qemu/hw/block/nand.c
<<
>>
Prefs
   1/*
   2 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
   3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
   4 * Samsung Electronic.
   5 *
   6 * Copyright (c) 2006 Openedhand Ltd.
   7 * Written by Andrzej Zaborowski <balrog@zabor.org>
   8 *
   9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11 * from ST Microelectronics.
  12 *
  13 * This code is licensed under the GNU GPL v2.
  14 *
  15 * Contributions after 2012-01-13 are licensed under the terms of the
  16 * GNU GPL, version 2 or (at your option) any later version.
  17 */
  18
  19#ifndef NAND_IO
  20
  21#include "qemu/osdep.h"
  22#include "hw/hw.h"
  23#include "hw/block/flash.h"
  24#include "sysemu/block-backend.h"
  25#include "hw/qdev.h"
  26#include "qapi/error.h"
  27#include "qemu/error-report.h"
  28
  29# define NAND_CMD_READ0         0x00
  30# define NAND_CMD_READ1         0x01
  31# define NAND_CMD_READ2         0x50
  32# define NAND_CMD_LPREAD2       0x30
  33# define NAND_CMD_NOSERIALREAD2 0x35
  34# define NAND_CMD_RANDOMREAD1   0x05
  35# define NAND_CMD_RANDOMREAD2   0xe0
  36# define NAND_CMD_READID        0x90
  37# define NAND_CMD_RESET         0xff
  38# define NAND_CMD_PAGEPROGRAM1  0x80
  39# define NAND_CMD_PAGEPROGRAM2  0x10
  40# define NAND_CMD_CACHEPROGRAM2 0x15
  41# define NAND_CMD_BLOCKERASE1   0x60
  42# define NAND_CMD_BLOCKERASE2   0xd0
  43# define NAND_CMD_READSTATUS    0x70
  44# define NAND_CMD_COPYBACKPRG1  0x85
  45
  46# define NAND_IOSTATUS_ERROR    (1 << 0)
  47# define NAND_IOSTATUS_PLANE0   (1 << 1)
  48# define NAND_IOSTATUS_PLANE1   (1 << 2)
  49# define NAND_IOSTATUS_PLANE2   (1 << 3)
  50# define NAND_IOSTATUS_PLANE3   (1 << 4)
  51# define NAND_IOSTATUS_READY    (1 << 6)
  52# define NAND_IOSTATUS_UNPROTCT (1 << 7)
  53
  54# define MAX_PAGE               0x800
  55# define MAX_OOB                0x40
  56
  57typedef struct NANDFlashState NANDFlashState;
  58struct NANDFlashState {
  59    DeviceState parent_obj;
  60
  61    uint8_t manf_id, chip_id;
  62    uint8_t buswidth; /* in BYTES */
  63    int size, pages;
  64    int page_shift, oob_shift, erase_shift, addr_shift;
  65    uint8_t *storage;
  66    BlockBackend *blk;
  67    int mem_oob;
  68
  69    uint8_t cle, ale, ce, wp, gnd;
  70
  71    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  72    uint8_t *ioaddr;
  73    int iolen;
  74
  75    uint32_t cmd;
  76    uint64_t addr;
  77    int addrlen;
  78    int status;
  79    int offset;
  80
  81    void (*blk_write)(NANDFlashState *s);
  82    void (*blk_erase)(NANDFlashState *s);
  83    void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  84
  85    uint32_t ioaddr_vmstate;
  86};
  87
  88#define TYPE_NAND "nand"
  89
  90#define NAND(obj) \
  91    OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
  92
  93static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  94{
  95    /* Like memcpy() but we logical-AND the data into the destination */
  96    int i;
  97    for (i = 0; i < n; i++) {
  98        dest[i] &= src[i];
  99    }
 100}
 101
 102# define NAND_NO_AUTOINCR       0x00000001
 103# define NAND_BUSWIDTH_16       0x00000002
 104# define NAND_NO_PADDING        0x00000004
 105# define NAND_CACHEPRG          0x00000008
 106# define NAND_COPYBACK          0x00000010
 107# define NAND_IS_AND            0x00000020
 108# define NAND_4PAGE_ARRAY       0x00000040
 109# define NAND_NO_READRDY        0x00000100
 110# define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
 111
 112# define NAND_IO
 113
 114# define PAGE(addr)             ((addr) >> ADDR_SHIFT)
 115# define PAGE_START(page)       (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
 116# define PAGE_MASK              ((1 << ADDR_SHIFT) - 1)
 117# define OOB_SHIFT              (PAGE_SHIFT - 5)
 118# define OOB_SIZE               (1 << OOB_SHIFT)
 119# define SECTOR(addr)           ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
