each write allocates separate cluster and writes data concurrently.
 892         * The first one to complete updates l2 table with pointer to its
 893         * cluster the second one has to do RMW (which is done above by
 894         * perform_cow()), update l2 table with its cluster pointer and free
 895         * old cluster. This is what this loop does */
 896        if (l2_table[l2_index + i] != 0) {
 897            old_cluster[j++] = l2_table[l2_index + i];
 898        }
 899
 900        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
 901                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 902     }
 903
 904
 905    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
 906
 907    /*
 908     * If this was a COW, we need to decrease the refcount of the old cluster.
 909     *
 910     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
 911     * clusters), the next write will reuse them anyway.
 912     */
 913    if (!m->keep_old_clusters && j != 0) {
 914        for (i = 0; i < j; i++) {
 915            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
 916                                    QCOW2_DISCARD_NEVER);
 917        }
 918    }
 919
 920    ret = 0;
 921err:
 922    g_free(old_cluster);
 923    return ret;
 924 }
 925
 926/*
 927 * Returns the number of contiguous clusters that can be used for an allocating
 928 * write, but require COW to be performed (this includes yet unallocated space,
 929 * which must copy from the backing file)
 930 */
 931static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
 932    uint64_t *l2_table, int l2_index)
 933{
 934    int i;
 935
 936    for (i = 0; i < nb_clusters; i++) {
 937        uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
 938        QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
 939
 940        switch(cluster_type) {
 941        case QCOW2_CLUSTER_NORMAL:
 942            if (l2_entry & QCOW_OFLAG_COPIED) {
 943                goto out;
 944            }
 945            break;
 946        case QCOW2_CLUSTER_UNALLOCATED:
 947        case QCOW2_CLUSTER_COMPRESSED:
 948        case QCOW2_CLUSTER_ZERO_PLAIN:
 949        case QCOW2_CLUSTER_ZERO_ALLOC:
 950            break;
 951        default:
 952            abort();
 953        }
 954    }
 955
 956out:
 957    assert(i <= nb_clusters);
 958    return i;
 959}
 960
 961/*
 962 * Check if there already is an AIO write request in flight which allocates
 963 * the same cluster. In this case we need to wait until the previous
 964 * request has completed and updated the L2 table accordingly.
 965 *
 966 * Returns:
 967 *   0       if there was no dependency. *cur_bytes indicates the number of
 968 *           bytes from guest_offset that can be read before the next
 969 *           dependency must be processed (or the request is complete)
 970 *
 971 *   -EAGAIN if we had to wait for another request, previously gathered
 972 *           information on cluster allocation may be invalid now. The caller
 973 *           must start over anyway, so consider *cur_bytes undefined.
 974 */
 975static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
 976    uint64_t *cur_bytes, QCowL2Meta **m)
 977{
 978    BDRVQcow2State *s = bs->opaque;
 979    QCowL2Meta *old_alloc;
 980    uint64_t bytes = *cur_bytes;
 981
 982    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
 983
 984        uint64_t start = guest_offset;
 985        uint64_t end = start + bytes;
 986        uint64_t old_start = l2meta_cow_start(old_alloc);
 987        uint64_t old_end = l2meta_cow_end(old_alloc);
 988
 989        if (end <= old_start || start >= old_end) {
 990            /* No intersection */
 991        } else {
 992            if (start < old_start) {
 993                /* Stop at the start of a running allocation */
 994                bytes = old_start - start;
 995            } else {
 996                bytes = 0;
 997            }
 998
 999            /* Stop if already an l2meta exists. After yielding, it wouldn't
1000             * be valid any more, so we'd have to clean up the old L2Metas
1001             * and deal with requests depending on them before starting to
1002             * gather new ones. Not worth the trouble. */
1003            if (bytes == 0 && *m) {
1004                *cur_bytes = 0;
1005                return 0;
1006            }
1007
1008            if (bytes == 0) {
1009                /* Wait for the dependency to complete. We need to recheck
1010                 * the free/allocated clusters when we continue. */
1011                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1012                return -EAGAIN;
1013            }
1014        }
1015    }
1016
1017    /* Make sure that existing clusters and new allocations are only used up to
1018     * the next dependency if we shortened the request above */
1019    *cur_bytes = bytes;
1020
1021    return 0;
1022}
1023
1024/*
1025 * Checks how many already allocated clusters that don't require a copy on
1026 * write there are at the given guest_offset (up to *bytes). If
1027 * *host_offset is not zero, only physically contiguous clusters beginning at
1028 * this host offset are counted.
