qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "hw/sysbus.h"
  26#include "exec/address-spaces.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/i386/pc.h"
  31#include "hw/i386/apic-msidef.h"
  32#include "hw/boards.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "hw/i386/apic_internal.h"
  37#include "kvm_i386.h"
  38#include "trace.h"
  39
  40static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  41                            uint64_t wmask, uint64_t w1cmask)
  42{
  43    stq_le_p(&s->csr[addr], val);
  44    stq_le_p(&s->wmask[addr], wmask);
  45    stq_le_p(&s->w1cmask[addr], w1cmask);
  46}
  47
  48static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  49{
  50    stq_le_p(&s->womask[addr], mask);
  51}
  52
  53static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  54                            uint32_t wmask, uint32_t w1cmask)
  55{
  56    stl_le_p(&s->csr[addr], val);
  57    stl_le_p(&s->wmask[addr], wmask);
  58    stl_le_p(&s->w1cmask[addr], w1cmask);
  59}
  60
  61static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  62{
  63    stl_le_p(&s->womask[addr], mask);
  64}
  65
  66/* "External" get/set operations */
  67static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  68{
  69    uint64_t oldval = ldq_le_p(&s->csr[addr]);
  70    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  71    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  72    stq_le_p(&s->csr[addr],
  73             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  74}
  75
  76static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  77{
  78    uint32_t oldval = ldl_le_p(&s->csr[addr]);
  79    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  80    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  81    stl_le_p(&s->csr[addr],
  82             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  83}
  84
  85static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  86{
  87    uint64_t val = ldq_le_p(&s->csr[addr]);
  88    uint64_t womask = ldq_le_p(&s->womask[addr]);
  89    return val & ~womask;
  90}
  91
  92static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  93{
  94    uint32_t val = ldl_le_p(&s->csr[addr]);
  95    uint32_t womask = ldl_le_p(&s->womask[addr]);
  96    return val & ~womask;
  97}
  98
  99/* "Internal" get/set operations */
 100static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 101{
 102    return ldq_le_p(&s->csr[addr]);
 103}
 104
 105static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 106{
 107    return ldl_le_p(&s->csr[addr]);
 108}
 109
 110static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 111{
 112    stq_le_p(&s->csr[addr], val);
 113}
 114
 115static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 116                                        uint32_t clear, uint32_t mask)
 117{
 118    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 119    stl_le_p(&s->csr[addr], new_val);
 120    return new_val;
 121}
 122
 123static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 124                                        uint64_t clear, uint64_t mask)
 125{
 126    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 127    stq_le_p(&s->csr[addr], new_val);
 128    return new_val;
 129}
 130
 131/* GHashTable functions */
 132static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 133{
 134    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 135}
 136
 137static guint vtd_uint64_hash(gconstpointer v)
 138{
 139    return (guint)*(const uint64_t *)v;
 140}
 141
 142static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 143                                          gpointer user_data)
 144{
 145    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 146    uint16_t domain_id = *(uint16_t *)user_data;
 147    return entry->domain_id == domain_id;
 148}
 149
 150/* The shift of an addr for a certain level of paging structure */
 151static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 152{
 153    assert(level != 0);
 154    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 155}
 156
 157static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 158{
 159    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 160}
 161
 162static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 163                                        gpointer user_data)
 164{
 165    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 166    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 167    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 168    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 169    return (entry->domain_id == info->domain_id) &&
 170            (((entry->gfn & info->mask) == gfn) ||
 171             (entry->gfn == gfn_tlb));
 172}
 173
 174/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 175 * IntelIOMMUState to 1.
 176 */
 177static void vtd_reset_context_cache(IntelIOMMUState *s)
 178{
 179    VTDAddressSpace *vtd_as;
 180    VTDBus *vtd_bus;
 181    GHashTableIter bus_it;
 182    uint32_t devfn_it;
 183
 184    trace_vtd_context_cache_reset();
 185
 186    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 187
 188    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 189        for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
 190            vtd_as = vtd_bus->dev_as[devfn_it];
 191            if (!vtd_as) {
 192                continue;
 193            }
 194            vtd_as->context_cache_entry.context_cache_gen = 0;
 195        }
 196    }
 197    s->context_cache_gen = 1;
 198}
 199
 200static void vtd_reset_iotlb(IntelIOMMUState *s)
 201{
 202    assert(s->iotlb);
 203    g_hash_table_remove_all(s->iotlb);
 204}
 205
 206static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 207                                  uint32_t level)
 208{
 209    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 210           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 211}
 212
 213static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 214{
 215    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 216}
 217
 218static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 219                                       hwaddr addr)
 220{
 221    VTDIOTLBEntry *entry;
 222    uint64_t key;
 223    int level;
 224
 225    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 226        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 227                                source_id, level);
 228        entry = g_hash_table_lookup(s->iotlb, &key);
 229        if (entry) {
 230            goto out;
 231        }
 232    }
 233
 234out:
 235    return entry;
 236}
 237
 238static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 239                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 240                             uint8_t access_flags, uint32_t level)
 241{
 242    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 243    uint64_t *key = g_malloc(sizeof(*key));
 244    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 245
 246    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 247    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 248        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 249        vtd_reset_iotlb(s);
 250    }
 251
 252    entry->gfn = gfn;
 253    entry->domain_id = domain_id;
 254    entry->slpte = slpte;
 255    entry->access_flags = access_flags;
 256    entry->mask = vtd_slpt_level_page_mask(level);
 257    *key = vtd_get_iotlb_key(gfn, source_id, level);
 258    g_hash_table_replace(s->iotlb, key, entry);
 259}
 260
 261/* Given the reg addr of both the message data and address, generate an
 262 * interrupt via MSI.
 263 */
 264static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 265                                   hwaddr mesg_data_reg)
 266{
 267    MSIMessage msi;
 268
 269    assert(mesg_data_reg < DMAR_REG_SIZE);
 270    assert(mesg_addr_reg < DMAR_REG_SIZE);
 271
 272    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 273    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 274
 275    trace_vtd_irq_generate(msi.address, msi.data);
 276
 277    apic_get_class()->send_msi(&msi);
 278}
 279
 280/* Generate a fault event to software via MSI if conditions are met.
 281 * Notice that the value of FSTS_REG being passed to it should be the one
 282 * before any update.
