qemu/hw/audio/fmopl.c
<<
>>
Prefs
   1/*
   2**
   3** File: fmopl.c -- software implementation of FM sound generator
   4**
   5** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
   6**
   7** Version 0.37a
   8**
   9*/
  10
  11/*
  12        preliminary :
  13        Problem :
  14        note:
  15*/
  16
  17/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
  18 *
  19 * This library is free software; you can redistribute it and/or
  20 * modify it under the terms of the GNU Lesser General Public
  21 * License as published by the Free Software Foundation; either
  22 * version 2.1 of the License, or (at your option) any later version.
  23 *
  24 * This library is distributed in the hope that it will be useful,
  25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * Lesser General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU Lesser General Public
  30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  31 */
  32
  33#include "qemu/osdep.h"
  34#include <math.h>
  35//#include "driver.h"           /* use M.A.M.E. */
  36#include "fmopl.h"
  37#include "qemu/osdep.h"
  38#ifndef PI
  39#define PI 3.14159265358979323846
  40#endif
  41
  42/* -------------------- for debug --------------------- */
  43/* #define OPL_OUTPUT_LOG */
  44#ifdef OPL_OUTPUT_LOG
  45static FILE *opl_dbg_fp = NULL;
  46static FM_OPL *opl_dbg_opl[16];
  47static int opl_dbg_maxchip,opl_dbg_chip;
  48#endif
  49
  50/* -------------------- preliminary define section --------------------- */
  51/* attack/decay rate time rate */
  52#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
  53#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
  54
  55#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
  56
  57#define FREQ_BITS 24                    /* frequency turn          */
  58
  59/* counter bits = 20 , octerve 7 */
  60#define FREQ_RATE   (1<<(FREQ_BITS-20))
  61#define TL_BITS    (FREQ_BITS+2)
  62
  63/* final output shift , limit minimum and maximum */
  64#define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
  65#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
  66#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
  67
  68/* -------------------- quality selection --------------------- */
  69
  70/* sinwave entries */
  71/* used static memory = SIN_ENT * 4 (byte) */
  72#define SIN_ENT 2048
  73
  74/* output level entries (envelope,sinwave) */
  75/* envelope counter lower bits */
  76#define ENV_BITS 16
  77/* envelope output entries */
  78#define EG_ENT   4096
  79/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
  80/* used static  memory = EG_ENT*4 (byte)                     */
  81
  82#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
  83#define EG_DED   EG_OFF
  84#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
  85#define EG_AED   EG_DST
  86#define EG_AST   0                       /* ATTACK START */
  87
  88#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
  89
  90/* LFO table entries */
  91#define VIB_ENT 512
  92#define VIB_SHIFT (32-9)
  93#define AMS_ENT 512
  94#define AMS_SHIFT (32-9)
  95
  96#define VIB_RATE 256
  97
  98/* -------------------- local defines , macros --------------------- */
  99
 100/* register number to channel number , slot offset */
 101#define SLOT1 0
 102#define SLOT2 1
 103
 104/* envelope phase */
 105#define ENV_MOD_RR  0x00
 106#define ENV_MOD_DR  0x01
 107#define ENV_MOD_AR  0x02
 108
 109/* -------------------- tables --------------------- */
 110static const int slot_array[32]=
 111{
 112         0, 2, 4, 1, 3, 5,-1,-1,
 113         6, 8,10, 7, 9,11,-1,-1,
 114        12,14,16,13,15,17,-1,-1,
 115        -1,-1,-1,-1,-1,-1,-1,-1
 116};
 117
 118/* key scale level */
 119/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
 120#define DV (EG_STEP/2)
 121static const uint32_t KSL_TABLE[8*16]=
 122{
 123        /* OCT 0 */
 124         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 125         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 126         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 127         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 128        /* OCT 1 */
 129         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 130         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 131         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
 132         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
 133        /* OCT 2 */
 134         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 135         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
 136         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
 137         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
 138        /* OCT 3 */
 139         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
 140         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
 141         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
 142         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
 143        /* OCT 4 */
 144         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
 145         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
 146         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
 147        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
 148        /* OCT 5 */
 149         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
 150         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
 151        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
 152        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
 153        /* OCT 6 */
 154         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
 155        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
