qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/devices.h"
  38#include "net/net.h"
  39#include "sysemu/block-backend.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/numa.h"
  42#include "sysemu/sysemu.h"
  43#include "sysemu/kvm.h"
  44#include "hw/compat.h"
  45#include "hw/loader.h"
  46#include "exec/address-spaces.h"
  47#include "qemu/bitops.h"
  48#include "qemu/error-report.h"
  49#include "hw/pci-host/gpex.h"
  50#include "hw/arm/sysbus-fdt.h"
  51#include "hw/platform-bus.h"
  52#include "hw/arm/fdt.h"
  53#include "hw/intc/arm_gic.h"
  54#include "hw/intc/arm_gicv3_common.h"
  55#include "kvm_arm.h"
  56#include "hw/smbios/smbios.h"
  57#include "qapi/visitor.h"
  58#include "standard-headers/linux/input.h"
  59
  60#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  61    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  62                                                    void *data) \
  63    { \
  64        MachineClass *mc = MACHINE_CLASS(oc); \
  65        virt_machine_##major##_##minor##_options(mc); \
  66        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  67        if (latest) { \
  68            mc->alias = "virt"; \
  69        } \
  70    } \
  71    static const TypeInfo machvirt_##major##_##minor##_info = { \
  72        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  73        .parent = TYPE_VIRT_MACHINE, \
  74        .instance_init = virt_##major##_##minor##_instance_init, \
  75        .class_init = virt_##major##_##minor##_class_init, \
  76    }; \
  77    static void machvirt_machine_##major##_##minor##_init(void) \
  78    { \
  79        type_register_static(&machvirt_##major##_##minor##_info); \
  80    } \
  81    type_init(machvirt_machine_##major##_##minor##_init);
  82
  83#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
  84    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
  85#define DEFINE_VIRT_MACHINE(major, minor) \
  86    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
  87
  88
  89/* Number of external interrupt lines to configure the GIC with */
  90#define NUM_IRQS 256
  91
  92#define PLATFORM_BUS_NUM_IRQS 64
  93
  94static ARMPlatformBusSystemParams platform_bus_params;
  95
  96/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
  97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
  98 * address space unallocated and free for future use between 256G and 512G.
  99 * If we need to provide more RAM to VMs in the future then we need to:
 100 *  * allocate a second bank of RAM starting at 2TB and working up
 101 *  * fix the DT and ACPI table generation code in QEMU to correctly
 102 *    report two split lumps of RAM to the guest
 103 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 104 * (We don't want to fill all the way up to 512GB with RAM because
 105 * we might want it for non-RAM purposes later. Conversely it seems
 106 * reasonable to assume that anybody configuring a VM with a quarter
 107 * of a terabyte of RAM will be doing it on a host with more than a
 108 * terabyte of physical address space.)
 109 */
 110#define RAMLIMIT_GB 255
 111#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 112
 113/* Addresses and sizes of our components.
 114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 115 * 128MB..256MB is used for miscellaneous device I/O.
 116 * 256MB..1GB is reserved for possible future PCI support (ie where the
 117 * PCI memory window will go if we add a PCI host controller).
 118 * 1GB and up is RAM (which may happily spill over into the
 119 * high memory region beyond 4GB).
 120 * This represents a compromise between how much RAM can be given to
 121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 122 * Note that devices should generally be placed at multiples of 0x10000,
 123 * to accommodate guests using 64K pages.
 124 */
 125static const MemMapEntry a15memmap[] = {
 126    /* Space up to 0x8000000 is reserved for a boot ROM */
 127    [VIRT_FLASH] =              {          0, 0x08000000 },
 128    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 129    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 130    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 131    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 132    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 133    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 134    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 135    /* This redistributor space allows up to 2*64kB*123 CPUs */
 136    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 137    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 138    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 139    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 140    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 141    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 142    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 143    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 144    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 145    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 146    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 147    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 148    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 149    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 150    /* Second PCIe window, 512GB wide at the 512GB boundary */
 151    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 152};
 153
 154static const int a15irqmap[] = {
 155    [VIRT_UART] = 1,
 156    [VIRT_RTC] = 2,
 157    [VIRT_PCIE] = 3, /* ... to 6 */
 158    [VIRT_GPIO] = 7,
 159    [VIRT_SECURE_UART] = 8,
 160    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 161    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 162    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 163};
 164
 165static const char *valid_cpus[] = {
 166    "cortex-a15",
 167    "cortex-a53",
 168    "cortex-a57",
 169    "host",
 170};
 171
 172static bool cpuname_valid(const char *cpu)
 173{
 174    int i;
 175
 176    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 177        if (strcmp(cpu, valid_cpus[i]) == 0) {
 178            return true;
 179        }
 180    }
 181    return false;
 182}
 183
 184static void create_fdt(VirtMachineState *vms)
 185{
 186    void *fdt = create_device_tree(&vms->fdt_size);
 187
 188    if (!fdt) {
 189        error_report("create_device_tree() failed");
 190        exit(1);
 191    }
 192
 193    vms->fdt = fdt;
 194
 195    /* Header */
 196    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 197    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 198    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 199
 200    /*
 201     * /chosen and /memory nodes must exist for load_dtb
 202     * to fill in necessary properties later
 203     */
 204    qemu_fdt_add_subnode(fdt, "/chosen");
 205    qemu_fdt_add_subnode(fdt, "/memory");
 206    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 207
 208    /* Clock node, for the benefit of the UART. The kernel device tree
 209     * binding documentation claims the PL011 node clock properties are
 210     * optional but in practice if you omit them the kernel refuses to
 211     * probe for the device.