1029 *
1030 * Note that guest_offset may not be cluster aligned. In this case, the
1031 * returned *host_offset points to exact byte referenced by guest_offset and
1032 * therefore isn't cluster aligned as well.
1033 *
1034 * Returns:
1035 *   0:     if no allocated clusters are available at the given offset.
1036 *          *bytes is normally unchanged. It is set to 0 if the cluster
1037 *          is allocated and doesn't need COW, but doesn't have the right
1038 *          physical offset.
1039 *
1040 *   1:     if allocated clusters that don't require a COW are available at
1041 *          the requested offset. *bytes may have decreased and describes
1042 *          the length of the area that can be written to.
1043 *
1044 *  -errno: in error cases
1045 */
1046static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1047    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1048{
1049    BDRVQcow2State *s = bs->opaque;
1050    int l2_index;
1051    uint64_t cluster_offset;
1052    uint64_t *l2_table;
1053    uint64_t nb_clusters;
1054    unsigned int keep_clusters;
1055    int ret;
1056
1057    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1058                              *bytes);
1059
1060    assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
1061                                == offset_into_cluster(s, *host_offset));
1062
1063    /*
1064     * Calculate the number of clusters to look for. We stop at L2 table
1065     * boundaries to keep things simple.
1066     */
1067    nb_clusters =
1068        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1069
1070    l2_index = offset_to_l2_index(s, guest_offset);
1071    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1072    assert(nb_clusters <= INT_MAX);
1073
1074    /* Find L2 entry for the first involved cluster */
1075    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1076    if (ret < 0) {
1077        return ret;
1078    }
1079
1080    cluster_offset = be64_to_cpu(l2_table[l2_index]);
1081
1082    /* Check how many clusters are already allocated and don't need COW */
1083    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1084        && (cluster_offset & QCOW_OFLAG_COPIED))
1085    {
1086        /* If a specific host_offset is required, check it */
1087        bool offset_matches =
1088            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1089
1090        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1091            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1092                                    "%#llx unaligned (guest offset: %#" PRIx64
1093                                    ")", cluster_offset & L2E_OFFSET_MASK,
1094                                    guest_offset);
1095            ret = -EIO;
1096            goto out;
1097        }
1098
1099        if (*host_offset != 0 && !offset_matches) {
1100            *bytes = 0;
1101            ret = 0;
1102            goto out;
1103        }
1104
1105        /* We keep all QCOW_OFLAG_COPIED clusters */
1106        keep_clusters =
1107            count_contiguous_clusters(nb_clusters, s->cluster_size,
1108                                      &l2_table[l2_index],
1109                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1110        assert(keep_clusters <= nb_clusters);
1111
1112        *bytes = MIN(*bytes,
1113                 keep_clusters * s->cluster_size
1114                 - offset_into_cluster(s, guest_offset));
1115
1116        ret = 1;
1117    } else {
1118        ret = 0;
1119    }
1120
1121    /* Cleanup */
1122out:
1123    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1124
1125    /* Only return a host offset if we actually made progress. Otherwise we
1126     * would make requirements for handle_alloc() that it can't fulfill */
1127    if (ret > 0) {
1128        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1129                     + offset_into_cluster(s, guest_offset);
1130    }
1131
1132    return ret;
1133}
1134
1135/*
1136 * Allocates new clusters for the given guest_offset.
1137 *
1138 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1139 * contain the number of clusters that have been allocated and are contiguous
1140 * in the image file.
1141 *
1142 * If *host_offset is non-zero, it specifies the offset in the image file at
1143 * which the new clusters must start. *nb_clusters can be 0 on return in this
1144 * case if the cluster at host_offset is already in use. If *host_offset is
1145 * zero, the clusters can be allocated anywhere in the image file.
1146 *
1147 * *host_offset is updated to contain the offset into the image file at which
1148 * the first allocated cluster starts.
1149 *
1150 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1151 * function has been waiting for another request and the allocation must be
1152 * restarted, but the whole request should not be failed.