 156        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
 157        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
 158        /* OCT 7 */
 159         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
 160        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
 161        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
 162        19.875/DV,20.250/DV,20.625/DV,21.000/DV
 163};
 164#undef DV
 165
 166/* sustain lebel table (3db per step) */
 167/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
 168#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
 169static const int32_t SL_TABLE[16]={
 170 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
 171 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
 172};
 173#undef SC
 174
 175#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
 176/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
 177/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
 178/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
 179static int32_t *TL_TABLE;
 180
 181/* pointers to TL_TABLE with sinwave output offset */
 182static int32_t **SIN_TABLE;
 183
 184/* LFO table */
 185static int32_t *AMS_TABLE;
 186static int32_t *VIB_TABLE;
 187
 188/* envelope output curve table */
 189/* attack + decay + OFF */
 190static int32_t ENV_CURVE[2*EG_ENT+1];
 191
 192/* multiple table */
 193#define ML 2
 194static const uint32_t MUL_TABLE[16]= {
 195/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
 196   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
 197   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
 198};
 199#undef ML
 200
 201/* dummy attack / decay rate ( when rate == 0 ) */
 202static int32_t RATE_0[16]=
 203{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 204
 205/* -------------------- static state --------------------- */
 206
 207/* lock level of common table */
 208static int num_lock = 0;
 209
 210/* work table */
 211static void *cur_chip = NULL;   /* current chip point */
 212/* currenct chip state */
 213/* static OPLSAMPLE  *bufL,*bufR; */
 214static OPL_CH *S_CH;
 215static OPL_CH *E_CH;
 216static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
 217
 218static int32_t outd[1];
 219static int32_t ams;
 220static int32_t vib;
 221static int32_t *ams_table;
 222static int32_t *vib_table;
 223static int32_t amsIncr;
 224static int32_t vibIncr;
 225static int32_t feedback2;               /* connect for SLOT 2 */
 226
 227/* log output level */
 228#define LOG_ERR  3      /* ERROR       */
 229#define LOG_WAR  2      /* WARNING     */
 230#define LOG_INF  1      /* INFORMATION */
 231
 232//#define LOG_LEVEL LOG_INF
 233#define LOG_LEVEL       LOG_ERR
 234
 235//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
 236#define LOG(n,x)
 237
 238/* --------------------- subroutines  --------------------- */
 239
 240static inline int Limit( int val, int max, int min ) {
 241        if ( val > max )
 242                val = max;
 243        else if ( val < min )
 244                val = min;
 245
 246        return val;
 247}
 248
 249/* status set and IRQ handling */
 250static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
 251{
 252        /* set status flag */
 253        OPL->status |= flag;
 254        if(!(OPL->status & 0x80))
 255        {
 256                if(OPL->status & OPL->statusmask)
 257                {       /* IRQ on */
 258                        OPL->status |= 0x80;
 259                }
 260        }
 261}
 262
 263/* status reset and IRQ handling */
 264static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
 265{
 266        /* reset status flag */
 267        OPL->status &=~flag;
 268        if((OPL->status & 0x80))
 269        {
 270                if (!(OPL->status & OPL->statusmask) )
 271                {
 272                        OPL->status &= 0x7f;
 273                }
 274        }
 275}
 276
 277/* IRQ mask set */
 278static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
 279{
 280        OPL->statusmask = flag;
 281        /* IRQ handling check */
 282        OPL_STATUS_SET(OPL,0);
 283        OPL_STATUS_RESET(OPL,0);
 284}
 285
 286/* ----- key on  ----- */
 287static inline void OPL_KEYON(OPL_SLOT *SLOT)
 288{
 289        /* sin wave restart */
 290        SLOT->Cnt = 0;
 291        /* set attack */
 292        SLOT->evm = ENV_MOD_AR;
 293        SLOT->evs = SLOT->evsa;
 294        SLOT->evc = EG_AST;
 295        SLOT->eve = EG_AED;
 296}
 297/* ----- key off ----- */
 298static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
 299{
 300        if( SLOT->evm > ENV_MOD_RR)
 301        {
 302                /* set envelope counter from envleope output */
 303                SLOT->evm = ENV_MOD_RR;
 304                if( !(SLOT->evc&EG_DST) )
 305                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
 306                        SLOT->evc = EG_DST;
 307                SLOT->eve = EG_DED;
 308                SLOT->evs = SLOT->evsr;
 309        }
 310}
 311
 312/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
 313/* return : envelope output */
 314static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
 315{
 316        /* calcrate envelope generator */
 317        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
 318        {
 319                switch( SLOT->evm ){
 320                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
 321                        /* next DR */
 322                        SLOT->evm = ENV_MOD_DR;
 323                        SLOT->evc = EG_DST;
 324                        SLOT->eve = SLOT->SL;
 325                        SLOT->evs = SLOT->evsd;
 326                        break;
 327                case ENV_MOD_DR: /* DECAY -> SL or RR */
 328                        SLOT->evc = SLOT->SL;