 212     */
 213    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 214    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 215    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 216    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 217    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 218    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 219                                "clk24mhz");
 220    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 221
 222    if (have_numa_distance) {
 223        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 224        uint32_t *matrix = g_malloc0(size);
 225        int idx, i, j;
 226
 227        for (i = 0; i < nb_numa_nodes; i++) {
 228            for (j = 0; j < nb_numa_nodes; j++) {
 229                idx = (i * nb_numa_nodes + j) * 3;
 230                matrix[idx + 0] = cpu_to_be32(i);
 231                matrix[idx + 1] = cpu_to_be32(j);
 232                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 233            }
 234        }
 235
 236        qemu_fdt_add_subnode(fdt, "/distance-map");
 237        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 238                                "numa-distance-map-v1");
 239        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 240                         matrix, size);
 241        g_free(matrix);
 242    }
 243}
 244
 245static void fdt_add_psci_node(const VirtMachineState *vms)
 246{
 247    uint32_t cpu_suspend_fn;
 248    uint32_t cpu_off_fn;
 249    uint32_t cpu_on_fn;
 250    uint32_t migrate_fn;
 251    void *fdt = vms->fdt;
 252    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 253    const char *psci_method;
 254
 255    switch (vms->psci_conduit) {
 256    case QEMU_PSCI_CONDUIT_DISABLED:
 257        return;
 258    case QEMU_PSCI_CONDUIT_HVC:
 259        psci_method = "hvc";
 260        break;
 261    case QEMU_PSCI_CONDUIT_SMC:
 262        psci_method = "smc";
 263        break;
 264    default:
 265        g_assert_not_reached();
 266    }
 267
 268    qemu_fdt_add_subnode(fdt, "/psci");
 269    if (armcpu->psci_version == 2) {
 270        const char comp[] = "arm,psci-0.2\0arm,psci";
 271        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 272
 273        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 274        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 275            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 276            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 277            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 278        } else {
 279            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 280            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 281            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 282        }
 283    } else {
 284        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 285
 286        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 287        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 288        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 289        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 290    }
 291
 292    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 293     * to the instruction that should be used to invoke PSCI functions.
 294     * However, the device tree binding uses 'method' instead, so that is
 295     * what we should use here.
 296     */
 297    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 298
 299    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 300    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 301    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 302    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 303}
 304
 305static void fdt_add_timer_nodes(const VirtMachineState *vms)
 306{
 307    /* On real hardware these interrupts are level-triggered.
 308     * On KVM they were edge-triggered before host kernel version 4.4,
 309     * and level-triggered afterwards.
 310     * On emulated QEMU they are level-triggered.
 311     *
 312     * Getting the DTB info about them wrong is awkward for some
 313     * guest kernels:
 314     *  pre-4.8 ignore the DT and leave the interrupt configured
 315     *   with whatever the GIC reset value (or the bootloader) left it at
 316     *  4.8 before rc6 honour the incorrect data by programming it back
 317     *   into the GIC, causing problems
 318     *  4.8rc6 and later ignore the DT and always write "level triggered"
 319     *   into the GIC
 320     *
 321     * For backwards-compatibility, virt-2.8 and earlier will continue
 322     * to say these are edge-triggered, but later machines will report
 323     * the correct information.
 324     */
 325    ARMCPU *armcpu;
 326    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 327    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 328
 329    if (vmc->claim_edge_triggered_timers) {
 330        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 331    }
 332
 333    if (vms->gic_version == 2) {
 334        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 335                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 336                             (1 << vms->smp_cpus) - 1);
 337    }
 338
 339    qemu_fdt_add_subnode(vms->fdt, "/timer");
 340
 341    armcpu = ARM_CPU(qemu_get_cpu(0));
 342    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 343        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 344        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 345                         compat, sizeof(compat));
 346    } else {
 347        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 348                                "arm,armv7-timer");
 349    }
 350    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 351    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 352                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 353                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 354                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 355                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 356}
 357
 358static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 359{
 360    int cpu;
 361    int addr_cells = 1;
 362    const MachineState *ms = MACHINE(vms);
 363
 364    /*
 365     * From Documentation/devicetree/bindings/arm/cpus.txt
 366     *  On ARM v8 64-bit systems value should be set to 2,
 367     *  that corresponds to the MPIDR_EL1 register size.
 368     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 369     *  in the system, #address-cells can be set to 1, since
 370     *  MPIDR_EL1[63:32] bits are not used for CPUs
 371     *  identification.
 372     *
 373     *  Here we actually don't know whether our system is 32- or 64-bit one.
 374     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 375     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 376     */
 377    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 378        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 379
 380        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 381            addr_cells = 2;
 382            break;
 383        }
 384    }
 385
 386    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 387    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 388    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 389
 390    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 391        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 392        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 393        CPUState *cs = CPU(armcpu);
 394
 395        qemu_fdt_add_subnode(vms->fdt, nodename);
 396        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 397        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 398                                    armcpu->dtb_compatible);
 399
 400        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 401            && vms->smp_cpus > 1) {
 402            qemu_fdt_setprop_string(vms->fdt, nodename,
 403                                        "enable-method", "psci");
 404        }
 405
 406        if (addr_cells == 2) {
 407            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 408                                 armcpu->mp_affinity);
 409        } else {
 410            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 411                                  armcpu->mp_affinity);
 412        }
 413
 414        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 415            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 416                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 417        }
 418
 419        g_free(nodename);
 420    }
 421}
 422
 423static void fdt_add_its_gic_node(VirtMachineState *vms)
 424{
 425    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 426    qemu_fdt_add_subnode(vms->fdt, "/intc/its");
 427    qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
 428                            "arm,gic-v3-its");
 429    qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
 430    qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
 431                                 2, vms->memmap[VIRT_GIC_ITS].base,
 432                                 2, vms->memmap[VIRT_GIC_ITS].size);
 433    qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
 434}
 435
 436static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 437{
 438    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 439    qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
 440    qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
 441                            "arm,gic-v2m-frame");
 442    qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
 443    qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
 444                                 2, vms->memmap[VIRT_GIC_V2M].base,
 445                                 2, vms->memmap[VIRT_GIC_V2M].size);
 446    qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
 447}
 448
 449static void fdt_add_gic_node(VirtMachineState *vms)
 450{
 451    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 452    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 453
 454    qemu_fdt_add_subnode(vms->fdt, "/intc");
 455    qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
 456    qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
 457    qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
 458    qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
 459    qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
 460    if (vms->gic_version == 3) {
 461        qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
 462                                "arm,gic-v3");
 463        qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
 464                                     2, vms->memmap[VIRT_GIC_DIST].base,
 465                                     2, vms->memmap[VIRT_GIC_DIST].size,
 466                                     2, vms->memmap[VIRT_GIC_REDIST].base,
 467                                     2, vms->memmap[VIRT_GIC_REDIST].size);
 468        if (vms->virt) {
 469            qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
 470                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
 471                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 472        }
 473    } else {
 474        /* 'cortex-a15-gic' means 'GIC v2' */
 475        qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
 476                                "arm,cortex-a15-gic");
 477        qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
 478                                      2, vms->memmap[VIRT_GIC_DIST].base,