 120# define SECTOR_OFFSET(addr)    ((addr) & ((511 >> PAGE_SHIFT) << 8))
 121
 122# define PAGE_SIZE              256
 123# define PAGE_SHIFT             8
 124# define PAGE_SECTORS           1
 125# define ADDR_SHIFT             8
 126# include "nand.c"
 127# define PAGE_SIZE              512
 128# define PAGE_SHIFT             9
 129# define PAGE_SECTORS           1
 130# define ADDR_SHIFT             8
 131# include "nand.c"
 132# define PAGE_SIZE              2048
 133# define PAGE_SHIFT             11
 134# define PAGE_SECTORS           4
 135# define ADDR_SHIFT             16
 136# include "nand.c"
 137
 138/* Information based on Linux drivers/mtd/nand/nand_ids.c */
 139static const struct {
 140    int size;
 141    int width;
 142    int page_shift;
 143    int erase_shift;
 144    uint32_t options;
 145} nand_flash_ids[0x100] = {
 146    [0 ... 0xff] = { 0 },
 147
 148    [0x6e] = { 1,       8,      8, 4, 0 },
 149    [0x64] = { 2,       8,      8, 4, 0 },
 150    [0x6b] = { 4,       8,      9, 4, 0 },
 151    [0xe8] = { 1,       8,      8, 4, 0 },
 152    [0xec] = { 1,       8,      8, 4, 0 },
 153    [0xea] = { 2,       8,      8, 4, 0 },
 154    [0xd5] = { 4,       8,      9, 4, 0 },
 155    [0xe3] = { 4,       8,      9, 4, 0 },
 156    [0xe5] = { 4,       8,      9, 4, 0 },
 157    [0xd6] = { 8,       8,      9, 4, 0 },
 158
 159    [0x39] = { 8,       8,      9, 4, 0 },
 160    [0xe6] = { 8,       8,      9, 4, 0 },
 161    [0x49] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 162    [0x59] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 163
 164    [0x33] = { 16,      8,      9, 5, 0 },
 165    [0x73] = { 16,      8,      9, 5, 0 },
 166    [0x43] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 167    [0x53] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 168
 169    [0x35] = { 32,      8,      9, 5, 0 },
 170    [0x75] = { 32,      8,      9, 5, 0 },
 171    [0x45] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 172    [0x55] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 173
 174    [0x36] = { 64,      8,      9, 5, 0 },
 175    [0x76] = { 64,      8,      9, 5, 0 },
 176    [0x46] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 177    [0x56] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 178
 179    [0x78] = { 128,     8,      9, 5, 0 },
 180    [0x39] = { 128,     8,      9, 5, 0 },
 181    [0x79] = { 128,     8,      9, 5, 0 },
 182    [0x72] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 183    [0x49] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 184    [0x74] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 185    [0x59] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 186
 187    [0x71] = { 256,     8,      9, 5, 0 },
 188
 189    /*
 190     * These are the new chips with large page size. The pagesize and the
 191     * erasesize is determined from the extended id bytes
 192     */
 193# define LP_OPTIONS     (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
 194# define LP_OPTIONS16   (LP_OPTIONS | NAND_BUSWIDTH_16)
 195
 196    /* 512 Megabit */
 197    [0xa2] = { 64,      8,      0, 0, LP_OPTIONS },
 198    [0xf2] = { 64,      8,      0, 0, LP_OPTIONS },
 199    [0xb2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 200    [0xc2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 201
 202    /* 1 Gigabit */
 203    [0xa1] = { 128,     8,      0, 0, LP_OPTIONS },
 204    [0xf1] = { 128,     8,      0, 0, LP_OPTIONS },
 205    [0xb1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 206    [0xc1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 207
 208    /* 2 Gigabit */
 209    [0xaa] = { 256,     8,      0, 0, LP_OPTIONS },
 210    [0xda] = { 256,     8,      0, 0, LP_OPTIONS },
 211    [0xba] = { 256,     16,     0, 0, LP_OPTIONS16 },
 212    [0xca] = { 256,     16,     0, 0, LP_OPTIONS16 },
 213
 214    /* 4 Gigabit */
 215    [0xac] = { 512,     8,      0, 0, LP_OPTIONS },