 329                        SLOT->eve = EG_DED;
 330                        if(SLOT->eg_typ)
 331                        {
 332                                SLOT->evs = 0;
 333                        }
 334                        else
 335                        {
 336                                SLOT->evm = ENV_MOD_RR;
 337                                SLOT->evs = SLOT->evsr;
 338                        }
 339                        break;
 340                case ENV_MOD_RR: /* RR -> OFF */
 341                        SLOT->evc = EG_OFF;
 342                        SLOT->eve = EG_OFF+1;
 343                        SLOT->evs = 0;
 344                        break;
 345                }
 346        }
 347        /* calcrate envelope */
 348        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
 349}
 350
 351/* set algorithm connection */
 352static void set_algorithm( OPL_CH *CH)
 353{
 354        int32_t *carrier = &outd[0];
 355        CH->connect1 = CH->CON ? carrier : &feedback2;
 356        CH->connect2 = carrier;
 357}
 358
 359/* ---------- frequency counter for operater update ---------- */
 360static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
 361{
 362        int ksr;
 363
 364        /* frequency step counter */
 365        SLOT->Incr = CH->fc * SLOT->mul;
 366        ksr = CH->kcode >> SLOT->KSR;
 367
 368        if( SLOT->ksr != ksr )
 369        {
 370                SLOT->ksr = ksr;
 371                /* attack , decay rate recalcration */
 372                SLOT->evsa = SLOT->AR[ksr];
 373                SLOT->evsd = SLOT->DR[ksr];
 374                SLOT->evsr = SLOT->RR[ksr];
 375        }
 376        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 377}
 378
 379/* set multi,am,vib,EG-TYP,KSR,mul */
 380static inline void set_mul(FM_OPL *OPL,int slot,int v)
 381{
 382        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 383        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 384
 385        SLOT->mul    = MUL_TABLE[v&0x0f];
 386        SLOT->KSR    = (v&0x10) ? 0 : 2;
 387        SLOT->eg_typ = (v&0x20)>>5;
 388        SLOT->vib    = (v&0x40);
 389        SLOT->ams    = (v&0x80);
 390        CALC_FCSLOT(CH,SLOT);
 391}
 392
 393/* set ksl & tl */
 394static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
 395{
 396        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 397        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 398        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
 399
 400        SLOT->ksl = ksl ? 3-ksl : 31;
 401        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
 402
 403        if( !(OPL->mode&0x80) )
 404        {       /* not CSM latch total level */
 405                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 406        }
 407}
 408
 409/* set attack rate & decay rate  */
 410static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
 411{
 412        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 413        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 414        int ar = v>>4;
 415        int dr = v&0x0f;
 416
 417        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
 418        SLOT->evsa = SLOT->AR[SLOT->ksr];
 419        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
 420
 421        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
 422        SLOT->evsd = SLOT->DR[SLOT->ksr];
 423        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
 424}
 425
 426/* set sustain level & release rate */
 427static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
 428{
 429        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 430        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 431        int sl = v>>4;
 432        int rr = v & 0x0f;
 433
 434        SLOT->SL = SL_TABLE[sl];
 435        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
 436        SLOT->RR = &OPL->DR_TABLE[rr<<2];
 437        SLOT->evsr = SLOT->RR[SLOT->ksr];
 438        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
 439}
 440
 441/* operator output calcrator */
 442#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
 443/* ---------- calcrate one of channel ---------- */
 444static inline void OPL_CALC_CH( OPL_CH *CH )
 445{
 446        uint32_t env_out;
 447        OPL_SLOT *SLOT;
 448
 449        feedback2 = 0;
 450        /* SLOT 1 */
 451        SLOT = &CH->SLOT[SLOT1];
 452        env_out=OPL_CALC_SLOT(SLOT);
 453        if( env_out < EG_ENT-1 )
 454        {
 455                /* PG */
 456                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 457                else          SLOT->Cnt += SLOT->Incr;
 458                /* connectoion */
 459                if(CH->FB)
 460                {
 461                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
 462                        CH->op1_out[1] = CH->op1_out[0];
 463                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 464                }
 465                else
 466                {
 467                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
 468                }
 469        }else
 470        {
 471                CH->op1_out[1] = CH->op1_out[0];
 472                CH->op1_out[0] = 0;
 473        }
 474        /* SLOT 2 */
 475        SLOT = &CH->SLOT[SLOT2];
 476        env_out=OPL_CALC_SLOT(SLOT);
 477        if( env_out < EG_ENT-1 )
 478        {
 479                /* PG */
 480                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 481                else          SLOT->Cnt += SLOT->Incr;
 482                /* connectoion */
 483                outd[0] += OP_OUT(SLOT,env_out, feedback2);
 484        }
 485}
 486
 487/* ---------- calcrate rhythm block ---------- */