1153 */
1154static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1155                                   uint64_t *host_offset, uint64_t *nb_clusters)
1156{
1157    BDRVQcow2State *s = bs->opaque;
1158
1159    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1160                                         *host_offset, *nb_clusters);
1161
1162    /* Allocate new clusters */
1163    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1164    if (*host_offset == 0) {
1165        int64_t cluster_offset =
1166            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1167        if (cluster_offset < 0) {
1168            return cluster_offset;
1169        }
1170        *host_offset = cluster_offset;
1171        return 0;
1172    } else {
1173        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1174        if (ret < 0) {
1175            return ret;
1176        }
1177        *nb_clusters = ret;
1178        return 0;
1179    }
1180}
1181
1182/*
1183 * Allocates new clusters for an area that either is yet unallocated or needs a
1184 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1185 * the new allocation can match the specified host offset.
1186 *
1187 * Note that guest_offset may not be cluster aligned. In this case, the
1188 * returned *host_offset points to exact byte referenced by guest_offset and
1189 * therefore isn't cluster aligned as well.
1190 *
1191 * Returns:
1192 *   0:     if no clusters could be allocated. *bytes is set to 0,
1193 *          *host_offset is left unchanged.
1194 *
1195 *   1:     if new clusters were allocated. *bytes may be decreased if the
1196 *          new allocation doesn't cover all of the requested area.
1197 *          *host_offset is updated to contain the host offset of the first
1198 *          newly allocated cluster.
1199 *
1200 *  -errno: in error cases
1201 */
1202static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1203    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1204{
1205    BDRVQcow2State *s = bs->opaque;
1206    int l2_index;
1207    uint64_t *l2_table;
1208    uint64_t entry;
1209    uint64_t nb_clusters;
1210    int ret;
1211    bool keep_old_clusters = false;
1212
1213    uint64_t alloc_cluster_offset = 0;
1214
1215    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1216                             *bytes);
1217    assert(*bytes > 0);
1218
1219    /*
1220     * Calculate the number of clusters to look for. We stop at L2 table
1221     * boundaries to keep things simple.
1222     */
1223    nb_clusters =
1224        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1225
1226    l2_index = offset_to_l2_index(s, guest_offset);
1227    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1228    assert(nb_clusters <= INT_MAX);
1229
1230    /* Find L2 entry for the first involved cluster */
1231    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1232    if (ret < 0) {
1233        return ret;
1234    }
1235
1236    entry = be64_to_cpu(l2_table[l2_index]);
1237
1238    /* For the moment, overwrite compressed clusters one by one */
1239    if (entry & QCOW_OFLAG_COMPRESSED) {
1240        nb_clusters = 1;
1241    } else {
1242        nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1243    }
1244
1245    /* This function is only called when there were no non-COW clusters, so if
1246     * we can't find any unallocated or COW clusters either, something is
1247     * wrong with our code. */
1248    assert(nb_clusters > 0);
1249
1250    if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1251        (entry & QCOW_OFLAG_COPIED) &&
1252        (!*host_offset ||
1253         start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1254    {
1255        /* Try to reuse preallocated zero clusters; contiguous normal clusters
1256         * would be fine, too, but count_cow_clusters() above has limited
1257         * nb_clusters already to a range of COW clusters */
1258        int preallocated_nb_clusters =
1259            count_contiguous_clusters(nb_clusters, s->cluster_size,
1260                                      &l2_table[l2_index], QCOW_OFLAG_COPIED);
1261        assert(preallocated_nb_clusters > 0);
1262
1263        nb_clusters = preallocated_nb_clusters;
1264        alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1265
1266        /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1267         * should not free them. */
1268        keep_old_clusters = true;
1269    }
1270
1271    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1272
1273    if (!alloc_cluster_offset) {
1274        /* Allocate, if necessary at a given offset in the image file */
1275        alloc_cluster_offset = start_of_cluster(s, *host_offset);
1276        ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1277                                      &nb_clusters);
1278        if (ret < 0) {
1279            goto fail;
1280        }
1281
1282        /* Can't extend contiguous allocation */
1283        if (nb_clusters == 0) {
1284            *bytes = 0;
1285            return 0;
1286        }
1287
1288        /* !*host_offset would overwrite the image header and is reserved for
1289         * "no host offset preferred". If 0 was a valid host offset, it'd
1290         * trigger the following overlap check; do that now to avoid having an
1291         * invalid value in *host_offset. */
1292        if (!alloc_cluster_offset) {
1293            ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1294                                                nb_clusters * s->cluster_size);
1295            assert(ret < 0);
1296            goto fail;
1297        }
1298    }
1299
1300    /*
1301     * Save info needed for meta data update.