 283 */
 284static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 285{
 286    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 287        pre_fsts & VTD_FSTS_IQE) {
 288        trace_vtd_err("There are previous interrupt conditions "
 289                      "to be serviced by software, fault event "
 290                      "is not generated.");
 291        return;
 292    }
 293    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 294    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 295        trace_vtd_err("Interrupt Mask set, irq is not generated.");
 296    } else {
 297        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 298        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 299    }
 300}
 301
 302/* Check if the Fault (F) field of the Fault Recording Register referenced by
 303 * @index is Set.
 304 */
 305static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 306{
 307    /* Each reg is 128-bit */
 308    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 309    addr += 8; /* Access the high 64-bit half */
 310
 311    assert(index < DMAR_FRCD_REG_NR);
 312
 313    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 314}
 315
 316/* Update the PPF field of Fault Status Register.
 317 * Should be called whenever change the F field of any fault recording
 318 * registers.
 319 */
 320static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 321{
 322    uint32_t i;
 323    uint32_t ppf_mask = 0;
 324
 325    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 326        if (vtd_is_frcd_set(s, i)) {
 327            ppf_mask = VTD_FSTS_PPF;
 328            break;
 329        }
 330    }
 331    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 332    trace_vtd_fsts_ppf(!!ppf_mask);
 333}
 334
 335static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 336{
 337    /* Each reg is 128-bit */
 338    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 339    addr += 8; /* Access the high 64-bit half */
 340
 341    assert(index < DMAR_FRCD_REG_NR);
 342
 343    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 344    vtd_update_fsts_ppf(s);
 345}
 346
 347/* Must not update F field now, should be done later */
 348static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 349                            uint16_t source_id, hwaddr addr,
 350                            VTDFaultReason fault, bool is_write)
 351{
 352    uint64_t hi = 0, lo;
 353    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 354
 355    assert(index < DMAR_FRCD_REG_NR);
 356
 357    lo = VTD_FRCD_FI(addr);
 358    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 359    if (!is_write) {
 360        hi |= VTD_FRCD_T;
 361    }
 362    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 363    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 364
 365    trace_vtd_frr_new(index, hi, lo);
 366}
 367
 368/* Try to collapse multiple pending faults from the same requester */
 369static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 370{
 371    uint32_t i;
 372    uint64_t frcd_reg;
 373    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 374
 375    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 376        frcd_reg = vtd_get_quad_raw(s, addr);
 377        if ((frcd_reg & VTD_FRCD_F) &&
 378            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 379            return true;
 380        }
 381        addr += 16; /* 128-bit for each */
 382    }
 383    return false;
 384}
 385
 386/* Log and report an DMAR (address translation) fault to software */
 387static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 388                                  hwaddr addr, VTDFaultReason fault,
 389                                  bool is_write)
 390{
 391    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 392
 393    assert(fault < VTD_FR_MAX);
 394
 395    if (fault == VTD_FR_RESERVED_ERR) {
 396        /* This is not a normal fault reason case. Drop it. */
 397        return;
 398    }
 399
 400    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 401
 402    if (fsts_reg & VTD_FSTS_PFO) {
 403        trace_vtd_err("New fault is not recorded due to "
 404                      "Primary Fault Overflow.");
 405        return;
 406    }
 407
 408    if (vtd_try_collapse_fault(s, source_id)) {
 409        trace_vtd_err("New fault is not recorded due to "
 410                      "compression of faults.");
 411        return;
 412    }
 413
 414    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 415        trace_vtd_err("Next Fault Recording Reg is used, "
 416                      "new fault is not recorded, set PFO field.");
 417        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 418        return;
 419    }
 420
 421    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 422
 423    if (fsts_reg & VTD_FSTS_PPF) {
 424        trace_vtd_err("There are pending faults already, "
 425                      "fault event is not generated.");
 426        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 427        s->next_frcd_reg++;
 428        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 429            s->next_frcd_reg = 0;
 430        }
 431    } else {
 432        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 433                                VTD_FSTS_FRI(s->next_frcd_reg));
 434        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 435        s->next_frcd_reg++;
 436        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 437            s->next_frcd_reg = 0;
 438        }
 439        /* This case actually cause the PPF to be Set.
 440         * So generate fault event (interrupt).
 441         */
 442         vtd_generate_fault_event(s, fsts_reg);
 443    }
 444}
 445
 446/* Handle Invalidation Queue Errors of queued invalidation interface error
 447 * conditions.
 448 */
 449static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 450{
 451    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 452
 453    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 454    vtd_generate_fault_event(s, fsts_reg);
 455}
 456
 457/* Set the IWC field and try to generate an invalidation completion interrupt */
 458static void vtd_generate_completion_event(IntelIOMMUState *s)
 459{
 460    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 461        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 462        return;
 463    }
 464    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 465    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 466    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 467        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 468                                    "new event not generated");
 469        return;
 470    } else {
 471        /* Generate the interrupt event */
 472        trace_vtd_inv_desc_wait_irq("Generating complete event");
 473        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 474        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 475    }
 476}
 477
 478static inline bool vtd_root_entry_present(VTDRootEntry *root)
 479{
 480    return root->val & VTD_ROOT_ENTRY_P;
 481}
 482
 483static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 484                              VTDRootEntry *re)
 485{
 486    dma_addr_t addr;
 487
 488    addr = s->root + index * sizeof(*re);
 489    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 490        trace_vtd_re_invalid(re->rsvd, re->val);
 491        re->val = 0;
 492        return -VTD_FR_ROOT_TABLE_INV;
 493    }
 494    re->val = le64_to_cpu(re->val);
 495    return 0;
 496}
 497
 498static inline bool vtd_ce_present(VTDContextEntry *context)
 499{
 500    return context->lo & VTD_CONTEXT_ENTRY_P;
 501}
 502
 503static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
 504                                           VTDContextEntry *ce)
 505{
 506    dma_addr_t addr;
 507
 508    /* we have checked that root entry is present */
 509    addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
 510    if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
 511        trace_vtd_re_invalid(root->rsvd, root->val);
 512        return -VTD_FR_CONTEXT_TABLE_INV;
 513    }
 514    ce->lo = le64_to_cpu(ce->lo);
 515    ce->hi = le64_to_cpu(ce->hi);
 516    return 0;
 517}
 518
 519static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 520{
 521    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 522}
 523
 524static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
 525{
 526    return slpte & VTD_SL_PT_BASE_ADDR_MASK;
 527}
 528
 529/* Whether the pte indicates the address of the page frame */
 530static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 531{
 532    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 533}
 534
 535/* Get the content of a spte located in @base_addr[@index] */
 536static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 537{
 538    uint64_t slpte;
 539
 540    assert(index < VTD_SL_PT_ENTRY_NR);
 541
 542    if (dma_memory_read(&address_space_memory,
 543                        base_addr + index * sizeof(slpte), &slpte,
 544                        sizeof(slpte))) {
 545        slpte = (uint64_t)-1;
 546        return slpte;
 547    }
 548    slpte = le64_to_cpu(slpte);
 549    return slpte;
 550}
 551
 552/* Given an iova and the level of paging structure, return the offset
 553 * of current level.