 488#define WHITE_NOISE_db 6.0
 489static inline void OPL_CALC_RH( OPL_CH *CH )
 490{
 491        uint32_t env_tam,env_sd,env_top,env_hh;
 492        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
 493        int32_t tone8;
 494
 495        OPL_SLOT *SLOT;
 496        int env_out;
 497
 498        /* BD : same as FM serial mode and output level is large */
 499        feedback2 = 0;
 500        /* SLOT 1 */
 501        SLOT = &CH[6].SLOT[SLOT1];
 502        env_out=OPL_CALC_SLOT(SLOT);
 503        if( env_out < EG_ENT-1 )
 504        {
 505                /* PG */
 506                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 507                else          SLOT->Cnt += SLOT->Incr;
 508                /* connectoion */
 509                if(CH[6].FB)
 510                {
 511                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
 512                        CH[6].op1_out[1] = CH[6].op1_out[0];
 513                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 514                }
 515                else
 516                {
 517                        feedback2 = OP_OUT(SLOT,env_out,0);
 518                }
 519        }else
 520        {
 521                feedback2 = 0;
 522                CH[6].op1_out[1] = CH[6].op1_out[0];
 523                CH[6].op1_out[0] = 0;
 524        }
 525        /* SLOT 2 */
 526        SLOT = &CH[6].SLOT[SLOT2];
 527        env_out=OPL_CALC_SLOT(SLOT);
 528        if( env_out < EG_ENT-1 )
 529        {
 530                /* PG */
 531                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 532                else          SLOT->Cnt += SLOT->Incr;
 533                /* connectoion */
 534                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
 535        }
 536
 537        // SD  (17) = mul14[fnum7] + white noise
 538        // TAM (15) = mul15[fnum8]
 539        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
 540        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
 541        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
 542        env_tam=OPL_CALC_SLOT(SLOT8_1);
 543        env_top=OPL_CALC_SLOT(SLOT8_2);
 544        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
 545
 546        /* PG */
 547        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
 548        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
 549        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
 550        else             SLOT7_2->Cnt += (CH[7].fc*8);
 551        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
 552        else             SLOT8_1->Cnt += SLOT8_1->Incr;
 553        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
 554        else             SLOT8_2->Cnt += (CH[8].fc*48);
 555
 556        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
 557
 558        /* SD */
 559        if( env_sd < EG_ENT-1 )
 560                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
 561        /* TAM */
 562        if( env_tam < EG_ENT-1 )
 563                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
 564        /* TOP-CY */
 565        if( env_top < EG_ENT-1 )
 566                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
 567        /* HH */
 568        if( env_hh  < EG_ENT-1 )
 569                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
 570}
 571
 572/* ----------- initialize time tabls ----------- */
 573static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
 574{
 575        int i;
 576        double rate;
 577
 578        /* make attack rate & decay rate tables */
 579        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
 580        for (i = 4;i <= 60;i++){
 581                rate  = OPL->freqbase;                                          /* frequency rate */
 582                if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
 583                rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
 584                rate *= (double)(EG_ENT<<ENV_BITS);
 585                OPL->AR_TABLE[i] = rate / ARRATE;
 586                OPL->DR_TABLE[i] = rate / DRRATE;
 587        }
 588        for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
 589        {
 590                OPL->AR_TABLE[i] = EG_AED-1;
 591                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
 592        }
 593#if 0
 594        for (i = 0;i < 64 ;i++){        /* make for overflow area */
 595                LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
 596                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
 597                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
 598        }
 599#endif
 600}
 601
 602/* ---------- generic table initialize ---------- */
 603static int OPLOpenTable( void )
 604{
 605        int s,t;
 606        double rate;
 607        int i,j;
 608        double pom;
 609
 610        /* allocate dynamic tables */
 611        if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
 612                return 0;
 613        if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
 614        {
 615                free(TL_TABLE);
 616                return 0;
 617        }
 618        if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
 619        {
 620                free(TL_TABLE);
 621                free(SIN_TABLE);
 622                return 0;
 623        }
 624        if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
 625        {
 626                free(TL_TABLE);
 627                free(SIN_TABLE);
 628                free(AMS_TABLE);
 629                return 0;
 630        }
 631        /* make total level table */
 632        for (t = 0;t < EG_ENT-1 ;t++){
 633                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