1302     *
1303     * requested_bytes: Number of bytes from the start of the first
1304     * newly allocated cluster to the end of the (possibly shortened
1305     * before) write request.
1306     *
1307     * avail_bytes: Number of bytes from the start of the first
1308     * newly allocated to the end of the last newly allocated cluster.
1309     *
1310     * nb_bytes: The number of bytes from the start of the first
1311     * newly allocated cluster to the end of the area that the write
1312     * request actually writes to (excluding COW at the end)
1313     */
1314    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1315    int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1316    int nb_bytes = MIN(requested_bytes, avail_bytes);
1317    QCowL2Meta *old_m = *m;
1318
1319    *m = g_malloc0(sizeof(**m));
1320
1321    **m = (QCowL2Meta) {
1322        .next           = old_m,
1323
1324        .alloc_offset   = alloc_cluster_offset,
1325        .offset         = start_of_cluster(s, guest_offset),
1326        .nb_clusters    = nb_clusters,
1327
1328        .keep_old_clusters  = keep_old_clusters,
1329
1330        .cow_start = {
1331            .offset     = 0,
1332            .nb_bytes   = offset_into_cluster(s, guest_offset),
1333        },
1334        .cow_end = {
1335            .offset     = nb_bytes,
1336            .nb_bytes   = avail_bytes - nb_bytes,
1337        },
1338    };
1339    qemu_co_queue_init(&(*m)->dependent_requests);
1340    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1341
1342    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1343    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1344    assert(*bytes != 0);
1345
1346    return 1;
1347
1348fail:
1349    if (*m && (*m)->nb_clusters > 0) {
1350        QLIST_REMOVE(*m, next_in_flight);
1351    }
1352    return ret;
1353}
1354
1355/*
1356 * alloc_cluster_offset
1357 *
1358 * For a given offset on the virtual disk, find the cluster offset in qcow2
1359 * file. If the offset is not found, allocate a new cluster.
1360 *
1361 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1362 * other fields in m are meaningless.
1363 *
1364 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1365 * contiguous clusters that have been allocated. In this case, the other
1366 * fields of m are valid and contain information about the first allocated
1367 * cluster.
1368 *
1369 * If the request conflicts with another write request in flight, the coroutine
1370 * is queued and will be reentered when the dependency has completed.
1371 *
1372 * Return 0 on success and -errno in error cases
1373 */
1374int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1375                               unsigned int *bytes, uint64_t *host_offset,
1376                               QCowL2Meta **m)
1377{
1378    BDRVQcow2State *s = bs->opaque;
1379    uint64_t start, remaining;
1380    uint64_t cluster_offset;
1381    uint64_t cur_bytes;
1382    int ret;
1383
1384    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1385
1386again:
1387    start = offset;
1388    remaining = *bytes;
1389    cluster_offset = 0;
1390    *host_offset = 0;
1391    cur_bytes = 0;
1392    *m = NULL;
1393
1394    while (true) {
1395
1396        if (!*host_offset) {
1397            *host_offset = start_of_cluster(s, cluster_offset);
1398        }
1399
1400        assert(remaining >= cur_bytes);
1401
1402        start           += cur_bytes;
1403        remaining       -= cur_bytes;
1404        cluster_offset  += cur_bytes;
1405
1406        if (remaining == 0) {
1407            break;
1408        }
1409
1410        cur_bytes = remaining;
1411
1412        /*
1413         * Now start gathering as many contiguous clusters as possible:
1414         *
1415         * 1. Check for overlaps with in-flight allocations
1416         *
1417         *      a) Overlap not in the first cluster -> shorten this request and
1418         *         let the caller handle the rest in its next loop iteration.
1419         *
1420         *      b) Real overlaps of two requests. Yield and restart the search
1421         *         for contiguous clusters (the situation could have changed
1422         *         while we were sleeping)
1423         *
1424         *      c) TODO: Request starts in the same cluster as the in-flight
1425         *         allocation ends. Shorten the COW of the in-fight allocation,
1426         *         set cluster_offset to write to the same cluster and set up
1427         *         the right synchronisation between the in-flight request and
1428         *         the new one.
