qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8#include "qemu/osdep.h"
   9#include "hw/hw.h"
  10#include "qemu/timer.h"
  11#include "hw/ptimer.h"
  12#include "qemu/host-utils.h"
  13#include "sysemu/replay.h"
  14#include "sysemu/qtest.h"
  15#include "block/aio.h"
  16#include "sysemu/cpus.h"
  17
  18#define DELTA_ADJUST     1
  19#define DELTA_NO_ADJUST -1
  20
  21struct ptimer_state
  22{
  23    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  24    uint64_t limit;
  25    uint64_t delta;
  26    uint32_t period_frac;
  27    int64_t period;
  28    int64_t last_event;
  29    int64_t next_event;
  30    uint8_t policy_mask;
  31    QEMUBH *bh;
  32    QEMUTimer *timer;
  33};
  34
  35/* Use a bottom-half routine to avoid reentrancy issues.  */
  36static void ptimer_trigger(ptimer_state *s)
  37{
  38    if (s->bh) {
  39        replay_bh_schedule_event(s->bh);
  40    }
  41}
  42
  43static void ptimer_reload(ptimer_state *s, int delta_adjust)
  44{
  45    uint32_t period_frac = s->period_frac;
  46    uint64_t period = s->period;
  47    uint64_t delta = s->delta;
  48
  49    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
  50        ptimer_trigger(s);
  51    }
  52
  53    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  54        delta = s->delta = s->limit;
  55    }
  56
  57    if (s->period == 0) {
  58        if (!qtest_enabled()) {
  59            fprintf(stderr, "Timer with period zero, disabling\n");
  60        }
  61        timer_del(s->timer);
  62        s->enabled = 0;
  63        return;
  64    }
  65
  66    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
  67        if (delta_adjust != DELTA_NO_ADJUST) {
  68            delta += delta_adjust;
  69        }
  70    }
  71
  72    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
  73        if (s->enabled == 1 && s->limit == 0) {
  74            delta = 1;
  75        }
  76    }
  77
  78    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
  79        if (delta_adjust != DELTA_NO_ADJUST) {
  80            delta = 1;
  81        }
  82    }
  83
  84    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
  85        if (s->enabled == 1 && s->limit != 0) {
  86            delta = 1;
  87        }
  88    }
  89
  90    if (delta == 0) {
  91        if (!qtest_enabled()) {
  92            fprintf(stderr, "Timer with delta zero, disabling\n");
  93        }
  94        timer_del(s->timer);
  95        s->enabled = 0;
  96        return;
  97    }
  98
  99    /*
 100     * Artificially limit timeout rate to something
 101     * achievable under QEMU.  Otherwise, QEMU spends all
 102     * its time generating timer interrupts, and there
 103     * is no forward progress.
 104     * About ten microseconds is the fastest that really works
 105     * on the current generation of host machines.
 106     */
 107
 108    if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
 109        period = 10000 / delta;
 110        period_frac = 0;
 111    }
 112
 113    s->last_event = s->next_event;
 114    s->next_event = s->last_event + delta * period;
 115    if (period_frac) {
 116        s->next_event += ((int64_t)period_frac * delta) >> 32;
 117    }
 118    timer_mod(s->timer, s->next_event);
 119}
 120
 121static void ptimer_tick(void *opaque)
 122{
 123    ptimer_state *s = (ptimer_state *)opaque;
 124    bool trigger = true;
 125
 126    if (s->enabled == 2) {
 127        s->delta = 0;
 128        s->enabled = 0;
 129    } else {
 130        int delta_adjust = DELTA_ADJUST;
 131
 132        if (s->delta == 0 || s->limit == 0) {
 133            /* If a "continuous trigger" policy is not used and limit == 0,
 134               we should error out. delta == 0 means that this tick is
 135               caused by a "no immediate reload" policy, so it shouldn't
 136               be adjusted.  */
 137            delta_adjust = DELTA_NO_ADJUST;
 138        }
 139
 140        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 141            /* Avoid re-trigger on deferred reload if "no immediate trigger"
 142               policy isn't used.  */
 143            trigger = (delta_adjust == DELTA_ADJUST);
 144        }
 145
 146        s->delta = s->limit;
 147
 148        ptimer_reload(s, delta_adjust);
 149    }
 150
 151    if (trigger) {
 152        ptimer_trigger(s);
 153    }
 154}
 155
 156uint64_t ptimer_get_count(ptimer_state *s)
 157{
 158    uint64_t counter;
 159
 160    if (s->enabled && s->delta != 0) {
 161        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 162        int64_t next = s->next_event;
 163        int64_t last = s->last_event;
 164        bool expired = (now - next >= 0);
 165        bool oneshot = (s->enabled == 2);
 166
 167        /* Figure out the current counter value.  */
 168        if (expired) {
 169            /* Prevent timer underflowing if it should already have
 170               triggered.  */
 171            counter = 0;
 172        } else {
 173            uint64_t rem;
 174            uint64_t div;
 175            int clz1, clz2;
 176            int shift;
 177            uint32_t period_frac = s->period_frac;
 178            uint64_t period = s->period;
 179
 180            if (!oneshot && (s->delta * period < 10000) && !use_icount) {
 181                period = 10000 / s->delta;
 182                period_frac = 0;
 183            }
 184
 185            /* We need to divide time by period, where time is stored in
 186               rem (64-bit integer) and period is stored in period/period_frac
 187               (64.32 fixed point).