 554 */
 555static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 556{
 557    return (iova >> vtd_slpt_level_shift(level)) &
 558            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 559}
 560
 561/* Check Capability Register to see if the @level of page-table is supported */
 562static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 563{
 564    return VTD_CAP_SAGAW_MASK & s->cap &
 565           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 566}
 567
 568/* Get the page-table level that hardware should use for the second-level
 569 * page-table walk from the Address Width field of context-entry.
 570 */
 571static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 572{
 573    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 574}
 575
 576static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 577{
 578    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 579}
 580
 581static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 582{
 583    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 584}
 585
 586/* Return true if check passed, otherwise false */
 587static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 588                                     VTDContextEntry *ce)
 589{
 590    switch (vtd_ce_get_type(ce)) {
 591    case VTD_CONTEXT_TT_MULTI_LEVEL:
 592        /* Always supported */
 593        break;
 594    case VTD_CONTEXT_TT_DEV_IOTLB:
 595        if (!x86_iommu->dt_supported) {
 596            return false;
 597        }
 598        break;
 599    case VTD_CONTEXT_TT_PASS_THROUGH:
 600        if (!x86_iommu->pt_supported) {
 601            return false;
 602        }
 603        break;
 604    default:
 605        /* Unknwon type */
 606        return false;
 607    }
 608    return true;
 609}
 610
 611static inline uint64_t vtd_iova_limit(VTDContextEntry *ce)
 612{
 613    uint32_t ce_agaw = vtd_ce_get_agaw(ce);
 614    return 1ULL << MIN(ce_agaw, VTD_MGAW);
 615}
 616
 617/* Return true if IOVA passes range check, otherwise false. */
 618static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce)
 619{
 620    /*
 621     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 622     * in CAP_REG and AW in context-entry.
 623     */
 624    return !(iova & ~(vtd_iova_limit(ce) - 1));
 625}
 626
 627static const uint64_t vtd_paging_entry_rsvd_field[] = {
 628    [0] = ~0ULL,
 629    /* For not large page */
 630    [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 631    [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 632    [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 633    [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 634    /* For large page */
 635    [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 636    [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 637    [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 638    [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 639};
 640
 641static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 642{
 643    if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
 644        /* Maybe large page */
 645        return slpte & vtd_paging_entry_rsvd_field[level + 4];
 646    } else {
 647        return slpte & vtd_paging_entry_rsvd_field[level];
 648    }
 649}
 650
 651/* Find the VTD address space associated with a given bus number */
 652static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 653{
 654    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 655    if (!vtd_bus) {
 656        /*
 657         * Iterate over the registered buses to find the one which
 658         * currently hold this bus number, and update the bus_num
 659         * lookup table:
 660         */
 661        GHashTableIter iter;
 662
 663        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 664        while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
 665            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 666                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 667                return vtd_bus;
 668            }
 669        }
 670    }
 671    return vtd_bus;
 672}
 673
 674/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
 675 * of the translation, can be used for deciding the size of large page.
 676 */
 677static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
 678                             uint64_t *slptep, uint32_t *slpte_level,
 679                             bool *reads, bool *writes)
 680{
 681    dma_addr_t addr = vtd_ce_get_slpt_base(ce);
 682    uint32_t level = vtd_ce_get_level(ce);
 683    uint32_t offset;
 684    uint64_t slpte;
 685    uint64_t access_right_check;
 686
 687    if (!vtd_iova_range_check(iova, ce)) {
 688        trace_vtd_err_dmar_iova_overflow(iova);
 689        return -VTD_FR_ADDR_BEYOND_MGAW;
 690    }
 691
 692    /* FIXME: what is the Atomics request here? */
 693    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 694
 695    while (true) {
 696        offset = vtd_iova_level_offset(iova, level);
 697        slpte = vtd_get_slpte(addr, offset);
 698
 699        if (slpte == (uint64_t)-1) {
 700            trace_vtd_err_dmar_slpte_read_error(iova, level);
 701            if (level == vtd_ce_get_level(ce)) {
 702                /* Invalid programming of context-entry */
 703                return -VTD_FR_CONTEXT_ENTRY_INV;
 704            } else {
 705                return -VTD_FR_PAGING_ENTRY_INV;
 706            }
 707        }
 708        *reads = (*reads) && (slpte & VTD_SL_R);
 709        *writes = (*writes) && (slpte & VTD_SL_W);
 710        if (!(slpte & access_right_check)) {
 711            trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
 712            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
 713        }
 714        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 715            trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
 716            return -VTD_FR_PAGING_ENTRY_RSVD;
 717        }
 718
 719        if (vtd_is_last_slpte(slpte, level)) {
 720            *slptep = slpte;
 721            *slpte_level = level;
 722            return 0;
 723        }
 724        addr = vtd_get_slpte_addr(slpte);
 725        level--;
 726    }
 727}
 728
 729typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
 730
 731/**
 732 * vtd_page_walk_level - walk over specific level for IOVA range
 733 *
 734 * @addr: base GPA addr to start the walk
 735 * @start: IOVA range start address
 736 * @end: IOVA range end address (start <= addr < end)
 737 * @hook_fn: hook func to be called when detected page
 738 * @private: private data to be passed into hook func
 739 * @read: whether parent level has read permission
 740 * @write: whether parent level has write permission
 741 * @notify_unmap: whether we should notify invalid entries
 742 */
 743static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
 744                               uint64_t end, vtd_page_walk_hook hook_fn,
 745                               void *private, uint32_t level,
 746                               bool read, bool write, bool notify_unmap)
 747{
 748    bool read_cur, write_cur, entry_valid;
 749    uint32_t offset;
 750    uint64_t slpte;
 751    uint64_t subpage_size, subpage_mask;
 752    IOMMUTLBEntry entry;
 753    uint64_t iova = start;
 754    uint64_t iova_next;
 755    int ret = 0;
 756
 757    trace_vtd_page_walk_level(addr, level, start, end);
 758
 759    subpage_size = 1ULL << vtd_slpt_level_shift(level);
 760    subpage_mask = vtd_slpt_level_page_mask(level);
 761
 762    while (iova < end) {
 763        iova_next = (iova & subpage_mask) + subpage_size;
 764
 765        offset = vtd_iova_level_offset(iova, level);
 766        slpte = vtd_get_slpte(addr, offset);
 767
 768        if (slpte == (uint64_t)-1) {
 769            trace_vtd_page_walk_skip_read(iova, iova_next);
 770            goto next;
 771        }
 772
 773        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 774            trace_vtd_page_walk_skip_reserve(iova, iova_next);
 775            goto next;
 776        }
 777
 778        /* Permissions are stacked with parents' */
 779        read_cur = read && (slpte & VTD_SL_R);
 780        write_cur = write && (slpte & VTD_SL_W);
 781
 782        /*
 783         * As long as we have either read/write permission, this is a
 784         * valid entry. The rule works for both page entries and page
 785         * table entries.