1429         */
1430        ret = handle_dependencies(bs, start, &cur_bytes, m);
1431        if (ret == -EAGAIN) {
1432            /* Currently handle_dependencies() doesn't yield if we already had
1433             * an allocation. If it did, we would have to clean up the L2Meta
1434             * structs before starting over. */
1435            assert(*m == NULL);
1436            goto again;
1437        } else if (ret < 0) {
1438            return ret;
1439        } else if (cur_bytes == 0) {
1440            break;
1441        } else {
1442            /* handle_dependencies() may have decreased cur_bytes (shortened
1443             * the allocations below) so that the next dependency is processed
1444             * correctly during the next loop iteration. */
1445        }
1446
1447        /*
1448         * 2. Count contiguous COPIED clusters.
1449         */
1450        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1451        if (ret < 0) {
1452            return ret;
1453        } else if (ret) {
1454            continue;
1455        } else if (cur_bytes == 0) {
1456            break;
1457        }
1458
1459        /*
1460         * 3. If the request still hasn't completed, allocate new clusters,
1461         *    considering any cluster_offset of steps 1c or 2.
1462         */
1463        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1464        if (ret < 0) {
1465            return ret;
1466        } else if (ret) {
1467            continue;
1468        } else {
1469            assert(cur_bytes == 0);
1470            break;
1471        }
1472    }
1473
1474    *bytes -= remaining;
1475    assert(*bytes > 0);
1476    assert(*host_offset != 0);
1477
1478    return 0;
1479}
1480
1481static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1482                             const uint8_t *buf, int buf_size)
1483{
1484    z_stream strm1, *strm = &strm1;
1485    int ret, out_len;
1486
1487    memset(strm, 0, sizeof(*strm));
1488
1489    strm->next_in = (uint8_t *)buf;
1490    strm->avail_in = buf_size;
1491    strm->next_out = out_buf;
1492    strm->avail_out = out_buf_size;
1493
1494    ret = inflateInit2(strm, -12);
1495    if (ret != Z_OK)
1496        return -1;
1497    ret = inflate(strm, Z_FINISH);
1498    out_len = strm->next_out - out_buf;
1499    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1500        out_len != out_buf_size) {
1501        inflateEnd(strm);
1502        return -1;
1503    }
1504    inflateEnd(strm);
1505    return 0;
1506}
1507
1508int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1509{
1510    BDRVQcow2State *s = bs->opaque;
1511    int ret, csize, nb_csectors, sector_offset;
1512    uint64_t coffset;
1513
1514    coffset = cluster_offset & s->cluster_offset_mask;
1515    if (s->cluster_cache_offset != coffset) {
1516        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1517        sector_offset = coffset & 511;
1518        csize = nb_csectors * 512 - sector_offset;
1519        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1520        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1521                        nb_csectors);
1522        if (ret < 0) {
1523            return ret;
1524        }
1525        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1526                              s->cluster_data + sector_offset, csize) < 0) {
1527            return -EIO;
1528        }
1529        s->cluster_cache_offset = coffset;
1530    }
1531    return 0;
1532}
1533
1534/*
1535 * This discards as many clusters of nb_clusters as possible at once (i.e.
1536 * all clusters in the same L2 table) and returns the number of discarded
1537 * clusters.
1538 */
1539static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1540                             uint64_t nb_clusters, enum qcow2_discard_type type,
1541                             bool full_discard)
1542{
1543    BDRVQcow2State *s = bs->opaque;
1544    uint64_t *l2_table;
1545    int l2_index;
1546    int ret;
1547    int i;
1548
1549    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1550    if (ret < 0) {
1551        return ret;
1552    }
1553
1554    /* Limit nb_clusters to one L2 table */
1555    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1556    assert(nb_clusters <= INT_MAX);
1557
1558    for (i = 0; i < nb_clusters; i++) {
1559        uint64_t old_l2_entry;
1560
1561        old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1562
1563        /*
1564         * If full_discard is false, make sure that a discarded area reads back
1565         * as zeroes for v3 images (we cannot do it for v2 without actually
1566         * writing a zero-filled buffer). We can skip the operation if the
1567         * cluster is already marked as zero, or if it's unallocated and we
1568         * don't have a backing file.