 479                                      2, vms->memmap[VIRT_GIC_DIST].size,
 480                                      2, vms->memmap[VIRT_GIC_CPU].base,
 481                                      2, vms->memmap[VIRT_GIC_CPU].size);
 482    }
 483
 484    qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
 485}
 486
 487static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 488{
 489    CPUState *cpu;
 490    ARMCPU *armcpu;
 491    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 492
 493    CPU_FOREACH(cpu) {
 494        armcpu = ARM_CPU(cpu);
 495        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
 496            (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
 497            return;
 498        }
 499    }
 500
 501    if (vms->gic_version == 2) {
 502        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 503                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 504                             (1 << vms->smp_cpus) - 1);
 505    }
 506
 507    armcpu = ARM_CPU(qemu_get_cpu(0));
 508    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 509    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 510        const char compat[] = "arm,armv8-pmuv3";
 511        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 512                         compat, sizeof(compat));
 513        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 514                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 515    }
 516}
 517
 518static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 519{
 520    const char *itsclass = its_class_name();
 521    DeviceState *dev;
 522
 523    if (!itsclass) {
 524        /* Do nothing if not supported */
 525        return;
 526    }
 527
 528    dev = qdev_create(NULL, itsclass);
 529
 530    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 531                             &error_abort);
 532    qdev_init_nofail(dev);
 533    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 534
 535    fdt_add_its_gic_node(vms);
 536}
 537
 538static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 539{
 540    int i;
 541    int irq = vms->irqmap[VIRT_GIC_V2M];
 542    DeviceState *dev;
 543
 544    dev = qdev_create(NULL, "arm-gicv2m");
 545    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 546    qdev_prop_set_uint32(dev, "base-spi", irq);
 547    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 548    qdev_init_nofail(dev);
 549
 550    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 551        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 552    }
 553
 554    fdt_add_v2m_gic_node(vms);
 555}
 556
 557static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 558{
 559    /* We create a standalone GIC */
 560    DeviceState *gicdev;
 561    SysBusDevice *gicbusdev;
 562    const char *gictype;
 563    int type = vms->gic_version, i;
 564
 565    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 566
 567    gicdev = qdev_create(NULL, gictype);
 568    qdev_prop_set_uint32(gicdev, "revision", type);
 569    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 570    /* Note that the num-irq property counts both internal and external
 571     * interrupts; there are always 32 of the former (mandated by GIC spec).
 572     */
 573    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 574    if (!kvm_irqchip_in_kernel()) {
 575        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 576    }
 577    qdev_init_nofail(gicdev);
 578    gicbusdev = SYS_BUS_DEVICE(gicdev);
 579    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 580    if (type == 3) {
 581        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 582    } else {
 583        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 584    }
 585
 586    /* Wire the outputs from each CPU's generic timer and the GICv3
 587     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 588     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 589     */
 590    for (i = 0; i < smp_cpus; i++) {
 591        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 592        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 593        int irq;
 594        /* Mapping from the output timer irq lines from the CPU to the
 595         * GIC PPI inputs we use for the virt board.
 596         */
 597        const int timer_irq[] = {
 598            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 599            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 600            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 601            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 602        };
 603
 604        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 605            qdev_connect_gpio_out(cpudev, irq,
 606                                  qdev_get_gpio_in(gicdev,
 607                                                   ppibase + timer_irq[irq]));
 608        }
 609
 610        qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
 611                                    qdev_get_gpio_in(gicdev, ppibase
 612                                                     + ARCH_GICV3_MAINT_IRQ));
 613
 614        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 615        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 616                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 617        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 618                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 619        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 620                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 621    }
 622
 623    for (i = 0; i < NUM_IRQS; i++) {
 624        pic[i] = qdev_get_gpio_in(gicdev, i);
 625    }
 626
 627    fdt_add_gic_node(vms);
 628
 629    if (type == 3 && vms->its) {
 630        create_its(vms, gicdev);
 631    } else if (type == 2) {
 632        create_v2m(vms, pic);
 633    }
 634}
 635
 636static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 637                        MemoryRegion *mem, Chardev *chr)
 638{
 639    char *nodename;
 640    hwaddr base = vms->memmap[uart].base;
 641    hwaddr size = vms->memmap[uart].size;
 642    int irq = vms->irqmap[uart];
 643    const char compat[] = "arm,pl011\0arm,primecell";
 644    const char clocknames[] = "uartclk\0apb_pclk";
 645    DeviceState *dev = qdev_create(NULL, "pl011");
 646    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 647
 648    qdev_prop_set_chr(dev, "chardev", chr);
 649    qdev_init_nofail(dev);
 650    memory_region_add_subregion(mem, base,
 651                                sysbus_mmio_get_region(s, 0));
 652    sysbus_connect_irq(s, 0, pic[irq]);
 653
 654    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 655    qemu_fdt_add_subnode(vms->fdt, nodename);
 656    /* Note that we can't use setprop_string because of the embedded NUL */
 657    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 658                         compat, sizeof(compat));
 659    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 660                                     2, base, 2, size);
 661    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 662                               GIC_FDT_IRQ_TYPE_SPI, irq,
 663                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 664    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 665                               vms->clock_phandle, vms->clock_phandle);
 666    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 667                         clocknames, sizeof(clocknames));
 668
 669    if (uart == VIRT_UART) {
 670        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 671    } else {
 672        /* Mark as not usable by the normal world */
 673        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 674        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 675    }
 676
 677    g_free(nodename);
 678}
 679
 680static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 681{
 682    char *nodename;
 683    hwaddr base = vms->memmap[VIRT_RTC].base;
 684    hwaddr size = vms->memmap[VIRT_RTC].size;
 685    int irq = vms->irqmap[VIRT_RTC];
 686    const char compat[] = "arm,pl031\0arm,primecell";
 687
 688    sysbus_create_simple("pl031", base, pic[irq]);
 689
 690    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 691    qemu_fdt_add_subnode(vms->fdt, nodename);
 692    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 693    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 694                                 2, base, 2, size);
 695    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 696                           GIC_FDT_IRQ_TYPE_SPI, irq,
 697                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 698    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 699    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 700    g_free(nodename);
 701}
 702
 703static DeviceState *gpio_key_dev;
 704static void virt_powerdown_req(Notifier *n, void *opaque)
 705{
 706    /* use gpio Pin 3 for power button event */
 707    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 708}
 709
 710static Notifier virt_system_powerdown_notifier = {
 711    .notify = virt_powerdown_req
 712};
 713
 714static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 715{
 716    char *nodename;
 717    DeviceState *pl061_dev;
 718    hwaddr base = vms->memmap[VIRT_GPIO].base;
 719    hwaddr size = vms->memmap[VIRT_GPIO].size;
 720    int irq = vms->irqmap[VIRT_GPIO];
 721    const char compat[] = "arm,pl061\0arm,primecell";
 722
 723    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 724
 725    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 726    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 727    qemu_fdt_add_subnode(vms->fdt, nodename);
 728    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 729                                 2, base, 2, size);
 730    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 731    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 732    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 733    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 734                           GIC_FDT_IRQ_TYPE_SPI, irq,
 735                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 736    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 737    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 738    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 739
 740    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 741                                        qdev_get_gpio_in(pl061_dev, 3));
 742    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 743    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 744    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 745    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 746
 747    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 748    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 749                            "label", "GPIO Key Poweroff");
 750    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 751                          KEY_POWER);
 752    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 753                           "gpios", phandle, 3, 0);
 754
 755    /* connect powerdown request */
 756    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 757
 758    g_free(nodename);
 759}
 760
 761static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 762{
 763    int i;
 764    hwaddr size = vms->memmap[VIRT_MMIO].size;
 765
 766    /* We create the transports in forwards order. Since qbus_realize()
 767     * prepends (not appends) new child buses, the incrementing loop below will
 768     * create a list of virtio-mmio buses with decreasing base addresses.