 634                TL_TABLE[       t] =  (int)rate;
 635                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
 636/*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
 637        }
 638        /* fill volume off area */
 639        for ( t = EG_ENT-1; t < TL_MAX ;t++){
 640                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
 641        }
 642
 643        /* make sinwave table (total level offet) */
 644        /* degree 0 = degree 180                   = off */
 645        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
 646        for (s = 1;s <= SIN_ENT/4;s++){
 647                pom = sin(2*PI*s/SIN_ENT); /* sin     */
 648                pom = 20*log10(1/pom);     /* decibel */
 649                j = pom / EG_STEP;         /* TL_TABLE steps */
 650
 651        /* degree 0   -  90    , degree 180 -  90 : plus section */
 652                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
 653        /* degree 180 - 270    , degree 360 - 270 : minus section */
 654                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
 655/*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
 656        }
 657        for (s = 0;s < SIN_ENT;s++)
 658        {
 659                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
 660                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
 661                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
 662        }
 663
 664        /* envelope counter -> envelope output table */
 665        for (i=0; i<EG_ENT; i++)
 666        {
 667                /* ATTACK curve */
 668                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
 669                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
 670                ENV_CURVE[i] = (int)pom;
 671                /* DECAY ,RELEASE curve */
 672                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
 673        }
 674        /* off */
 675        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
 676        /* make LFO ams table */
 677        for (i=0; i<AMS_ENT; i++)
 678        {
 679                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
 680                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
 681                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
 682        }
 683        /* make LFO vibrate table */
 684        for (i=0; i<VIB_ENT; i++)
 685        {
 686                /* 100cent = 1seminote = 6% ?? */
 687                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
 688                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
 689                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
 690                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
 691        }
 692        return 1;
 693}
 694
 695
 696static void OPLCloseTable( void )
 697{
 698        free(TL_TABLE);
 699        free(SIN_TABLE);
 700        free(AMS_TABLE);
 701        free(VIB_TABLE);
 702}
 703
 704/* CSM Key Control */
 705static inline void CSMKeyControll(OPL_CH *CH)
 706{
 707        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
 708        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
 709        /* all key off */
 710        OPL_KEYOFF(slot1);
 711        OPL_KEYOFF(slot2);
 712        /* total level latch */
 713        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 714        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 715        /* key on */
 716        CH->op1_out[0] = CH->op1_out[1] = 0;
 717        OPL_KEYON(slot1);
 718        OPL_KEYON(slot2);
 719}
 720
 721/* ---------- opl initialize ---------- */
 722static void OPL_initialize(FM_OPL *OPL)
 723{
 724        int fn;
 725
 726        /* frequency base */
 727        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
 728        /* Timer base time */
 729        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
 730        /* make time tables */
 731        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
 732        /* make fnumber -> increment counter table */
 733        for( fn=0 ; fn < 1024 ; fn++ )
 734        {
 735                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
 736        }
 737        /* LFO freq.table */
 738        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
 739        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
 740}
 741
 742/* ---------- write a OPL registers ---------- */
 743static void OPLWriteReg(FM_OPL *OPL, int r, int v)
 744{
 745        OPL_CH *CH;
 746        int slot;
 747        int block_fnum;
 748
 749        switch(r&0xe0)
 750        {
 751        case 0x00: /* 00-1f:control */
 752                switch(r&0x1f)
 753                {
 754                case 0x01:
 755                        /* wave selector enable */
 756                        OPL->wavesel = v&0x20;
 757                        if(!OPL->wavesel)
 758                        {
 759                                /* preset compatible mode */
 760                                int c;
 761                                for(c=0;c<OPL->max_ch;c++)
 762                                {
 763                                        OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
 764                                        OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
 765                                }
 766                        }
 767                        return;
 768                case 0x02:      /* Timer 1 */
 769                        OPL->T[0] = (256-v)*4;
 770                        break;
 771                case 0x03:      /* Timer 2 */
 772                        OPL->T[1] = (256-v)*16;
 773                        return;