 216    [0xdc] = { 512,     8,      0, 0, LP_OPTIONS },
 217    [0xbc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 218    [0xcc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 219
 220    /* 8 Gigabit */
 221    [0xa3] = { 1024,    8,      0, 0, LP_OPTIONS },
 222    [0xd3] = { 1024,    8,      0, 0, LP_OPTIONS },
 223    [0xb3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 224    [0xc3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 225
 226    /* 16 Gigabit */
 227    [0xa5] = { 2048,    8,      0, 0, LP_OPTIONS },
 228    [0xd5] = { 2048,    8,      0, 0, LP_OPTIONS },
 229    [0xb5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 230    [0xc5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 231};
 232
 233static void nand_reset(DeviceState *dev)
 234{
 235    NANDFlashState *s = NAND(dev);
 236    s->cmd = NAND_CMD_READ0;
 237    s->addr = 0;
 238    s->addrlen = 0;
 239    s->iolen = 0;
 240    s->offset = 0;
 241    s->status &= NAND_IOSTATUS_UNPROTCT;
 242    s->status |= NAND_IOSTATUS_READY;
 243}
 244
 245static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
 246{
 247    s->ioaddr[s->iolen++] = value;
 248    for (value = s->buswidth; --value;) {
 249        s->ioaddr[s->iolen++] = 0;
 250    }
 251}
 252
 253static void nand_command(NANDFlashState *s)
 254{
 255    unsigned int offset;
 256    switch (s->cmd) {
 257    case NAND_CMD_READ0:
 258        s->iolen = 0;
 259        break;
 260
 261    case NAND_CMD_READID:
 262        s->ioaddr = s->io;
 263        s->iolen = 0;
 264        nand_pushio_byte(s, s->manf_id);
 265        nand_pushio_byte(s, s->chip_id);
 266        nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
 267        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 268            /* Page Size, Block Size, Spare Size; bit 6 indicates
 269             * 8 vs 16 bit width NAND.
 270             */
 271            nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
 272        } else {
 273            nand_pushio_byte(s, 0xc0); /* Multi-plane */
 274        }
 275        break;
 276
 277    case NAND_CMD_RANDOMREAD2:
 278    case NAND_CMD_NOSERIALREAD2:
 279        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
 280            break;
 281        offset = s->addr & ((1 << s->addr_shift) - 1);
 282        s->blk_load(s, s->addr, offset);
 283        if (s->gnd)
 284            s->iolen = (1 << s->page_shift) - offset;
 285        else
 286            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 287        break;
 288
 289    case NAND_CMD_RESET:
 290        nand_reset(DEVICE(s));
 291        break;
 292
 293    case NAND_CMD_PAGEPROGRAM1:
 294        s->ioaddr = s->io;
 295        s->iolen = 0;
 296        break;
 297
 298    case NAND_CMD_PAGEPROGRAM2:
 299        if (s->wp) {
 300            s->blk_write(s);
 301        }
 302        break;
 303
 304    case NAND_CMD_BLOCKERASE1:
 305        break;
 306
 307    case NAND_CMD_BLOCKERASE2:
 308        s->addr &= (1ull << s->addrlen * 8) - 1;
 309        s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
 310                                                                    16 : 8;
 311
 312        if (s->wp) {
 313            s->blk_erase(s);
 314        }
 315        break;
 316
 317    case NAND_CMD_READSTATUS:
 318        s->ioaddr = s->io;
 319        s->iolen = 0;
 320        nand_pushio_byte(s, s->status);
 321        break;
 322
 323    default:
 324        printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
 325    }
 326}
 327
 328static void nand_pre_save(void *opaque)
 329{
 330    NANDFlashState *s = NAND(opaque);
 331
 332    s->ioaddr_vmstate = s->ioaddr - s->io;
 333}
 334
 335static int nand_post_load(void *opaque, int version_id)
 336{
 337    NANDFlashState *s = NAND(opaque);
 338
 339    if (s->ioaddr_vmstate > sizeof(s->io)) {
 340        return -EINVAL;
 341    }
 342    s->ioaddr = s->io + s->ioaddr_vmstate;
 343
 344    return 0;