 786         */
 787        entry_valid = read_cur | write_cur;
 788
 789        if (vtd_is_last_slpte(slpte, level)) {
 790            entry.target_as = &address_space_memory;
 791            entry.iova = iova & subpage_mask;
 792            /* NOTE: this is only meaningful if entry_valid == true */
 793            entry.translated_addr = vtd_get_slpte_addr(slpte);
 794            entry.addr_mask = ~subpage_mask;
 795            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
 796            if (!entry_valid && !notify_unmap) {
 797                trace_vtd_page_walk_skip_perm(iova, iova_next);
 798                goto next;
 799            }
 800            trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
 801                                    entry.addr_mask, entry.perm);
 802            if (hook_fn) {
 803                ret = hook_fn(&entry, private);
 804                if (ret < 0) {
 805                    return ret;
 806                }
 807            }
 808        } else {
 809            if (!entry_valid) {
 810                trace_vtd_page_walk_skip_perm(iova, iova_next);
 811                goto next;
 812            }
 813            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte), iova,
 814                                      MIN(iova_next, end), hook_fn, private,
 815                                      level - 1, read_cur, write_cur,
 816                                      notify_unmap);
 817            if (ret < 0) {
 818                return ret;
 819            }
 820        }
 821
 822next:
 823        iova = iova_next;
 824    }
 825
 826    return 0;
 827}
 828
 829/**
 830 * vtd_page_walk - walk specific IOVA range, and call the hook
 831 *
 832 * @ce: context entry to walk upon
 833 * @start: IOVA address to start the walk
 834 * @end: IOVA range end address (start <= addr < end)
 835 * @hook_fn: the hook that to be called for each detected area
 836 * @private: private data for the hook function
 837 */
 838static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
 839                         vtd_page_walk_hook hook_fn, void *private,
 840                         bool notify_unmap)
 841{
 842    dma_addr_t addr = vtd_ce_get_slpt_base(ce);
 843    uint32_t level = vtd_ce_get_level(ce);
 844
 845    if (!vtd_iova_range_check(start, ce)) {
 846        return -VTD_FR_ADDR_BEYOND_MGAW;
 847    }
 848
 849    if (!vtd_iova_range_check(end, ce)) {
 850        /* Fix end so that it reaches the maximum */
 851        end = vtd_iova_limit(ce);
 852    }
 853
 854    return vtd_page_walk_level(addr, start, end, hook_fn, private,
 855                               level, true, true, notify_unmap);
 856}
 857
 858/* Map a device to its corresponding domain (context-entry) */
 859static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
 860                                    uint8_t devfn, VTDContextEntry *ce)
 861{
 862    VTDRootEntry re;
 863    int ret_fr;
 864    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 865
 866    ret_fr = vtd_get_root_entry(s, bus_num, &re);
 867    if (ret_fr) {
 868        return ret_fr;
 869    }
 870
 871    if (!vtd_root_entry_present(&re)) {
 872        /* Not error - it's okay we don't have root entry. */
 873        trace_vtd_re_not_present(bus_num);
 874        return -VTD_FR_ROOT_ENTRY_P;
 875    }
 876
 877    if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
 878        trace_vtd_re_invalid(re.rsvd, re.val);
 879        return -VTD_FR_ROOT_ENTRY_RSVD;
 880    }
 881
 882    ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
 883    if (ret_fr) {
 884        return ret_fr;
 885    }
 886
 887    if (!vtd_ce_present(ce)) {
 888        /* Not error - it's okay we don't have context entry. */
 889        trace_vtd_ce_not_present(bus_num, devfn);
 890        return -VTD_FR_CONTEXT_ENTRY_P;
 891    }
 892
 893    if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
 894        (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
 895        trace_vtd_ce_invalid(ce->hi, ce->lo);
 896        return -VTD_FR_CONTEXT_ENTRY_RSVD;
 897    }
 898
 899    /* Check if the programming of context-entry is valid */
 900    if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
 901        trace_vtd_ce_invalid(ce->hi, ce->lo);
 902        return -VTD_FR_CONTEXT_ENTRY_INV;
 903    }
 904
 905    /* Do translation type check */
 906    if (!vtd_ce_type_check(x86_iommu, ce)) {
 907        trace_vtd_ce_invalid(ce->hi, ce->lo);
 908        return -VTD_FR_CONTEXT_ENTRY_INV;
 909    }
 910
 911    return 0;
 912}
 913
 914/*
 915 * Fetch translation type for specific device. Returns <0 if error
 916 * happens, otherwise return the shifted type to check against
 917 * VTD_CONTEXT_TT_*.
 918 */
 919static int vtd_dev_get_trans_type(VTDAddressSpace *as)
 920{
 921    IntelIOMMUState *s;
 922    VTDContextEntry ce;
 923    int ret;
 924
 925    s = as->iommu_state;
 926
 927    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
 928                                   as->devfn, &ce);
 929    if (ret) {
 930        return ret;
 931    }
 932
 933    return vtd_ce_get_type(&ce);
 934}
 935
 936static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
 937{
 938    int ret;
 939
 940    assert(as);
 941
 942    ret = vtd_dev_get_trans_type(as);
 943    if (ret < 0) {
 944        /*
 945         * Possibly failed to parse the context entry for some reason
 946         * (e.g., during init, or any guest configuration errors on
 947         * context entries). We should assume PT not enabled for
 948         * safety.