 774                case 0x04:      /* IRQ clear / mask and Timer enable */
 775                        if(v&0x80)
 776                        {       /* IRQ flag clear */
 777                                OPL_STATUS_RESET(OPL,0x7f);
 778                        }
 779                        else
 780                        {       /* set IRQ mask ,timer enable*/
 781                                uint8_t st1 = v&1;
 782                                uint8_t st2 = (v>>1)&1;
 783                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
 784                                OPL_STATUS_RESET(OPL,v&0x78);
 785                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
 786                                /* timer 2 */
 787                                if(OPL->st[1] != st2)
 788                                {
 789                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
 790                                        OPL->st[1] = st2;
 791                    if (OPL->TimerHandler) {
 792                        (OPL->TimerHandler)(OPL->TimerParam, 1, interval);
 793                    }
 794                                }
 795                                /* timer 1 */
 796                                if(OPL->st[0] != st1)
 797                                {
 798                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
 799                                        OPL->st[0] = st1;
 800                    if (OPL->TimerHandler) {
 801                        (OPL->TimerHandler)(OPL->TimerParam, 0, interval);
 802                    }
 803                                }
 804                        }
 805                        return;
 806                }
 807                break;
 808        case 0x20:      /* am,vib,ksr,eg type,mul */
 809                slot = slot_array[r&0x1f];
 810                if(slot == -1) return;
 811                set_mul(OPL,slot,v);
 812                return;
 813        case 0x40:
 814                slot = slot_array[r&0x1f];
 815                if(slot == -1) return;
 816                set_ksl_tl(OPL,slot,v);
 817                return;
 818        case 0x60:
 819                slot = slot_array[r&0x1f];
 820                if(slot == -1) return;
 821                set_ar_dr(OPL,slot,v);
 822                return;
 823        case 0x80:
 824                slot = slot_array[r&0x1f];
 825                if(slot == -1) return;
 826                set_sl_rr(OPL,slot,v);
 827                return;
 828        case 0xa0:
 829                switch(r)
 830                {
 831                case 0xbd:
 832                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
 833                        {
 834                        uint8_t rkey = OPL->rhythm^v;
 835                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
 836                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
 837                        OPL->rhythm  = v&0x3f;
 838                        if(OPL->rhythm&0x20)
 839                        {
 840#if 0
 841                                usrintf_showmessage("OPL Rhythm mode select");
 842#endif
 843                                /* BD key on/off */
 844                                if(rkey&0x10)
 845                                {
 846                                        if(v&0x10)
 847                                        {
 848                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
 849                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
 850                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
 851                                        }
 852                                        else
 853                                        {
 854                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
 855                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
 856                                        }
 857                                }
 858                                /* SD key on/off */
 859                                if(rkey&0x08)
 860                                {
 861                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
 862                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
 863                                }/* TAM key on/off */
 864                                if(rkey&0x04)
 865                                {
 866                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
 867                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
 868                                }
 869                                /* TOP-CY key on/off */
 870                                if(rkey&0x02)
 871                                {
 872                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
 873                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
 874                                }
 875                                /* HH key on/off */
 876                                if(rkey&0x01)
 877                                {
 878                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
 879                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
 880                                }
 881                        }
 882                        }
 883                        return;
 884                }
 885                /* keyon,block,fnum */
 886                if( (r&0x0f) > 8) return;
 887                CH = &OPL->P_CH[r&0x0f];
 888                if(!(r&0x10))
 889                {       /* a0-a8 */
 890                        block_fnum  = (CH->block_fnum&0x1f00) | v;
 891                }
 892                else
 893                {       /* b0-b8 */