 769     *
 770     * When a -device option is processed from the command line,
 771     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 772     * order. The upshot is that -device options in increasing command line
 773     * order are mapped to virtio-mmio buses with decreasing base addresses.
 774     *
 775     * When this code was originally written, that arrangement ensured that the
 776     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 777     * the first -device on the command line. (The end-to-end order is a
 778     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 779     * guest kernel's name-to-address assignment strategy.)
 780     *
 781     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 782     * the message, if not necessarily the code, of commit 70161ff336.
 783     * Therefore the loop now establishes the inverse of the original intent.
 784     *
 785     * Unfortunately, we can't counteract the kernel change by reversing the
 786     * loop; it would break existing command lines.
 787     *
 788     * In any case, the kernel makes no guarantee about the stability of
 789     * enumeration order of virtio devices (as demonstrated by it changing
 790     * between kernel versions). For reliable and stable identification
 791     * of disks users must use UUIDs or similar mechanisms.
 792     */
 793    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 794        int irq = vms->irqmap[VIRT_MMIO] + i;
 795        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 796
 797        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 798    }
 799
 800    /* We add dtb nodes in reverse order so that they appear in the finished
 801     * device tree lowest address first.
 802     *
 803     * Note that this mapping is independent of the loop above. The previous
 804     * loop influences virtio device to virtio transport assignment, whereas
 805     * this loop controls how virtio transports are laid out in the dtb.
 806     */
 807    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 808        char *nodename;
 809        int irq = vms->irqmap[VIRT_MMIO] + i;
 810        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 811
 812        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 813        qemu_fdt_add_subnode(vms->fdt, nodename);
 814        qemu_fdt_setprop_string(vms->fdt, nodename,
 815                                "compatible", "virtio,mmio");
 816        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 817                                     2, base, 2, size);
 818        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 819                               GIC_FDT_IRQ_TYPE_SPI, irq,
 820                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 821        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 822        g_free(nodename);
 823    }
 824}
 825
 826static void create_one_flash(const char *name, hwaddr flashbase,
 827                             hwaddr flashsize, const char *file,
 828                             MemoryRegion *sysmem)
 829{
 830    /* Create and map a single flash device. We use the same
 831     * parameters as the flash devices on the Versatile Express board.
 832     */
 833    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 834    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 835    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 836    const uint64_t sectorlength = 256 * 1024;
 837
 838    if (dinfo) {
 839        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 840                            &error_abort);
 841    }
 842
 843    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 844    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 845    qdev_prop_set_uint8(dev, "width", 4);
 846    qdev_prop_set_uint8(dev, "device-width", 2);
 847    qdev_prop_set_bit(dev, "big-endian", false);
 848    qdev_prop_set_uint16(dev, "id0", 0x89);
 849    qdev_prop_set_uint16(dev, "id1", 0x18);
 850    qdev_prop_set_uint16(dev, "id2", 0x00);
 851    qdev_prop_set_uint16(dev, "id3", 0x00);
 852    qdev_prop_set_string(dev, "name", name);
 853    qdev_init_nofail(dev);
 854
 855    memory_region_add_subregion(sysmem, flashbase,
 856                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 857
 858    if (file) {
 859        char *fn;
 860        int image_size;
 861
 862        if (drive_get(IF_PFLASH, 0, 0)) {
 863            error_report("The contents of the first flash device may be "
 864                         "specified with -bios or with -drive if=pflash... "
 865                         "but you cannot use both options at once");
 866            exit(1);
 867        }
 868        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 869        if (!fn) {
 870            error_report("Could not find ROM image '%s'", file);
 871            exit(1);
 872        }
 873        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 874        g_free(fn);
 875        if (image_size < 0) {
 876            error_report("Could not load ROM image '%s'", file);
 877            exit(1);
 878        }
 879    }
 880}
 881
 882static void create_flash(const VirtMachineState *vms,
 883                         MemoryRegion *sysmem,
 884                         MemoryRegion *secure_sysmem)
 885{
 886    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 887     * Any file passed via -bios goes in the first of these.
 888     * sysmem is the system memory space. secure_sysmem is the secure view
 889     * of the system, and the first flash device should be made visible only
 890     * there. The second flash device is visible to both secure and nonsecure.
 891     * If sysmem == secure_sysmem this means there is no separate Secure
 892     * address space and both flash devices are generally visible.
 893     */
 894    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 895    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 896    char *nodename;
 897
 898    create_one_flash("virt.flash0", flashbase, flashsize,
 899                     bios_name, secure_sysmem);
 900    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 901                     NULL, sysmem);
 902
 903    if (sysmem == secure_sysmem) {
 904        /* Report both flash devices as a single node in the DT */
 905        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 906        qemu_fdt_add_subnode(vms->fdt, nodename);
 907        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 908        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 909                                     2, flashbase, 2, flashsize,
 910                                     2, flashbase + flashsize, 2, flashsize);
 911        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 912        g_free(nodename);
 913    } else {
 914        /* Report the devices as separate nodes so we can mark one as
 915         * only visible to the secure world.