 949         */
 950        return false;
 951    }
 952
 953    return ret == VTD_CONTEXT_TT_PASS_THROUGH;
 954}
 955
 956/* Return whether the device is using IOMMU translation. */
 957static bool vtd_switch_address_space(VTDAddressSpace *as)
 958{
 959    bool use_iommu;
 960
 961    assert(as);
 962
 963    use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
 964
 965    trace_vtd_switch_address_space(pci_bus_num(as->bus),
 966                                   VTD_PCI_SLOT(as->devfn),
 967                                   VTD_PCI_FUNC(as->devfn),
 968                                   use_iommu);
 969
 970    /* Turn off first then on the other */
 971    if (use_iommu) {
 972        memory_region_set_enabled(&as->sys_alias, false);
 973        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
 974    } else {
 975        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
 976        memory_region_set_enabled(&as->sys_alias, true);
 977    }
 978
 979    return use_iommu;
 980}
 981
 982static void vtd_switch_address_space_all(IntelIOMMUState *s)
 983{
 984    GHashTableIter iter;
 985    VTDBus *vtd_bus;
 986    int i;
 987
 988    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 989    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
 990        for (i = 0; i < X86_IOMMU_PCI_DEVFN_MAX; i++) {
 991            if (!vtd_bus->dev_as[i]) {
 992                continue;
 993            }
 994            vtd_switch_address_space(vtd_bus->dev_as[i]);
 995        }
 996    }
 997}
 998
 999static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1000{
1001    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1002}
1003
1004static const bool vtd_qualified_faults[] = {
1005    [VTD_FR_RESERVED] = false,
1006    [VTD_FR_ROOT_ENTRY_P] = false,
1007    [VTD_FR_CONTEXT_ENTRY_P] = true,
1008    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1009    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1010    [VTD_FR_WRITE] = true,
1011    [VTD_FR_READ] = true,
1012    [VTD_FR_PAGING_ENTRY_INV] = true,
1013    [VTD_FR_ROOT_TABLE_INV] = false,
1014    [VTD_FR_CONTEXT_TABLE_INV] = false,
1015    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1016    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1017    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1018    [VTD_FR_RESERVED_ERR] = false,
1019    [VTD_FR_MAX] = false,
1020};
1021
1022/* To see if a fault condition is "qualified", which is reported to software
1023 * only if the FPD field in the context-entry used to process the faulting
1024 * request is 0.
1025 */
1026static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1027{
1028    return vtd_qualified_faults[fault];
1029}
1030
1031static inline bool vtd_is_interrupt_addr(hwaddr addr)
1032{
1033    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1034}
1035
1036static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1037{
1038    VTDBus *vtd_bus;
1039    VTDAddressSpace *vtd_as;
1040    bool success = false;
1041
1042    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1043    if (!vtd_bus) {
1044        goto out;
1045    }
1046
1047    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1048    if (!vtd_as) {
1049        goto out;
1050    }
1051
1052    if (vtd_switch_address_space(vtd_as) == false) {
1053        /* We switched off IOMMU region successfully. */
1054        success = true;
1055    }
1056
1057out:
1058    trace_vtd_pt_enable_fast_path(source_id, success);
1059}
1060
1061/* Map dev to context-entry then do a paging-structures walk to do a iommu
1062 * translation.
1063 *
1064 * Called from RCU critical section.
1065 *
1066 * @bus_num: The bus number
1067 * @devfn: The devfn, which is the  combined of device and function number
1068 * @is_write: The access is a write operation
1069 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1070 *
1071 * Returns true if translation is successful, otherwise false.
1072 */
1073static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1074                                   uint8_t devfn, hwaddr addr, bool is_write,
1075                                   IOMMUTLBEntry *entry)
1076{
1077    IntelIOMMUState *s = vtd_as->iommu_state;
1078    VTDContextEntry ce;
1079    uint8_t bus_num = pci_bus_num(bus);
1080    VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1081    uint64_t slpte, page_mask;
1082    uint32_t level;
1083    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1084    int ret_fr;
1085    bool is_fpd_set = false;
1086    bool reads = true;
1087    bool writes = true;
1088    uint8_t access_flags;
1089    VTDIOTLBEntry *iotlb_entry;
1090
1091    /*
1092     * We have standalone memory region for interrupt addresses, we
1093     * should never receive translation requests in this region.
1094     */
1095    assert(!vtd_is_interrupt_addr(addr));
1096
1097    /* Try to fetch slpte form IOTLB */
1098    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1099    if (iotlb_entry) {
1100        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1101                                 iotlb_entry->domain_id);
1102        slpte = iotlb_entry->slpte;
1103        access_flags = iotlb_entry->access_flags;
1104        page_mask = iotlb_entry->mask;
1105        goto out;
1106    }
1107
1108    /* Try to fetch context-entry from cache first */
1109    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1110        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1111                               cc_entry->context_entry.lo,
1112                               cc_entry->context_cache_gen);
1113        ce = cc_entry->context_entry;
1114        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1115    } else {
1116        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1117        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1118        if (ret_fr) {
1119            ret_fr = -ret_fr;
1120            if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1121                trace_vtd_fault_disabled();
1122            } else {
1123                vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1124            }
1125            goto error;
1126        }
1127        /* Update context-cache */
1128        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1129                                  cc_entry->context_cache_gen,
1130                                  s->context_cache_gen);
1131        cc_entry->context_entry = ce;
1132        cc_entry->context_cache_gen = s->context_cache_gen;
1133    }
1134
1135    /*
1136     * We don't need to translate for pass-through context entries.
1137     * Also, let's ignore IOTLB caching as well for PT devices.
1138     */
1139    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1140        entry->iova = addr & VTD_PAGE_MASK_4K;
1141        entry->translated_addr = entry->iova;
1142        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1143        entry->perm = IOMMU_RW;
1144        trace_vtd_translate_pt(source_id, entry->iova);
1145
1146        /*
1147         * When this happens, it means firstly caching-mode is not
1148         * enabled, and this is the first passthrough translation for
1149         * the device. Let's enable the fast path for passthrough.
1150         *
1151         * When passthrough is disabled again for the device, we can
1152         * capture it via the context entry invalidation, then the
1153         * IOMMU region can be swapped back.