 894                        int keyon = (v>>5)&1;
 895                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
 896                        if(CH->keyon != keyon)
 897                        {
 898                                if( (CH->keyon=keyon) )
 899                                {
 900                                        CH->op1_out[0] = CH->op1_out[1] = 0;
 901                                        OPL_KEYON(&CH->SLOT[SLOT1]);
 902                                        OPL_KEYON(&CH->SLOT[SLOT2]);
 903                                }
 904                                else
 905                                {
 906                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
 907                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
 908                                }
 909                        }
 910                }
 911                /* update */
 912                if(CH->block_fnum != block_fnum)
 913                {
 914                        int blockRv = 7-(block_fnum>>10);
 915                        int fnum   = block_fnum&0x3ff;
 916                        CH->block_fnum = block_fnum;
 917
 918                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
 919                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
 920                        CH->kcode = CH->block_fnum>>9;
 921                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
 922                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
 923                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
 924                }
 925                return;
 926        case 0xc0:
 927                /* FB,C */
 928                if( (r&0x0f) > 8) return;
 929                CH = &OPL->P_CH[r&0x0f];
 930                {
 931                int feedback = (v>>1)&7;
 932                CH->FB   = feedback ? (8+1) - feedback : 0;
 933                CH->CON = v&1;
 934                set_algorithm(CH);
 935                }
 936                return;
 937        case 0xe0: /* wave type */
 938                slot = slot_array[r&0x1f];
 939                if(slot == -1) return;
 940                CH = &OPL->P_CH[slot/2];
 941                if(OPL->wavesel)
 942                {
 943                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
 944                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
 945                }
 946                return;
 947        }
 948}
 949
 950/* lock/unlock for common table */
 951static int OPL_LockTable(void)
 952{
 953        num_lock++;
 954        if(num_lock>1) return 0;
 955        /* first time */
 956        cur_chip = NULL;
 957        /* allocate total level table (128kb space) */
 958        if( !OPLOpenTable() )
 959        {
 960                num_lock--;
 961                return -1;
 962        }
 963        return 0;
 964}
 965
 966static void OPL_UnLockTable(void)
 967{
 968        if(num_lock) num_lock--;
 969        if(num_lock) return;
 970        /* last time */
 971        cur_chip = NULL;
 972        OPLCloseTable();
 973}
 974
 975/*******************************************************************************/
 976/*              YM3812 local section                                                   */
 977/*******************************************************************************/
 978
 979/* ---------- update one of chip ----------- */
 980void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
 981{
 982    int i;
 983        int data;
 984        int16_t *buf = buffer;
 985        uint32_t amsCnt  = OPL->amsCnt;
 986        uint32_t  vibCnt  = OPL->vibCnt;
 987        uint8_t rhythm = OPL->rhythm&0x20;
 988        OPL_CH *CH,*R_CH;
 989
 990        if( (void *)OPL != cur_chip ){
 991                cur_chip = (void *)OPL;
 992                /* channel pointers */
 993                S_CH = OPL->P_CH;
 994                E_CH = &S_CH[9];
 995                /* rhythm slot */
 996                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
 997                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
 998                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
 999                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1000                /* LFO state */
1001                amsIncr = OPL->amsIncr;
1002                vibIncr = OPL->vibIncr;
1003                ams_table = OPL->ams_table;
1004                vib_table = OPL->vib_table;
1005        }
1006        R_CH = rhythm ? &S_CH[6] : E_CH;
1007    for( i=0; i < length ; i++ )
1008        {
1009                /*            channel A         channel B         channel C      */
1010                /* LFO */
1011                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1012                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1013                outd[0] = 0;
1014                /* FM part */
1015                for(CH=S_CH ; CH < R_CH ; CH++)
1016                        OPL_CALC_CH(CH);
1017                /* Rythn part */
1018                if(rhythm)
1019                        OPL_CALC_RH(S_CH);
1020                /* limit check */
1021                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1022                /* store to sound buffer */
1023                buf[i] = data >> OPL_OUTSB;
1024        }
1025
1026        OPL->amsCnt = amsCnt;
1027        OPL->vibCnt = vibCnt;
1028#ifdef OPL_OUTPUT_LOG
1029        if(opl_dbg_fp)
1030        {
1031                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1032                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1033                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1034        }
1035#endif
1036}
1037