1569         *
1570         * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1571         * holding s->lock, so that doesn't work today.
1572         *
1573         * If full_discard is true, the sector should not read back as zeroes,
1574         * but rather fall through to the backing file.
1575         */
1576        switch (qcow2_get_cluster_type(old_l2_entry)) {
1577        case QCOW2_CLUSTER_UNALLOCATED:
1578            if (full_discard || !bs->backing) {
1579                continue;
1580            }
1581            break;
1582
1583        case QCOW2_CLUSTER_ZERO_PLAIN:
1584            if (!full_discard) {
1585                continue;
1586            }
1587            break;
1588
1589        case QCOW2_CLUSTER_ZERO_ALLOC:
1590        case QCOW2_CLUSTER_NORMAL:
1591        case QCOW2_CLUSTER_COMPRESSED:
1592            break;
1593
1594        default:
1595            abort();
1596        }
1597
1598        /* First remove L2 entries */
1599        qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1600        if (!full_discard && s->qcow_version >= 3) {
1601            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1602        } else {
1603            l2_table[l2_index + i] = cpu_to_be64(0);
1604        }
1605
1606        /* Then decrease the refcount */
1607        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1608    }
1609
1610    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1611
1612    return nb_clusters;
1613}
1614
1615int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1616                          uint64_t bytes, enum qcow2_discard_type type,
1617                          bool full_discard)
1618{
1619    BDRVQcow2State *s = bs->opaque;
1620    uint64_t end_offset = offset + bytes;
1621    uint64_t nb_clusters;
1622    int64_t cleared;
1623    int ret;
1624
1625    /* Caller must pass aligned values, except at image end */
1626    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1627    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1628           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1629
1630    nb_clusters = size_to_clusters(s, bytes);
1631
1632    s->cache_discards = true;
1633
1634    /* Each L2 table is handled by its own loop iteration */
1635    while (nb_clusters > 0) {
1636        cleared = discard_single_l2(bs, offset, nb_clusters, type,
1637                                    full_discard);
1638        if (cleared < 0) {
1639            ret = cleared;
1640            goto fail;
1641        }
1642
1643        nb_clusters -= cleared;
1644        offset += (cleared * s->cluster_size);
1645    }
1646
1647    ret = 0;
1648fail:
1649    s->cache_discards = false;
1650    qcow2_process_discards(bs, ret);
1651
1652    return ret;
1653}
1654
1655/*
1656 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1657 * all clusters in the same L2 table) and returns the number of zeroed
1658 * clusters.
1659 */
1660static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1661                          uint64_t nb_clusters, int flags)
1662{
1663    BDRVQcow2State *s = bs->opaque;
1664    uint64_t *l2_table;
1665    int l2_index;
1666    int ret;
1667    int i;
1668    bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1669
1670    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1671    if (ret < 0) {
1672        return ret;
1673    }
1674
1675    /* Limit nb_clusters to one L2 table */
1676    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1677    assert(nb_clusters <= INT_MAX);
1678
1679    for (i = 0; i < nb_clusters; i++) {
1680        uint64_t old_offset;
1681        QCow2ClusterType cluster_type;
1682
1683        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1684
1685        /*
1686         * Minimize L2 changes if the cluster already reads back as
1687         * zeroes with correct allocation.
1688         */
1689        cluster_type = qcow2_get_cluster_type(old_offset);
1690        if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1691            (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1692            continue;
1693        }
1694
1695        qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1696        if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1697            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1698            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1699        } else {
1700            l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1701        }
1702    }
1703
1704    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1705
1706    return nb_clusters;
1707}
1708
1709int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1710                          uint64_t bytes, int flags)
1711{
1712    BDRVQcow2State *s = bs->opaque;
1713    uint64_t end_offset = offset + bytes;
1714    uint64_t nb_clusters;
1715    int64_t cleared;
1716    int ret;
1717
1718    /* Caller must pass aligned values, except at image end */
1719    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1720    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1721           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1722
1723    /* The zero flag is only supported by version 3 and newer */
1724    if (s->qcow_version < 3) {
1725        return -ENOTSUP;
1726    }
1727
1728    /* Each L2 table is handled by its own loop iteration */
1729    nb_clusters = size_to_clusters(s, bytes);
1730
1731    s->cache_discards = true;
1732
1733    while (nb_clusters > 0) {
1734        cleared = zero_single_l2(bs, offset, nb_clusters, flags);
1735        if (cleared < 0) {
1736            ret = cleared;
1737            goto fail;
1738        }
1739
1740        nb_clusters -= cleared;
1741        offset += (cleared * s->cluster_size);
1742    }
1743
1744    ret = 0;
1745fail:
1746    s->cache_discards = false;
1747    qcow2_process_discards(bs, ret);
1748
1749    return ret;
1750}
1751
1752/*
1753 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1754 * non-backed non-pre-allocated zero clusters).