1154         */
1155        vtd_pt_enable_fast_path(s, source_id);
1156
1157        return true;
1158    }
1159
1160    ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1161                               &reads, &writes);
1162    if (ret_fr) {
1163        ret_fr = -ret_fr;
1164        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1165            trace_vtd_fault_disabled();
1166        } else {
1167            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1168        }
1169        goto error;
1170    }
1171
1172    page_mask = vtd_slpt_level_page_mask(level);
1173    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1174    vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1175                     access_flags, level);
1176out:
1177    entry->iova = addr & page_mask;
1178    entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
1179    entry->addr_mask = ~page_mask;
1180    entry->perm = access_flags;
1181    return true;
1182
1183error:
1184    entry->iova = 0;
1185    entry->translated_addr = 0;
1186    entry->addr_mask = 0;
1187    entry->perm = IOMMU_NONE;
1188    return false;
1189}
1190
1191static void vtd_root_table_setup(IntelIOMMUState *s)
1192{
1193    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1194    s->root_extended = s->root & VTD_RTADDR_RTT;
1195    s->root &= VTD_RTADDR_ADDR_MASK;
1196
1197    trace_vtd_reg_dmar_root(s->root, s->root_extended);
1198}
1199
1200static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1201                               uint32_t index, uint32_t mask)
1202{
1203    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1204}
1205
1206static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1207{
1208    uint64_t value = 0;
1209    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1210    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1211    s->intr_root = value & VTD_IRTA_ADDR_MASK;
1212    s->intr_eime = value & VTD_IRTA_EIME;
1213
1214    /* Notify global invalidation */
1215    vtd_iec_notify_all(s, true, 0, 0);
1216
1217    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1218}
1219
1220static void vtd_iommu_replay_all(IntelIOMMUState *s)
1221{
1222    IntelIOMMUNotifierNode *node;
1223
1224    QLIST_FOREACH(node, &s->notifiers_list, next) {
1225        memory_region_iommu_replay_all(&node->vtd_as->iommu);
1226    }
1227}
1228
1229static void vtd_context_global_invalidate(IntelIOMMUState *s)
1230{
1231    trace_vtd_inv_desc_cc_global();
1232    s->context_cache_gen++;
1233    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1234        vtd_reset_context_cache(s);
1235    }
1236    vtd_switch_address_space_all(s);
1237    /*
1238     * From VT-d spec 6.5.2.1, a global context entry invalidation
1239     * should be followed by a IOTLB global invalidation, so we should
1240     * be safe even without this. Hoewever, let's replay the region as
1241     * well to be safer, and go back here when we need finer tunes for
1242     * VT-d emulation codes.
1243     */
1244    vtd_iommu_replay_all(s);
1245}
1246
1247/* Do a context-cache device-selective invalidation.
1248 * @func_mask: FM field after shifting
1249 */
1250static void vtd_context_device_invalidate(IntelIOMMUState *s,
1251                                          uint16_t source_id,
1252                                          uint16_t func_mask)
1253{
1254    uint16_t mask;
1255    VTDBus *vtd_bus;
1256    VTDAddressSpace *vtd_as;
1257    uint8_t bus_n, devfn;
1258    uint16_t devfn_it;
1259
1260    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1261
1262    switch (func_mask & 3) {
1263    case 0:
1264        mask = 0;   /* No bits in the SID field masked */
1265        break;
1266    case 1:
1267        mask = 4;   /* Mask bit 2 in the SID field */
1268        break;
1269    case 2:
1270        mask = 6;   /* Mask bit 2:1 in the SID field */
1271        break;
1272    case 3:
1273        mask = 7;   /* Mask bit 2:0 in the SID field */
1274        break;
1275    }
1276    mask = ~mask;
1277
1278    bus_n = VTD_SID_TO_BUS(source_id);
1279    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1280    if (vtd_bus) {
1281        devfn = VTD_SID_TO_DEVFN(source_id);
1282        for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
1283            vtd_as = vtd_bus->dev_as[devfn_it];
1284            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1285                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1286                                             VTD_PCI_FUNC(devfn_it));
1287                vtd_as->context_cache_entry.context_cache_gen = 0;
1288                /*
1289                 * Do switch address space when needed, in case if the
1290                 * device passthrough bit is switched.
1291                 */
1292                vtd_switch_address_space(vtd_as);
1293                /*
1294                 * So a device is moving out of (or moving into) a
1295                 * domain, a replay() suites here to notify all the
1296                 * IOMMU_NOTIFIER_MAP registers about this change.
1297                 * This won't bring bad even if we have no such
1298                 * notifier registered - the IOMMU notification
1299                 * framework will skip MAP notifications if that
1300                 * happened.
1301                 */
1302                memory_region_iommu_replay_all(&vtd_as->iommu);
1303            }
1304        }
1305    }
1306}
1307
1308/* Context-cache invalidation
1309 * Returns the Context Actual Invalidation Granularity.
1310 * @val: the content of the CCMD_REG
1311 */
1312static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1313{
1314    uint64_t caig;
1315    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1316
1317    switch (type) {
1318    case VTD_CCMD_DOMAIN_INVL:
1319        /* Fall through */
1320    case VTD_CCMD_GLOBAL_INVL:
1321        caig = VTD_CCMD_GLOBAL_INVL_A;
1322        vtd_context_global_invalidate(s);
1323        break;
1324
1325    case VTD_CCMD_DEVICE_INVL:
1326        caig = VTD_CCMD_DEVICE_INVL_A;
1327        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1328        break;
1329
1330    default:
1331        trace_vtd_err("Context cache invalidate type error.");
1332        caig = 0;
1333    }
1334    return caig;
1335}
1336
1337static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1338{
1339    trace_vtd_inv_desc_iotlb_global();
1340    vtd_reset_iotlb(s);
1341    vtd_iommu_replay_all(s);
1342}
1343
1344static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1345{
1346    IntelIOMMUNotifierNode *node;
1347    VTDContextEntry ce;
1348    VTDAddressSpace *vtd_as;
1349
1350    trace_vtd_inv_desc_iotlb_domain(domain_id);
1351
1352    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1353                                &domain_id);
1354
1355    QLIST_FOREACH(node, &s->notifiers_list, next) {
1356        vtd_as = node->vtd_as;
1357        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1358                                      vtd_as->devfn, &ce) &&
1359            domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1360            memory_region_iommu_replay_all(&vtd_as->iommu);
1361        }
1362    }
1363}
1364
1365static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1366                                           void *private)
1367{
1368    memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1369    return 0;
1370}
1371
1372static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1373                                           uint16_t domain_id, hwaddr addr,
1374                                           uint8_t am)
1375{
1376    IntelIOMMUNotifierNode *node;
1377    VTDContextEntry ce;
1378    int ret;
1379
1380    QLIST_FOREACH(node, &(s->notifiers_list), next) {
1381        VTDAddressSpace *vtd_as = node->vtd_as;
1382        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1383                                       vtd_as->devfn, &ce);
1384        if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1385            vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1386                          vtd_page_invalidate_notify_hook,
1387                          (void *)&vtd_as->iommu, true);
1388        }
1389    }
1390}
1391
1392static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1393                                      hwaddr addr, uint8_t am)
1394{
1395    VTDIOTLBPageInvInfo info;
1396
1397    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1398
1399    assert(am <= VTD_MAMV);
1400    info.domain_id = domain_id;
1401    info.addr = addr;
1402    info.mask = ~((1 << am) - 1);
1403    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1404    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1405}
1406
1407/* Flush IOTLB
1408 * Returns the IOTLB Actual Invalidation Granularity.