 916         */
 917        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 918        qemu_fdt_add_subnode(vms->fdt, nodename);
 919        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 920        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 921                                     2, flashbase, 2, flashsize);
 922        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 923        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 924        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 925        g_free(nodename);
 926
 927        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 928        qemu_fdt_add_subnode(vms->fdt, nodename);
 929        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 930        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 931                                     2, flashbase + flashsize, 2, flashsize);
 932        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 933        g_free(nodename);
 934    }
 935}
 936
 937static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 938{
 939    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 940    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 941    FWCfgState *fw_cfg;
 942    char *nodename;
 943
 944    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 945    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 946
 947    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 948    qemu_fdt_add_subnode(vms->fdt, nodename);
 949    qemu_fdt_setprop_string(vms->fdt, nodename,
 950                            "compatible", "qemu,fw-cfg-mmio");
 951    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 952                                 2, base, 2, size);
 953    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 954    g_free(nodename);
 955    return fw_cfg;
 956}
 957
 958static void create_pcie_irq_map(const VirtMachineState *vms,
 959                                uint32_t gic_phandle,
 960                                int first_irq, const char *nodename)
 961{
 962    int devfn, pin;
 963    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 964    uint32_t *irq_map = full_irq_map;
 965
 966    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 967        for (pin = 0; pin < 4; pin++) {
 968            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 969            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 970            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 971            int i;
 972
 973            uint32_t map[] = {
 974                devfn << 8, 0, 0,                           /* devfn */
 975                pin + 1,                                    /* PCI pin */
 976                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 977
 978            /* Convert map to big endian */
 979            for (i = 0; i < 10; i++) {
 980                irq_map[i] = cpu_to_be32(map[i]);
 981            }
 982            irq_map += 10;
 983        }
 984    }
 985
 986    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
 987                     full_irq_map, sizeof(full_irq_map));
 988
 989    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
 990                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 991                           0x7           /* PCI irq */);
 992}
 993
 994static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
 995{
 996    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
 997    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
 998    hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
 999    hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1000    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1001    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1002    hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1003    hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1004    hwaddr base = base_mmio;
1005    int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1006    int irq = vms->irqmap[VIRT_PCIE];
1007    MemoryRegion *mmio_alias;
1008    MemoryRegion *mmio_reg;
1009    MemoryRegion *ecam_alias;
1010    MemoryRegion *ecam_reg;
1011    DeviceState *dev;
1012    char *nodename;
1013    int i;
1014    PCIHostState *pci;
1015
1016    dev = qdev_create(NULL, TYPE_GPEX_HOST);
1017    qdev_init_nofail(dev);
1018
1019    /* Map only the first size_ecam bytes of ECAM space */
1020    ecam_alias = g_new0(MemoryRegion, 1);
1021    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1022    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1023                             ecam_reg, 0, size_ecam);
1024    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1025
1026    /* Map the MMIO window into system address space so as to expose
1027     * the section of PCI MMIO space which starts at the same base address
1028     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1029     * the window).
1030     */
1031    mmio_alias = g_new0(MemoryRegion, 1);
1032    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1033    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1034                             mmio_reg, base_mmio, size_mmio);
1035    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1036
1037    if (vms->highmem) {
1038        /* Map high MMIO space */
1039        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1040
1041        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1042                                 mmio_reg, base_mmio_high, size_mmio_high);
1043        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1044                                    high_mmio_alias);
1045    }
1046
1047    /* Map IO port space */
1048    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1049
1050    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1051        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1052    }
1053
1054    pci = PCI_HOST_BRIDGE(dev);
1055    if (pci->bus) {
1056        for (i = 0; i < nb_nics; i++) {
1057            NICInfo *nd = &nd_table[i];
1058
1059            if (!nd->model) {
1060                nd->model = g_strdup("virtio");
1061            }
1062
1063            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1064        }
1065    }
1066
1067    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1068    qemu_fdt_add_subnode(vms->fdt, nodename);
1069    qemu_fdt_setprop_string(vms->fdt, nodename,
1070                            "compatible", "pci-host-ecam-generic");
1071    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1072    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1073    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1074    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1075                           nr_pcie_buses - 1);
1076    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1077
1078    if (vms->msi_phandle) {
1079        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1080                               vms->msi_phandle);
1081    }
1082
1083    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1084                                 2, base_ecam, 2, size_ecam);
1085
1086    if (vms->highmem) {
1087        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1088                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1089                                     2, base_pio, 2, size_pio,
1090                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1091                                     2, base_mmio, 2, size_mmio,
1092                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1093                                     2, base_mmio_high,
1094                                     2, base_mmio_high, 2, size_mmio_high);
1095    } else {
1096        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1097                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1098                                     2, base_pio, 2, size_pio,
1099                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1100                                     2, base_mmio, 2, size_mmio);
1101    }
1102
1103    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1104    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1105
1106    g_free(nodename);
1107}
1108
1109static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1110{
1111    DeviceState *dev;
1112    SysBusDevice *s;
1113    int i;
1114    ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1115    MemoryRegion *sysmem = get_system_memory();
1116
1117    platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1118    platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1119    platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1120    platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1121
1122    fdt_params->system_params = &platform_bus_params;
1123    fdt_params->binfo = &vms->bootinfo;
1124    fdt_params->intc = "/intc";
1125    /*
1126     * register a machine init done notifier that creates the device tree
1127     * nodes of the platform bus and its children dynamic sysbus devices
1128     */
1129    arm_register_platform_bus_fdt_creator(fdt_params);
1130
1131    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1132    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1133    qdev_prop_set_uint32(dev, "num_irqs",
1134        platform_bus_params.platform_bus_num_irqs);
1135    qdev_prop_set_uint32(dev, "mmio_size",
1136        platform_bus_params.platform_bus_size);
1137    qdev_init_nofail(dev);
1138    s = SYS_BUS_DEVICE(dev);
1139
1140    for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1141        int irqn = platform_bus_params.platform_bus_first_irq + i;
1142        sysbus_connect_irq(s, i, pic[irqn]);
1143    }
1144
1145    memory_region_add_subregion(sysmem,
1146                                platform_bus_params.platform_bus_base,
1147                                sysbus_mmio_get_region(s, 0));
1148}
1149
1150static void create_secure_ram(VirtMachineState *vms,
1151                              MemoryRegion *secure_sysmem)
1152{
1153    MemoryRegion *secram = g_new(MemoryRegion, 1);
1154    char *nodename;
1155    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1156    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1157
1158    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1159                           &error_fatal);
1160    memory_region_add_subregion(secure_sysmem, base, secram);
1161
1162    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1163    qemu_fdt_add_subnode(vms->fdt, nodename);
1164    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1165    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1166    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1167    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1168
1169    g_free(nodename);
1170}
1171
1172static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1173{
1174    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1175                                                 bootinfo);
1176
1177    *fdt_size = board->fdt_size;
1178    return board->fdt;
1179}
1180
1181static void virt_build_smbios(VirtMachineState *vms)
1182{
1183    uint8_t *smbios_tables, *smbios_anchor;
1184    size_t smbios_tables_len, smbios_anchor_len;
1185    const char *product = "QEMU Virtual Machine";
1186
1187    if (!vms->fw_cfg) {
1188        return;
1189    }
1190
1191    if (kvm_enabled()) {
1192        product = "KVM Virtual Machine";
1193    }
1194
1195    smbios_set_defaults("QEMU", product,
1196                        "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1197
1198    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1199                      &smbios_anchor, &smbios_anchor_len);
1200
1201    if (smbios_anchor) {
1202        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1203                        smbios_tables, smbios_tables_len);
1204        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1205                        smbios_anchor, smbios_anchor_len);
1206    }
1207}
1208
1209static
1210void virt_machine_done(Notifier *notifier, void *data)
1211{
1212    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1213                                         machine_done);
1214
1215    virt_acpi_setup(vms);
1216    virt_build_smbios(vms);
1217}
1218
1219static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1220{
1221    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1222    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1223
1224    if (!vmc->disallow_affinity_adjustment) {
1225        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1226         * GIC's target-list limitations. 32-bit KVM hosts currently
1227         * always create clusters of 4 CPUs, but that is expected to
1228         * change when they gain support for gicv3. When KVM is enabled
1229         * it will override the changes we make here, therefore our
1230         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1231         * and to improve SGI efficiency.