 345}
 346
 347static const VMStateDescription vmstate_nand = {
 348    .name = "nand",
 349    .version_id = 1,
 350    .minimum_version_id = 1,
 351    .pre_save = nand_pre_save,
 352    .post_load = nand_post_load,
 353    .fields = (VMStateField[]) {
 354        VMSTATE_UINT8(cle, NANDFlashState),
 355        VMSTATE_UINT8(ale, NANDFlashState),
 356        VMSTATE_UINT8(ce, NANDFlashState),
 357        VMSTATE_UINT8(wp, NANDFlashState),
 358        VMSTATE_UINT8(gnd, NANDFlashState),
 359        VMSTATE_BUFFER(io, NANDFlashState),
 360        VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
 361        VMSTATE_INT32(iolen, NANDFlashState),
 362        VMSTATE_UINT32(cmd, NANDFlashState),
 363        VMSTATE_UINT64(addr, NANDFlashState),
 364        VMSTATE_INT32(addrlen, NANDFlashState),
 365        VMSTATE_INT32(status, NANDFlashState),
 366        VMSTATE_INT32(offset, NANDFlashState),
 367        /* XXX: do we want to save s->storage too? */
 368        VMSTATE_END_OF_LIST()
 369    }
 370};
 371
 372static void nand_realize(DeviceState *dev, Error **errp)
 373{
 374    int pagesize;
 375    NANDFlashState *s = NAND(dev);
 376    int ret;
 377
 378
 379    s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
 380    s->size = nand_flash_ids[s->chip_id].size << 20;
 381    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 382        s->page_shift = 11;
 383        s->erase_shift = 6;
 384    } else {
 385        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
 386        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
 387    }
 388
 389    switch (1 << s->page_shift) {
 390    case 256:
 391        nand_init_256(s);
 392        break;
 393    case 512:
 394        nand_init_512(s);
 395        break;
 396    case 2048:
 397        nand_init_2048(s);
 398        break;
 399    default:
 400        error_setg(errp, "Unsupported NAND block size %#x",
 401                   1 << s->page_shift);
 402        return;
 403    }
 404
 405    pagesize = 1 << s->oob_shift;
 406    s->mem_oob = 1;
 407    if (s->blk) {
 408        if (blk_is_read_only(s->blk)) {
 409            error_setg(errp, "Can't use a read-only drive");
 410            return;
 411        }
 412        ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
 413                           BLK_PERM_ALL, errp);
 414        if (ret < 0) {
 415            return;
 416        }
 417        if (blk_getlength(s->blk) >=
 418                (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
 419            pagesize = 0;
 420            s->mem_oob = 0;
 421        }
 422    } else {
 423        pagesize += 1 << s->page_shift;
 424    }
 425    if (pagesize) {
 426        s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
 427                        0xff, s->pages * pagesize);
 428    }
 429    /* Give s->ioaddr a sane value in case we save state before it is used. */
 430    s->ioaddr = s->io;
 431}
 432
 433static Property nand_properties[] = {
 434    DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
 435    DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
 436    DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
 437    DEFINE_PROP_END_OF_LIST(),
 438};
 439
 440static void nand_class_init(ObjectClass *klass, void *data)
 441{
 442    DeviceClass *dc = DEVICE_CLASS(klass);
 443
 444    dc->realize = nand_realize;
 445    dc->reset = nand_reset;
 446    dc->vmsd = &vmstate_nand;
 447    dc->props = nand_properties;
 448}
 449
 450static const TypeInfo nand_info = {
 451    .name          = TYPE_NAND,
 452    .parent        = TYPE_DEVICE,
 453    .instance_size = sizeof(NANDFlashState),
 454    .class_init    = nand_class_init,
 455};
 456
 457static void nand_register_types(void)
 458{
 459    type_register_static(&nand_info);
 460}
 461
 462/*
 463 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
 464 * outputs are R/B and eight I/O pins.
 465 *
 466 * CE, WP and R/B are active low.