1409 * @val: the content of the IOTLB_REG
1410 */
1411static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1412{
1413    uint64_t iaig;
1414    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1415    uint16_t domain_id;
1416    hwaddr addr;
1417    uint8_t am;
1418
1419    switch (type) {
1420    case VTD_TLB_GLOBAL_FLUSH:
1421        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1422        vtd_iotlb_global_invalidate(s);
1423        break;
1424
1425    case VTD_TLB_DSI_FLUSH:
1426        domain_id = VTD_TLB_DID(val);
1427        iaig = VTD_TLB_DSI_FLUSH_A;
1428        vtd_iotlb_domain_invalidate(s, domain_id);
1429        break;
1430
1431    case VTD_TLB_PSI_FLUSH:
1432        domain_id = VTD_TLB_DID(val);
1433        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1434        am = VTD_IVA_AM(addr);
1435        addr = VTD_IVA_ADDR(addr);
1436        if (am > VTD_MAMV) {
1437            trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1438            iaig = 0;
1439            break;
1440        }
1441        iaig = VTD_TLB_PSI_FLUSH_A;
1442        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1443        break;
1444
1445    default:
1446        trace_vtd_err("IOTLB flush: invalid granularity.");
1447        iaig = 0;
1448    }
1449    return iaig;
1450}
1451
1452static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1453
1454static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1455{
1456    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1457           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1458}
1459
1460static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1461{
1462    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1463
1464    trace_vtd_inv_qi_enable(en);
1465
1466    if (en) {
1467        s->iq = iqa_val & VTD_IQA_IQA_MASK;
1468        /* 2^(x+8) entries */
1469        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1470        s->qi_enabled = true;
1471        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1472        /* Ok - report back to driver */
1473        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1474
1475        if (s->iq_tail != 0) {
1476            /*
1477             * This is a spec violation but Windows guests are known to set up
1478             * Queued Invalidation this way so we allow the write and process
1479             * Invalidation Descriptors right away.
1480             */
1481            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1482            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1483                vtd_fetch_inv_desc(s);
1484            }
1485        }
1486    } else {
1487        if (vtd_queued_inv_disable_check(s)) {
1488            /* disable Queued Invalidation */
1489            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1490            s->iq_head = 0;
1491            s->qi_enabled = false;
1492            /* Ok - report back to driver */
1493            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1494        } else {
1495            trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1496        }
1497    }
1498}
1499
1500/* Set Root Table Pointer */
1501static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1502{
1503    vtd_root_table_setup(s);
1504    /* Ok - report back to driver */
1505    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1506}
1507
1508/* Set Interrupt Remap Table Pointer */
1509static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1510{
1511    vtd_interrupt_remap_table_setup(s);
1512    /* Ok - report back to driver */
1513    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1514}
1515
1516/* Handle Translation Enable/Disable */
1517static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1518{
1519    if (s->dmar_enabled == en) {
1520        return;
1521    }
1522
1523    trace_vtd_dmar_enable(en);
1524
1525    if (en) {
1526        s->dmar_enabled = true;
1527        /* Ok - report back to driver */
1528        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1529    } else {
1530        s->dmar_enabled = false;
1531
1532        /* Clear the index of Fault Recording Register */
1533        s->next_frcd_reg = 0;
1534        /* Ok - report back to driver */
1535        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1536    }
1537
1538    vtd_switch_address_space_all(s);
1539}
1540
1541/* Handle Interrupt Remap Enable/Disable */
1542static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1543{
1544    trace_vtd_ir_enable(en);
1545
1546    if (en) {
1547        s->intr_enabled = true;
1548        /* Ok - report back to driver */
1549        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1550    } else {
1551        s->intr_enabled = false;
1552        /* Ok - report back to driver */
1553        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1554    }
1555}
1556
1557/* Handle write to Global Command Register */
1558static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1559{
1560    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1561    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1562    uint32_t changed = status ^ val;
1563
1564    trace_vtd_reg_write_gcmd(status, val);
1565    if (changed & VTD_GCMD_TE) {
1566        /* Translation enable/disable */
1567        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1568    }
1569    if (val & VTD_GCMD_SRTP) {
1570        /* Set/update the root-table pointer */
1571        vtd_handle_gcmd_srtp(s);
1572    }
1573    if (changed & VTD_GCMD_QIE) {
1574        /* Queued Invalidation Enable */
1575        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1576    }
1577    if (val & VTD_GCMD_SIRTP) {
1578        /* Set/update the interrupt remapping root-table pointer */
1579        vtd_handle_gcmd_sirtp(s);
1580    }
1581    if (changed & VTD_GCMD_IRE) {
1582        /* Interrupt remap enable/disable */
1583        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1584    }
1585}
1586
1587/* Handle write to Context Command Register */
1588static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1589{
1590    uint64_t ret;
1591    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1592
1593    /* Context-cache invalidation request */
1594    if (val & VTD_CCMD_ICC) {
1595        if (s->qi_enabled) {
1596            trace_vtd_err("Queued Invalidation enabled, "
1597                          "should not use register-based invalidation");
1598            return;
1599        }
1600        ret = vtd_context_cache_invalidate(s, val);
1601        /* Invalidation completed. Change something to show */
1602        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1603        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1604                                      ret);
1605    }
1606}
1607
1608/* Handle write to IOTLB Invalidation Register */
1609static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1610{
1611    uint64_t ret;
1612    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1613
1614    /* IOTLB invalidation request */
1615    if (val & VTD_TLB_IVT) {
1616        if (s->qi_enabled) {
1617            trace_vtd_err("Queued Invalidation enabled, "
1618                          "should not use register-based invalidation.");
1619            return;
1620        }
1621        ret = vtd_iotlb_flush(s, val);
1622        /* Invalidation completed. Change something to show */
1623        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1624        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1625                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1626    }
1627}
1628
1629/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1630static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1631                             VTDInvDesc *inv_desc)
1632{
1633    dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1634    if (dma_memory_read(&address_space_memory, addr, inv_desc,
1635        sizeof(*inv_desc))) {
1636        trace_vtd_err("Read INV DESC failed.");
1637        inv_desc->lo = 0;
1638        inv_desc->hi = 0;
1639        return false;
1640    }
1641    inv_desc->lo = le64_to_cpu(inv_desc->lo);
1642    inv_desc->hi = le64_to_cpu(inv_desc->hi);
1643    return true;
1644}
1645
1646static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1647{
1648    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1649        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1650        trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1651        return false;