1232         */
1233        if (vms->gic_version == 3) {
1234            clustersz = GICV3_TARGETLIST_BITS;
1235        } else {
1236            clustersz = GIC_TARGETLIST_BITS;
1237        }
1238    }
1239    return arm_cpu_mp_affinity(idx, clustersz);
1240}
1241
1242static void machvirt_init(MachineState *machine)
1243{
1244    VirtMachineState *vms = VIRT_MACHINE(machine);
1245    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1246    MachineClass *mc = MACHINE_GET_CLASS(machine);
1247    const CPUArchIdList *possible_cpus;
1248    qemu_irq pic[NUM_IRQS];
1249    MemoryRegion *sysmem = get_system_memory();
1250    MemoryRegion *secure_sysmem = NULL;
1251    int n, virt_max_cpus;
1252    MemoryRegion *ram = g_new(MemoryRegion, 1);
1253    const char *cpu_model = machine->cpu_model;
1254    char **cpustr;
1255    ObjectClass *oc;
1256    const char *typename;
1257    CPUClass *cc;
1258    Error *err = NULL;
1259    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1260
1261    if (!cpu_model) {
1262        cpu_model = "cortex-a15";
1263    }
1264
1265    /* We can probe only here because during property set
1266     * KVM is not available yet
1267     */
1268    if (!vms->gic_version) {
1269        if (!kvm_enabled()) {
1270            error_report("gic-version=host requires KVM");
1271            exit(1);
1272        }
1273
1274        vms->gic_version = kvm_arm_vgic_probe();
1275        if (!vms->gic_version) {
1276            error_report("Unable to determine GIC version supported by host");
1277            exit(1);
1278        }
1279    }
1280
1281    /* Separate the actual CPU model name from any appended features */
1282    cpustr = g_strsplit(cpu_model, ",", 2);
1283
1284    if (!cpuname_valid(cpustr[0])) {
1285        error_report("mach-virt: CPU %s not supported", cpustr[0]);
1286        exit(1);
1287    }
1288
1289    /* If we have an EL3 boot ROM then the assumption is that it will
1290     * implement PSCI itself, so disable QEMU's internal implementation
1291     * so it doesn't get in the way. Instead of starting secondary
1292     * CPUs in PSCI powerdown state we will start them all running and
1293     * let the boot ROM sort them out.
1294     * The usual case is that we do use QEMU's PSCI implementation;
1295     * if the guest has EL2 then we will use SMC as the conduit,
1296     * and otherwise we will use HVC (for backwards compatibility and
1297     * because if we're using KVM then we must use HVC).
1298     */
1299    if (vms->secure && firmware_loaded) {
1300        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1301    } else if (vms->virt) {
1302        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1303    } else {
1304        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1305    }
1306
1307    /* The maximum number of CPUs depends on the GIC version, or on how
1308     * many redistributors we can fit into the memory map.
1309     */
1310    if (vms->gic_version == 3) {
1311        virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1312    } else {
1313        virt_max_cpus = GIC_NCPU;
1314    }
1315
1316    if (max_cpus > virt_max_cpus) {
1317        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1318                     "supported by machine 'mach-virt' (%d)",
1319                     max_cpus, virt_max_cpus);
1320        exit(1);
1321    }
1322
1323    vms->smp_cpus = smp_cpus;
1324
1325    if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1326        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1327        exit(1);
1328    }
1329
1330    if (vms->virt && kvm_enabled()) {
1331        error_report("mach-virt: KVM does not support providing "
1332                     "Virtualization extensions to the guest CPU");
1333        exit(1);
1334    }
1335
1336    if (vms->secure) {
1337        if (kvm_enabled()) {
1338            error_report("mach-virt: KVM does not support Security extensions");
1339            exit(1);
1340        }
1341
1342        /* The Secure view of the world is the same as the NonSecure,
1343         * but with a few extra devices. Create it as a container region
1344         * containing the system memory at low priority; any secure-only
1345         * devices go in at higher priority and take precedence.