 467 */
 468void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
 469                  uint8_t ce, uint8_t wp, uint8_t gnd)
 470{
 471    NANDFlashState *s = NAND(dev);
 472
 473    s->cle = cle;
 474    s->ale = ale;
 475    s->ce = ce;
 476    s->wp = wp;
 477    s->gnd = gnd;
 478    if (wp) {
 479        s->status |= NAND_IOSTATUS_UNPROTCT;
 480    } else {
 481        s->status &= ~NAND_IOSTATUS_UNPROTCT;
 482    }
 483}
 484
 485void nand_getpins(DeviceState *dev, int *rb)
 486{
 487    *rb = 1;
 488}
 489
 490void nand_setio(DeviceState *dev, uint32_t value)
 491{
 492    int i;
 493    NANDFlashState *s = NAND(dev);
 494
 495    if (!s->ce && s->cle) {
 496        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 497            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
 498                return;
 499            if (value == NAND_CMD_RANDOMREAD1) {
 500                s->addr &= ~((1 << s->addr_shift) - 1);
 501                s->addrlen = 0;
 502                return;
 503            }
 504        }
 505        if (value == NAND_CMD_READ0) {
 506            s->offset = 0;
 507        } else if (value == NAND_CMD_READ1) {
 508            s->offset = 0x100;
 509            value = NAND_CMD_READ0;
 510        } else if (value == NAND_CMD_READ2) {
 511            s->offset = 1 << s->page_shift;
 512            value = NAND_CMD_READ0;
 513        }
 514
 515        s->cmd = value;
 516
 517        if (s->cmd == NAND_CMD_READSTATUS ||
 518                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
 519                s->cmd == NAND_CMD_BLOCKERASE1 ||
 520                s->cmd == NAND_CMD_BLOCKERASE2 ||
 521                s->cmd == NAND_CMD_NOSERIALREAD2 ||
 522                s->cmd == NAND_CMD_RANDOMREAD2 ||
 523                s->cmd == NAND_CMD_RESET) {
 524            nand_command(s);
 525        }
 526
 527        if (s->cmd != NAND_CMD_RANDOMREAD2) {
 528            s->addrlen = 0;
 529        }
 530    }
 531
 532    if (s->ale) {
 533        unsigned int shift = s->addrlen * 8;
 534        uint64_t mask = ~(0xffull << shift);
 535        uint64_t v = (uint64_t)value << shift;
 536
 537        s->addr = (s->addr & mask) | v;
 538        s->addrlen ++;
 539
 540        switch (s->addrlen) {
 541        case 1:
 542            if (s->cmd == NAND_CMD_READID) {
 543                nand_command(s);
 544            }
 545            break;
 546        case 2: /* fix cache address as a byte address */
 547            s->addr <<= (s->buswidth - 1);
 548            break;
 549        case 3:
 550            if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 551                    (s->cmd == NAND_CMD_READ0 ||
 552                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 553                nand_command(s);
 554            }
 555            break;
 556        case 4:
 557            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 558                    nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
 559                    (s->cmd == NAND_CMD_READ0 ||
 560                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 561                nand_command(s);
 562            }
 563            break;
 564        case 5:
 565            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 566                    nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
 567                    (s->cmd == NAND_CMD_READ0 ||
 568                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 569                nand_command(s);
 570            }
 571            break;
 572        default:
 573            break;
 574        }
 575    }
 576
 577    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
 578        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
 579            for (i = s->buswidth; i--; value >>= 8) {
 580                s->io[s->iolen ++] = (uint8_t) (value & 0xff);
 581            }
 582        }
 583    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
 584        if ((s->addr & ((1 << s->addr_shift) - 1)) <
 585                (1 << s->page_shift) + (1 << s->oob_shift)) {
 586            for (i = s->buswidth; i--; s->addr++, value >>= 8) {
 587                s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
 588                    (uint8_t) (value & 0xff);
 589            }
 590        }
 591    }
 592}
 593
 594uint32_t nand_getio(DeviceState *dev)
 595{
 596    int offset;
 597    uint32_t x = 0;
 598    NANDFlashState *s = NAND(dev);
 599
 600    /* Allow sequential reading */
 601    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
 602        offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
 603        s->offset = 0;
 604
 605        s->blk_load(s, s->addr, offset);
 606        if (s->gnd)
 607            s->iolen = (1 << s->page_shift) - offset;
 608        else
 609            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 610    }
 611
 612    if (s->ce || s->iolen <= 0) {
 613        return 0;
 614    }
 615
 616    for (offset = s->buswidth; offset--;) {
 617        x |= s->ioaddr[offset] << (offset << 3);
 618    }
 619    /* after receiving READ STATUS command all subsequent reads will
 620     * return the status register value until another command is issued
 621     */
 622    if (s->cmd != NAND_CMD_READSTATUS) {
 623        s->addr   += s->buswidth;
 624        s->ioaddr += s->buswidth;
 625        s->iolen  -= s->buswidth;
 626    }
 627    return x;
 628}
 629
 630uint32_t nand_getbuswidth(DeviceState *dev)
 631{
 632    NANDFlashState *s = (NANDFlashState *) dev;
 633    return s->buswidth << 3;
 634}
 635
 636DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
 637{
 638    DeviceState *dev;
 639
 640    if (nand_flash_ids[chip_id].size == 0) {
 641        hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
 642    }
 643    dev = DEVICE(object_new(TYPE_NAND));
 644    qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
 645    qdev_prop_set_uint8(dev, "chip_id", chip_id);
 646    if (blk) {
 647        qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
 648    }
 649
 650    qdev_init_nofail(dev);
 651    return dev;
 652}
 653
 654type_init(nand_register_types)
 655
 656#else
 657
 658/* Program a single page */
 659static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
 660{
 661    uint64_t off, page, sector, soff;