1755 *
1756 * l1_entries and *visited_l1_entries are used to keep track of progress for
1757 * status_cb(). l1_entries contains the total number of L1 entries and
1758 * *visited_l1_entries counts all visited L1 entries.
1759 */
1760static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1761                                      int l1_size, int64_t *visited_l1_entries,
1762                                      int64_t l1_entries,
1763                                      BlockDriverAmendStatusCB *status_cb,
1764                                      void *cb_opaque)
1765{
1766    BDRVQcow2State *s = bs->opaque;
1767    bool is_active_l1 = (l1_table == s->l1_table);
1768    uint64_t *l2_table = NULL;
1769    int ret;
1770    int i, j;
1771
1772    if (!is_active_l1) {
1773        /* inactive L2 tables require a buffer to be stored in when loading
1774         * them from disk */
1775        l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1776        if (l2_table == NULL) {
1777            return -ENOMEM;
1778        }
1779    }
1780
1781    for (i = 0; i < l1_size; i++) {
1782        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1783        bool l2_dirty = false;
1784        uint64_t l2_refcount;
1785
1786        if (!l2_offset) {
1787            /* unallocated */
1788            (*visited_l1_entries)++;
1789            if (status_cb) {
1790                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1791            }
1792            continue;
1793        }
1794
1795        if (offset_into_cluster(s, l2_offset)) {
1796            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1797                                    PRIx64 " unaligned (L1 index: %#x)",
1798                                    l2_offset, i);
1799            ret = -EIO;
1800            goto fail;
1801        }
1802
1803        if (is_active_l1) {
1804            /* get active L2 tables from cache */
1805            ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1806                    (void **)&l2_table);
1807        } else {
1808            /* load inactive L2 tables from disk */
1809            ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1810                            (void *)l2_table, s->cluster_sectors);
1811        }
1812        if (ret < 0) {
1813            goto fail;
1814        }
1815
1816        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1817                                 &l2_refcount);
1818        if (ret < 0) {
1819            goto fail;
1820        }
1821
1822        for (j = 0; j < s->l2_size; j++) {
1823            uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1824            int64_t offset = l2_entry & L2E_OFFSET_MASK;
1825            QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1826
1827            if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1828                cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1829                continue;
1830            }
1831
1832            if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1833                if (!bs->backing) {
1834                    /* not backed; therefore we can simply deallocate the
1835                     * cluster */
1836                    l2_table[j] = 0;
1837                    l2_dirty = true;
1838                    continue;
1839                }
1840
1841                offset = qcow2_alloc_clusters(bs, s->cluster_size);
1842                if (offset < 0) {
1843                    ret = offset;
1844                    goto fail;
1845                }
1846
1847                if (l2_refcount > 1) {
1848                    /* For shared L2 tables, set the refcount accordingly (it is
1849                     * already 1 and needs to be l2_refcount) */
1850                    ret = qcow2_update_cluster_refcount(bs,
1851                            offset >> s->cluster_bits,
1852                            refcount_diff(1, l2_refcount), false,
1853                            QCOW2_DISCARD_OTHER);
1854                    if (ret < 0) {
1855                        qcow2_free_clusters(bs, offset, s->cluster_size,
1856                                            QCOW2_DISCARD_OTHER);
1857                        goto fail;
1858                    }
1859                }
1860            }
1861
1862            if (offset_into_cluster(s, offset)) {
1863                qcow2_signal_corruption(bs, true, -1, -1,
1864                                        "Cluster allocation offset "
1865                                        "%#" PRIx64 " unaligned (L2 offset: %#"
1866                                        PRIx64 ", L2 index: %#x)", offset,
1867                                        l2_offset, j);
1868                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1869                    qcow2_free_clusters(bs, offset, s->cluster_size,
1870                                        QCOW2_DISCARD_ALWAYS);
1871                }
1872                ret = -EIO;
1873                goto fail;
1874            }
1875
1876            ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1877            if (ret < 0) {