1346         */
1347        secure_sysmem = g_new(MemoryRegion, 1);
1348        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1349                           UINT64_MAX);
1350        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1351    }
1352
1353    create_fdt(vms);
1354
1355    oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1356    if (!oc) {
1357        error_report("Unable to find CPU definition");
1358        exit(1);
1359    }
1360    typename = object_class_get_name(oc);
1361
1362    /* convert -smp CPU options specified by the user into global props */
1363    cc = CPU_CLASS(oc);
1364    cc->parse_features(typename, cpustr[1], &err);
1365    g_strfreev(cpustr);
1366    if (err) {
1367        error_report_err(err);
1368        exit(1);
1369    }
1370
1371    possible_cpus = mc->possible_cpu_arch_ids(machine);
1372    for (n = 0; n < possible_cpus->len; n++) {
1373        Object *cpuobj;
1374        CPUState *cs;
1375
1376        if (n >= smp_cpus) {
1377            break;
1378        }
1379
1380        cpuobj = object_new(typename);
1381        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1382                                "mp-affinity", NULL);
1383
1384        cs = CPU(cpuobj);
1385        cs->cpu_index = n;
1386
1387        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1388                          &error_fatal);
1389
1390        if (!vms->secure) {
1391            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1392        }
1393
1394        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1395            object_property_set_bool(cpuobj, false, "has_el2", NULL);
1396        }
1397
1398        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1399            object_property_set_int(cpuobj, vms->psci_conduit,
1400                                    "psci-conduit", NULL);
1401
1402            /* Secondary CPUs start in PSCI powered-down state */
1403            if (n > 0) {
1404                object_property_set_bool(cpuobj, true,
1405                                         "start-powered-off", NULL);
1406            }
1407        }
1408
1409        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1410            object_property_set_bool(cpuobj, false, "pmu", NULL);
1411        }
1412
1413        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1414            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1415                                    "reset-cbar", &error_abort);
1416        }
1417
1418        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1419                                 &error_abort);
1420        if (vms->secure) {
1421            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1422                                     "secure-memory", &error_abort);
1423        }
1424
1425        object_property_set_bool(cpuobj, true, "realized", NULL);
1426        object_unref(cpuobj);
1427    }
1428    fdt_add_timer_nodes(vms);
1429    fdt_add_cpu_nodes(vms);
1430    fdt_add_psci_node(vms);
1431
1432    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1433                                         machine->ram_size);
1434    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1435
1436    create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1437
1438    create_gic(vms, pic);
1439
1440    fdt_add_pmu_nodes(vms);
1441
1442    create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1443
1444    if (vms->secure) {
1445        create_secure_ram(vms, secure_sysmem);
1446        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1447    }
1448
1449    create_rtc(vms, pic);
1450
1451    create_pcie(vms, pic);
1452
1453    create_gpio(vms, pic);
1454
1455    /* Create mmio transports, so the user can create virtio backends
1456     * (which will be automatically plugged in to the transports). If
1457     * no backend is created the transport will just sit harmlessly idle.
1458     */
1459    create_virtio_devices(vms, pic);
1460
1461    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1462    rom_set_fw(vms->fw_cfg);
1463
1464    vms->machine_done.notify = virt_machine_done;
1465    qemu_add_machine_init_done_notifier(&vms->machine_done);
1466
1467    vms->bootinfo.ram_size = machine->ram_size;
1468    vms->bootinfo.kernel_filename = machine->kernel_filename;
1469    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1470    vms->bootinfo.initrd_filename = machine->initrd_filename;
1471    vms->bootinfo.nb_cpus = smp_cpus;
1472    vms->bootinfo.board_id = -1;
1473    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1474    vms->bootinfo.get_dtb = machvirt_dtb;
1475    vms->bootinfo.firmware_loaded = firmware_loaded;
1476    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1477
1478    /*
1479     * arm_load_kernel machine init done notifier registration must
1480     * happen before the platform_bus_create call. In this latter,
1481     * another notifier is registered which adds platform bus nodes.
1482     * Notifiers are executed in registration reverse order.
1483     */
1484    create_platform_bus(vms, pic);
1485}
1486
1487static bool virt_get_secure(Object *obj, Error **errp)
1488{
1489    VirtMachineState *vms = VIRT_MACHINE(obj);
1490
1491    return vms->secure;
1492}
1493
1494static void virt_set_secure(Object *obj, bool value, Error **errp)
1495{
1496    VirtMachineState *vms = VIRT_MACHINE(obj);
1497
1498    vms->secure = value;
1499}
1500
1501static bool virt_get_virt(Object *obj, Error **errp)
1502{
1503    VirtMachineState *vms = VIRT_MACHINE(obj);
1504
1505    return vms->virt;
1506}
1507
1508static void virt_set_virt(Object *obj, bool value, Error **errp)
1509{
1510    VirtMachineState *vms = VIRT_MACHINE(obj);
1511
1512    vms->virt = value;
1513}
1514
1515static bool virt_get_highmem(Object *obj, Error **errp)
1516{
1517    VirtMachineState *vms = VIRT_MACHINE(obj);
1518
1519    return vms->highmem;
1520}
1521
1522static void virt_set_highmem(Object *obj, bool value, Error **errp)
1523{
1524    VirtMachineState *vms = VIRT_MACHINE(obj);
1525
1526    vms->highmem = value;
1527}
1528
1529static bool virt_get_its(Object *obj, Error **errp)
1530{
1531    VirtMachineState *vms = VIRT_MACHINE(obj);
1532
1533    return vms->its;
1534}
1535
1536static void virt_set_its(Object *obj, bool value, Error **errp)
1537{
1538    VirtMachineState *vms = VIRT_MACHINE(obj);
1539
1540    vms->its = value;
1541}
1542
1543static char *virt_get_gic_version(Object *obj, Error **errp)
1544{
1545    VirtMachineState *vms = VIRT_MACHINE(obj);
1546    const char *val = vms->gic_version == 3 ? "3" : "2";
1547
1548    return g_strdup(val);
1549}
1550
1551static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1552{
1553    VirtMachineState *vms = VIRT_MACHINE(obj);
1554
1555    if (!strcmp(value, "3")) {
1556        vms->gic_version = 3;
1557    } else if (!strcmp(value, "2")) {
1558        vms->gic_version = 2;
1559    } else if (!strcmp(value, "host")) {
1560        vms->gic_version = 0; /* Will probe later */
1561    } else {
1562        error_setg(errp, "Invalid gic-version value");
1563        error_append_hint(errp, "Valid values are 3, 2, host.\n");
1564    }
1565}
1566
1567static CpuInstanceProperties
1568virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1569{
1570    MachineClass *mc = MACHINE_GET_CLASS(ms);
1571    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1572
1573    assert(cpu_index < possible_cpus->len);
1574    return possible_cpus->cpus[cpu_index].props;
1575}
1576
1577static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1578{
1579    int n;
1580    VirtMachineState *vms = VIRT_MACHINE(ms);
1581
1582    if (ms->possible_cpus) {
1583        assert(ms->possible_cpus->len == max_cpus);
1584        return ms->possible_cpus;
1585    }
1586
1587    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1588                                  sizeof(CPUArchId) * max_cpus);
1589    ms->possible_cpus->len = max_cpus;
1590    for (n = 0; n < ms->possible_cpus->len; n++) {
1591        ms->possible_cpus->cpus[n].arch_id =
1592            virt_cpu_mp_affinity(vms, n);
1593        ms->possible_cpus->cpus[n].props.has_thread_id = true;
1594        ms->possible_cpus->cpus[n].props.thread_id = n;
1595
1596        /* default distribution of CPUs over NUMA nodes */
1597        if (nb_numa_nodes) {
1598            /* preset values but do not enable them i.e. 'has_node_id = false',
1599             * numa init code will enable them later if manual mapping wasn't
1600             * present on CLI */
1601            ms->possible_cpus->cpus[n].props.node_id = n % nb_numa_nodes;
1602        }
1603    }
1604    return ms->possible_cpus;
1605}
1606
1607static void virt_machine_class_init(ObjectClass *oc, void *data)
1608{
1609    MachineClass *mc = MACHINE_CLASS(oc);
1610
1611    mc->init = machvirt_init;
1612    /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1613     * it later in machvirt_init, where we have more information about the
1614     * configuration of the particular instance.