 662    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
 663    if (PAGE(s->addr) >= s->pages)
 664        return;
 665
 666    if (!s->blk) {
 667        mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
 668                        s->offset, s->io, s->iolen);
 669    } else if (s->mem_oob) {
 670        sector = SECTOR(s->addr);
 671        off = (s->addr & PAGE_MASK) + s->offset;
 672        soff = SECTOR_OFFSET(s->addr);
 673        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 674                      PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 675            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 676            return;
 677        }
 678
 679        mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
 680        if (off + s->iolen > PAGE_SIZE) {
 681            page = PAGE(s->addr);
 682            mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
 683                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
 684        }
 685
 686        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 687                       PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
 688            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 689        }
 690    } else {
 691        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
 692        sector = off >> 9;
 693        soff = off & 0x1ff;
 694        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 695                      (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 696            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 697            return;
 698        }
 699
 700        mem_and(iobuf + soff, s->io, s->iolen);
 701
 702        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 703                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
 704            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 705        }
 706    }
 707    s->offset = 0;
 708}
 709
 710/* Erase a single block */
 711static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
 712{
 713    uint64_t i, page, addr;
 714    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
 715    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
 716
 717    if (PAGE(addr) >= s->pages) {
 718        return;
 719    }
 720
 721    if (!s->blk) {
 722        memset(s->storage + PAGE_START(addr),
 723                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
 724    } else if (s->mem_oob) {
 725        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
 726                        0xff, OOB_SIZE << s->erase_shift);
 727        i = SECTOR(addr);
 728        page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
 729        for (; i < page; i ++)
 730            if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
 731                           BDRV_SECTOR_SIZE, 0) < 0) {
 732                printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
 733            }
 734    } else {
 735        addr = PAGE_START(addr);
 736        page = addr >> 9;
 737        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 738                      BDRV_SECTOR_SIZE) < 0) {
 739            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 740        }
 741        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
 742        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 743                       BDRV_SECTOR_SIZE, 0) < 0) {
 744            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 745        }
 746
 747        memset(iobuf, 0xff, 0x200);
 748        i = (addr & ~0x1ff) + 0x200;
 749        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
 750                        i < addr; i += 0x200) {
 751            if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
 752                printf("%s: write error in sector %" PRIu64 "\n",
 753                       __func__, i >> 9);
 754            }
 755        }
 756
 757        page = i >> 9;
 758        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 759                      BDRV_SECTOR_SIZE) < 0) {
 760            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 761        }
 762        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
 763        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 764                       BDRV_SECTOR_SIZE, 0) < 0) {
 765            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 766        }
 767    }
 768}
 769
 770static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
 771                uint64_t addr, int offset)
 772{
 773    if (PAGE(addr) >= s->pages) {
 774        return;
 775    }
 776
 777    if (s->blk) {
 778        if (s->mem_oob) {
 779            if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
 780                          PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 781                printf("%s: read error in sector %" PRIu64 "\n",
 782                                __func__, SECTOR(addr));
 783            }
 784            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
 785                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
 786                            OOB_SIZE);
 787            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
 788        } else {
 789            if (blk_pread(s->blk, PAGE_START(addr), s->io,
 790                          (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 791                printf("%s: read error in sector %" PRIu64 "\n",
 792                                __func__, PAGE_START(addr) >> 9);
 793            }
 794            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
 795        }
 796    } else {
 797        memcpy(s->io, s->storage + PAGE_START(s->addr) +
 798                        offset, PAGE_SIZE + OOB_SIZE - offset);
 799        s->ioaddr = s->io;
 800    }
 801}
 802
 803static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
 804{
 805    s->oob_shift = PAGE_SHIFT - 5;
 806    s->pages = s->size >> PAGE_SHIFT;
 807    s->addr_shift = ADDR_SHIFT;
 808
 809    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
 810    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
 811    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
 812}
 813
 814# undef PAGE_SIZE
 815# undef PAGE_SHIFT
 816# undef PAGE_SECTORS
 817# undef ADDR_SHIFT
 818#endif  /* NAND_IO */
 819