 188
 189               Doing full precision division is hard, so scale values and
 190               do a 64-bit division.  The result should be rounded down,
 191               so that the rounding error never causes the timer to go
 192               backwards.
 193            */
 194
 195            rem = next - now;
 196            div = period;
 197
 198            clz1 = clz64(rem);
 199            clz2 = clz64(div);
 200            shift = clz1 < clz2 ? clz1 : clz2;
 201
 202            rem <<= shift;
 203            div <<= shift;
 204            if (shift >= 32) {
 205                div |= ((uint64_t)period_frac << (shift - 32));
 206            } else {
 207                if (shift != 0)
 208                    div |= (period_frac >> (32 - shift));
 209                /* Look at remaining bits of period_frac and round div up if 
 210                   necessary.  */
 211                if ((uint32_t)(period_frac << shift))
 212                    div += 1;
 213            }
 214            counter = rem / div;
 215
 216            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 217                /* Before wrapping around, timer should stay with counter = 0
 218                   for a one period.  */
 219                if (!oneshot && s->delta == s->limit) {
 220                    if (now == last) {
 221                        /* Counter == delta here, check whether it was
 222                           adjusted and if it was, then right now it is
 223                           that "one period".  */
 224                        if (counter == s->limit + DELTA_ADJUST) {
 225                            return 0;
 226                        }
 227                    } else if (counter == s->limit) {
 228                        /* Since the counter is rounded down and now != last,
 229                           the counter == limit means that delta was adjusted
 230                           by +1 and right now it is that adjusted period.  */
 231                        return 0;
 232                    }
 233                }
 234            }
 235        }
 236
 237        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 238            /* If now == last then delta == limit, i.e. the counter already
 239               represents the correct value. It would be rounded down a 1ns
 240               later.  */
 241            if (now != last) {
 242                counter += 1;
 243            }
 244        }
 245    } else {
 246        counter = s->delta;
 247    }
 248    return counter;
 249}
 250
 251void ptimer_set_count(ptimer_state *s, uint64_t count)
 252{
 253    s->delta = count;
 254    if (s->enabled) {
 255        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 256        ptimer_reload(s, 0);
 257    }
 258}
 259
 260void ptimer_run(ptimer_state *s, int oneshot)
 261{
 262    bool was_disabled = !s->enabled;
 263
 264    if (was_disabled && s->period == 0) {
 265        if (!qtest_enabled()) {
 266            fprintf(stderr, "Timer with period zero, disabling\n");
 267        }
 268        return;
 269    }
 270    s->enabled = oneshot ? 2 : 1;
 271    if (was_disabled) {
 272        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 273        ptimer_reload(s, 0);
 274    }
 275}
 276
 277/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 278   is immediately restarted.  */
 279void ptimer_stop(ptimer_state *s)
 280{
 281    if (!s->enabled)
 282        return;
 283
 284    s->delta = ptimer_get_count(s);
 285    timer_del(s->timer);
 286    s->enabled = 0;
 287}
 288
 289/* Set counter increment interval in nanoseconds.  */
 290void ptimer_set_period(ptimer_state *s, int64_t period)
 291{
 292    s->delta = ptimer_get_count(s);
 293    s->period = period;
 294    s->period_frac = 0;
 295    if (s->enabled) {
 296        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 297        ptimer_reload(s, 0);
 298    }
 299}
 300
 301/* Set counter frequency in Hz.  */
 302void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 303{
 304    s->delta = ptimer_get_count(s);
 305    s->period = 1000000000ll / freq;
 306    s->period_frac = (1000000000ll << 32) / freq;
 307    if (s->enabled) {
 308        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 309        ptimer_reload(s, 0);
 310    }
 311}
 312
 313/* Set the initial countdown value.  If reload is nonzero then also set
 314   count = limit.  */
 315void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 316{
 317    s->limit = limit;
 318    if (reload)
 319        s->delta = limit;
 320    if (s->enabled && reload) {
 321        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 322        ptimer_reload(s, 0);
 323    }
 324}
 325
 326uint64_t ptimer_get_limit(ptimer_state *s)
 327{
 328    return s->limit;
 329}
 330
 331const VMStateDescription vmstate_ptimer = {
 332    .name = "ptimer",
 333    .version_id = 1,
 334    .minimum_version_id = 1,
 335    .fields = (VMStateField[]) {
 336        VMSTATE_UINT8(enabled, ptimer_state),
 337        VMSTATE_UINT64(limit, ptimer_state),
 338        VMSTATE_UINT64(delta, ptimer_state),
 339        VMSTATE_UINT32(period_frac, ptimer_state),
 340        VMSTATE_INT64(period, ptimer_state),
 341        VMSTATE_INT64(last_event, ptimer_state),
 342        VMSTATE_INT64(next_event, ptimer_state),
 343        VMSTATE_TIMER_PTR(timer, ptimer_state),
 344        VMSTATE_END_OF_LIST()
 345    }
 346};
 347
 348ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
 349{
 350    ptimer_state *s;
 351
 352    s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
 353    s->bh = bh;
 354    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 355    s->policy_mask = policy_mask;
 356    return s;
 357}
 358
 359void ptimer_free(ptimer_state *s)
 360{
 361    qemu_bh_delete(s->bh);
 362    timer_free(s->timer);
 363    g_free(s);
 364}
 365