1615     */
1616    mc->max_cpus = 255;
1617    mc->has_dynamic_sysbus = true;
1618    mc->block_default_type = IF_VIRTIO;
1619    mc->no_cdrom = 1;
1620    mc->pci_allow_0_address = true;
1621    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1622    mc->minimum_page_bits = 12;
1623    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1624    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1625}
1626
1627static const TypeInfo virt_machine_info = {
1628    .name          = TYPE_VIRT_MACHINE,
1629    .parent        = TYPE_MACHINE,
1630    .abstract      = true,
1631    .instance_size = sizeof(VirtMachineState),
1632    .class_size    = sizeof(VirtMachineClass),
1633    .class_init    = virt_machine_class_init,
1634};
1635
1636static void machvirt_machine_init(void)
1637{
1638    type_register_static(&virt_machine_info);
1639}
1640type_init(machvirt_machine_init);
1641
1642static void virt_2_10_instance_init(Object *obj)
1643{
1644    VirtMachineState *vms = VIRT_MACHINE(obj);
1645    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1646
1647    /* EL3 is disabled by default on virt: this makes us consistent
1648     * between KVM and TCG for this board, and it also allows us to
1649     * boot UEFI blobs which assume no TrustZone support.
1650     */
1651    vms->secure = false;
1652    object_property_add_bool(obj, "secure", virt_get_secure,
1653                             virt_set_secure, NULL);
1654    object_property_set_description(obj, "secure",
1655                                    "Set on/off to enable/disable the ARM "
1656                                    "Security Extensions (TrustZone)",
1657                                    NULL);
1658
1659    /* EL2 is also disabled by default, for similar reasons */
1660    vms->virt = false;
1661    object_property_add_bool(obj, "virtualization", virt_get_virt,
1662                             virt_set_virt, NULL);
1663    object_property_set_description(obj, "virtualization",
1664                                    "Set on/off to enable/disable emulating a "
1665                                    "guest CPU which implements the ARM "
1666                                    "Virtualization Extensions",
1667                                    NULL);
1668
1669    /* High memory is enabled by default */
1670    vms->highmem = true;
1671    object_property_add_bool(obj, "highmem", virt_get_highmem,
1672                             virt_set_highmem, NULL);
1673    object_property_set_description(obj, "highmem",
1674                                    "Set on/off to enable/disable using "
1675                                    "physical address space above 32 bits",
1676                                    NULL);
1677    /* Default GIC type is v2 */
1678    vms->gic_version = 2;
1679    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1680                        virt_set_gic_version, NULL);
1681    object_property_set_description(obj, "gic-version",
1682                                    "Set GIC version. "
1683                                    "Valid values are 2, 3 and host", NULL);
1684
1685    if (vmc->no_its) {
1686        vms->its = false;
1687    } else {
1688        /* Default allows ITS instantiation */
1689        vms->its = true;
1690        object_property_add_bool(obj, "its", virt_get_its,
1691                                 virt_set_its, NULL);
1692        object_property_set_description(obj, "its",
1693                                        "Set on/off to enable/disable "
1694                                        "ITS instantiation",
1695                                        NULL);
1696    }
1697
1698    vms->memmap = a15memmap;
1699    vms->irqmap = a15irqmap;
1700}
1701
1702static void virt_machine_2_10_options(MachineClass *mc)
1703{
1704}
1705DEFINE_VIRT_MACHINE_AS_LATEST(2, 10)
1706
1707#define VIRT_COMPAT_2_9 \
1708    HW_COMPAT_2_9
1709
1710static void virt_2_9_instance_init(Object *obj)
1711{
1712    virt_2_10_instance_init(obj);
1713}
1714
1715static void virt_machine_2_9_options(MachineClass *mc)
1716{
1717    virt_machine_2_10_options(mc);
1718    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1719}
1720DEFINE_VIRT_MACHINE(2, 9)
1721
1722#define VIRT_COMPAT_2_8 \
1723    HW_COMPAT_2_8
1724
1725static void virt_2_8_instance_init(Object *obj)
1726{
1727    virt_2_9_instance_init(obj);
1728}
1729
1730static void virt_machine_2_8_options(MachineClass *mc)
1731{
1732    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1733
1734    virt_machine_2_9_options(mc);
1735    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1736    /* For 2.8 and earlier we falsely claimed in the DT that
1737     * our timers were edge-triggered, not level-triggered.
1738     */
1739    vmc->claim_edge_triggered_timers = true;
1740}
1741DEFINE_VIRT_MACHINE(2, 8)
1742
1743#define VIRT_COMPAT_2_7 \
1744    HW_COMPAT_2_7
1745
1746static void virt_2_7_instance_init(Object *obj)
1747{
1748    virt_2_8_instance_init(obj);
1749}
1750
1751static void virt_machine_2_7_options(MachineClass *mc)
1752{
1753    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1754
1755    virt_machine_2_8_options(mc);
1756    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1757    /* ITS was introduced with 2.8 */
1758    vmc->no_its = true;
1759    /* Stick with 1K pages for migration compatibility */
1760    mc->minimum_page_bits = 0;
1761}
1762DEFINE_VIRT_MACHINE(2, 7)
1763
1764#define VIRT_COMPAT_2_6 \
1765    HW_COMPAT_2_6
1766
1767static void virt_2_6_instance_init(Object *obj)
1768{
1769    virt_2_7_instance_init(obj);
1770}
1771
1772static void virt_machine_2_6_options(MachineClass *mc)
1773{
1774    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1775
1776    virt_machine_2_7_options(mc);
1777    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1778    vmc->disallow_affinity_adjustment = true;
1779    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1780    vmc->no_pmu = true;
1781}
1782DEFINE_VIRT_MACHINE(2, 6)
1783