1038/* ---------- reset one of chip ---------- */
1039static void OPLResetChip(FM_OPL *OPL)
1040{
1041        int c,s;
1042        int i;
1043
1044        /* reset chip */
1045        OPL->mode   = 0;        /* normal mode */
1046        OPL_STATUS_RESET(OPL,0x7f);
1047        /* reset with register write */
1048        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1049        OPLWriteReg(OPL,0x02,0); /* Timer1 */
1050        OPLWriteReg(OPL,0x03,0); /* Timer2 */
1051        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1052        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1053        /* reset operator parameter */
1054        for( c = 0 ; c < OPL->max_ch ; c++ )
1055        {
1056                OPL_CH *CH = &OPL->P_CH[c];
1057                /* OPL->P_CH[c].PAN = OPN_CENTER; */
1058                for(s = 0 ; s < 2 ; s++ )
1059                {
1060                        /* wave table */
1061                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
1062                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
1063                        CH->SLOT[s].evc = EG_OFF;
1064                        CH->SLOT[s].eve = EG_OFF+1;
1065                        CH->SLOT[s].evs = 0;
1066                }
1067        }
1068}
1069
1070/* ----------  Create one of vietual YM3812 ----------       */
1071/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1072FM_OPL *OPLCreate(int clock, int rate)
1073{
1074        char *ptr;
1075        FM_OPL *OPL;
1076        int state_size;
1077        int max_ch = 9; /* normaly 9 channels */
1078
1079        if( OPL_LockTable() ==-1) return NULL;
1080        /* allocate OPL state space */
1081        state_size  = sizeof(FM_OPL);
1082        state_size += sizeof(OPL_CH)*max_ch;
1083        /* allocate memory block */
1084        ptr = malloc(state_size);
1085        if(ptr==NULL) return NULL;
1086        /* clear */
1087        memset(ptr,0,state_size);
1088        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1089        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1090        /* set channel state pointer */
1091        OPL->clock = clock;
1092        OPL->rate  = rate;
1093        OPL->max_ch = max_ch;
1094        /* init grobal tables */
1095        OPL_initialize(OPL);
1096        /* reset chip */
1097        OPLResetChip(OPL);
1098#ifdef OPL_OUTPUT_LOG
1099        if(!opl_dbg_fp)
1100        {
1101                opl_dbg_fp = fopen("opllog.opl","wb");
1102                opl_dbg_maxchip = 0;
1103        }
1104        if(opl_dbg_fp)
1105        {
1106                opl_dbg_opl[opl_dbg_maxchip] = OPL;
1107                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1108                        type,
1109                        clock&0xff,
1110                        (clock/0x100)&0xff,
1111                        (clock/0x10000)&0xff,
1112                        (clock/0x1000000)&0xff);
1113                opl_dbg_maxchip++;
1114        }
1115#endif
1116        return OPL;
1117}
1118
1119/* ----------  Destroy one of vietual YM3812 ----------       */
1120void OPLDestroy(FM_OPL *OPL)
1121{
1122#ifdef OPL_OUTPUT_LOG
1123        if(opl_dbg_fp)
1124        {
1125                fclose(opl_dbg_fp);
1126                opl_dbg_fp = NULL;
1127        }
1128#endif
1129        OPL_UnLockTable();
1130        free(OPL);
1131}
1132
1133/* ----------  Option handlers ----------       */
1134
1135void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,
1136                        void *param)
1137{
1138        OPL->TimerHandler   = TimerHandler;
1139    OPL->TimerParam = param;
1140}
1141
1142/* ---------- YM3812 I/O interface ---------- */
1143int OPLWrite(FM_OPL *OPL,int a,int v)
1144{
1145        if( !(a&1) )
1146        {       /* address port */
1147                OPL->address = v & 0xff;
1148        }
1149        else
1150        {       /* data port */
1151#ifdef OPL_OUTPUT_LOG
1152        if(opl_dbg_fp)
1153        {
1154                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1155                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1156                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1157        }
1158#endif
1159                OPLWriteReg(OPL,OPL->address,v);
1160        }
1161        return OPL->status>>7;
1162}
1163
1164unsigned char OPLRead(FM_OPL *OPL,int a)
1165{
1166        if( !(a&1) )
1167        {       /* status port */
1168                return OPL->status & (OPL->statusmask|0x80);
1169        }
1170        /* data port */
1171        switch(OPL->address)
1172        {
1173        case 0x05: /* KeyBoard IN */
1174                return 0;
1175#if 0
1176        case 0x0f: /* ADPCM-DATA  */
1177                return 0;
1178#endif
1179        case 0x19: /* I/O DATA    */
1180                return 0;
1181        case 0x1a: /* PCM-DATA    */
1182                return 0;
1183        }
1184        return 0;
1185}
1186
1187int OPLTimerOver(FM_OPL *OPL,int c)
1188{
1189        if( c )
1190        {       /* Timer B */
1191                OPL_STATUS_SET(OPL,0x20);
1192        }
1193        else
1194        {       /* Timer A */
1195                OPL_STATUS_SET(OPL,0x40);
1196                /* CSM mode key,TL control */
1197                if( OPL->mode & 0x80 )
1198                {       /* CSM mode total level latch and auto key on */
1199                        int ch;
1200                        for(ch=0;ch<9;ch++)
1201                                CSMKeyControll( &OPL->P_CH[ch] );
1202                }
1203        }
1204        /* reload timer */
1205    if (OPL->TimerHandler) {
1206        (OPL->TimerHandler)(OPL->TimerParam, c,
1207                            (double)OPL->T[c] * OPL->TimerBase);
1208    }
1209        return OPL->status>>7;
1210}
1211