1878                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1879                    qcow2_free_clusters(bs, offset, s->cluster_size,
1880                                        QCOW2_DISCARD_ALWAYS);
1881                }
1882                goto fail;
1883            }
1884
1885            ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1886            if (ret < 0) {
1887                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1888                    qcow2_free_clusters(bs, offset, s->cluster_size,
1889                                        QCOW2_DISCARD_ALWAYS);
1890                }
1891                goto fail;
1892            }
1893
1894            if (l2_refcount == 1) {
1895                l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1896            } else {
1897                l2_table[j] = cpu_to_be64(offset);
1898            }
1899            l2_dirty = true;
1900        }
1901
1902        if (is_active_l1) {
1903            if (l2_dirty) {
1904                qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1905                qcow2_cache_depends_on_flush(s->l2_table_cache);
1906            }
1907            qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1908        } else {
1909            if (l2_dirty) {
1910                ret = qcow2_pre_write_overlap_check(bs,
1911                        QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1912                        s->cluster_size);
1913                if (ret < 0) {
1914                    goto fail;
1915                }
1916
1917                ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1918                                 (void *)l2_table, s->cluster_sectors);
1919                if (ret < 0) {
1920                    goto fail;
1921                }
1922            }
1923        }
1924
1925        (*visited_l1_entries)++;
1926        if (status_cb) {
1927            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1928        }
1929    }
1930
1931    ret = 0;
1932
1933fail:
1934    if (l2_table) {
1935        if (!is_active_l1) {
1936            qemu_vfree(l2_table);
1937        } else {
1938            qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1939        }
1940    }
1941    return ret;
1942}
1943
1944/*
1945 * For backed images, expands all zero clusters on the image. For non-backed
1946 * images, deallocates all non-pre-allocated zero clusters (and claims the
1947 * allocation for pre-allocated ones). This is important for downgrading to a
1948 * qcow2 version which doesn't yet support metadata zero clusters.
1949 */
1950int qcow2_expand_zero_clusters(BlockDriverState *bs,
1951                               BlockDriverAmendStatusCB *status_cb,
1952                               void *cb_opaque)
1953{
1954    BDRVQcow2State *s = bs->opaque;
1955    uint64_t *l1_table = NULL;
1956    int64_t l1_entries = 0, visited_l1_entries = 0;
1957    int ret;
1958    int i, j;
1959
1960    if (status_cb) {
1961        l1_entries = s->l1_size;
1962        for (i = 0; i < s->nb_snapshots; i++) {
1963            l1_entries += s->snapshots[i].l1_size;
1964        }
1965    }
1966
1967    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1968                                     &visited_l1_entries, l1_entries,
1969                                     status_cb, cb_opaque);
1970    if (ret < 0) {
1971        goto fail;
1972    }
1973
1974    /* Inactive L1 tables may point to active L2 tables - therefore it is
1975     * necessary to flush the L2 table cache before trying to access the L2
1976     * tables pointed to by inactive L1 entries (else we might try to expand
1977     * zero clusters that have already been expanded); furthermore, it is also
1978     * necessary to empty the L2 table cache, since it may contain tables which
1979     * are now going to be modified directly on disk, bypassing the cache.
1980     * qcow2_cache_empty() does both for us. */
1981    ret = qcow2_cache_empty(bs, s->l2_table_cache);
1982    if (ret < 0) {
1983        goto fail;
1984    }
1985
1986    for (i = 0; i < s->nb_snapshots; i++) {
1987        int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1988                                      sizeof(uint64_t), BDRV_SECTOR_SIZE);
1989
1990        l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1991
1992        ret = bdrv_read(bs->file,
1993                        s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1994                        (void *)l1_table, l1_sectors);
1995        if (ret < 0) {
1996            goto fail;
1997        }
1998
1999        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2000            be64_to_cpus(&l1_table[j]);
2001        }
2002
2003        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2004                                         &visited_l1_entries, l1_entries,
2005                                         status_cb, cb_opaque);
2006        if (ret < 0) {
2007            goto fail;
2008        }
2009    }
2010
2011    ret = 0;
2012
2013fail:
2014    g_free(l1_table);
2015    return ret;
2016}
2017