1652    }
1653    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1654        /* Status Write */
1655        uint32_t status_data = (uint32_t)(inv_desc->lo >>
1656                               VTD_INV_DESC_WAIT_DATA_SHIFT);
1657
1658        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1659
1660        /* FIXME: need to be masked with HAW? */
1661        dma_addr_t status_addr = inv_desc->hi;
1662        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1663        status_data = cpu_to_le32(status_data);
1664        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1665                             sizeof(status_data))) {
1666            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1667            return false;
1668        }
1669    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1670        /* Interrupt flag */
1671        vtd_generate_completion_event(s);
1672    } else {
1673        trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1674        return false;
1675    }
1676    return true;
1677}
1678
1679static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1680                                           VTDInvDesc *inv_desc)
1681{
1682    uint16_t sid, fmask;
1683
1684    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1685        trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1686        return false;
1687    }
1688    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1689    case VTD_INV_DESC_CC_DOMAIN:
1690        trace_vtd_inv_desc_cc_domain(
1691            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1692        /* Fall through */
1693    case VTD_INV_DESC_CC_GLOBAL:
1694        vtd_context_global_invalidate(s);
1695        break;
1696
1697    case VTD_INV_DESC_CC_DEVICE:
1698        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1699        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1700        vtd_context_device_invalidate(s, sid, fmask);
1701        break;
1702
1703    default:
1704        trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1705        return false;
1706    }
1707    return true;
1708}
1709
1710static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1711{
1712    uint16_t domain_id;
1713    uint8_t am;
1714    hwaddr addr;
1715
1716    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1717        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1718        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1719        return false;
1720    }
1721
1722    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1723    case VTD_INV_DESC_IOTLB_GLOBAL:
1724        vtd_iotlb_global_invalidate(s);
1725        break;
1726
1727    case VTD_INV_DESC_IOTLB_DOMAIN:
1728        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1729        vtd_iotlb_domain_invalidate(s, domain_id);
1730        break;
1731
1732    case VTD_INV_DESC_IOTLB_PAGE:
1733        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1734        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1735        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1736        if (am > VTD_MAMV) {
1737            trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1738            return false;
1739        }
1740        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1741        break;
1742
1743    default:
1744        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1745        return false;
1746    }
1747    return true;
1748}
1749
1750static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1751                                     VTDInvDesc *inv_desc)
1752{
1753    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1754                           inv_desc->iec.index,
1755                           inv_desc->iec.index_mask);
1756
1757    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1758                       inv_desc->iec.index,
1759                       inv_desc->iec.index_mask);
1760    return true;
1761}
1762
1763static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1764                                          VTDInvDesc *inv_desc)
1765{
1766    VTDAddressSpace *vtd_dev_as;
1767    IOMMUTLBEntry entry;
1768    struct VTDBus *vtd_bus;
1769    hwaddr addr;
1770    uint64_t sz;
1771    uint16_t sid;
1772    uint8_t devfn;
1773    bool size;
1774    uint8_t bus_num;
1775
1776    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1777    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1778    devfn = sid & 0xff;
1779    bus_num = sid >> 8;
1780    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1781
1782    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1783        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1784        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1785        return false;
1786    }
1787
1788    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1789    if (!vtd_bus) {
1790        goto done;
1791    }
1792
1793    vtd_dev_as = vtd_bus->dev_as[devfn];
1794    if (!vtd_dev_as) {
1795        goto done;
1796    }
1797
1798    /* According to ATS spec table 2.4:
1799     * S = 0, bits 15:12 = xxxx     range size: 4K
1800     * S = 1, bits 15:12 = xxx0     range size: 8K
1801     * S = 1, bits 15:12 = xx01     range size: 16K
1802     * S = 1, bits 15:12 = x011     range size: 32K
1803     * S = 1, bits 15:12 = 0111     range size: 64K
1804     * ...
1805     */
1806    if (size) {
1807        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1808        addr &= ~(sz - 1);
1809    } else {
1810        sz = VTD_PAGE_SIZE;
1811    }
1812
1813    entry.target_as = &vtd_dev_as->as;
1814    entry.addr_mask = sz - 1;
1815    entry.iova = addr;
1816    entry.perm = IOMMU_NONE;
1817    entry.translated_addr = 0;
1818    memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1819
1820done:
1821    return true;
1822}
1823
1824static bool vtd_process_inv_desc(IntelIOMMUState *s)
1825{
1826    VTDInvDesc inv_desc;
1827    uint8_t desc_type;
1828
1829    trace_vtd_inv_qi_head(s->iq_head);
1830    if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1831        s->iq_last_desc_type = VTD_INV_DESC_NONE;
1832        return false;
1833    }
1834    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1835    /* FIXME: should update at first or at last? */
1836    s->iq_last_desc_type = desc_type;
1837
1838    switch (desc_type) {
1839    case VTD_INV_DESC_CC:
1840        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1841        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1842            return false;
1843        }
1844        break;
1845
1846    case VTD_INV_DESC_IOTLB:
1847        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1848        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1849            return false;
1850        }
1851        break;
1852
1853    case VTD_INV_DESC_WAIT:
1854        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1855        if (!vtd_process_wait_desc(s, &inv_desc)) {
1856            return false;
1857        }
1858        break;
1859
1860    case VTD_INV_DESC_IEC:
1861        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1862        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1863            return false;
1864        }
1865        break;
1866
1867    case VTD_INV_DESC_DEVICE:
1868        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1869        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1870            return false;
1871        }
1872        break;
1873
1874    default:
1875        trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1876        return false;
1877    }
1878    s->iq_head++;
1879    if (s->iq_head == s->iq_size) {
1880        s->iq_head = 0;
1881    }
1882    return true;
1883}
1884
1885/* Try to fetch and process more Invalidation Descriptors */
1886static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1887{
1888    trace_vtd_inv_qi_fetch();
1889
1890    if (s->iq_tail >= s->iq_size) {
1891        /* Detects an invalid Tail pointer */
1892        trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1893        vtd_handle_inv_queue_error(s);
1894        return;
1895    }
1896    while (s->iq_head != s->iq_tail) {
1897        if (!vtd_process_inv_desc(s)) {
1898            /* Invalidation Queue Errors */
1899            vtd_handle_inv_queue_error(s);
1900            break;
1901        }
1902        /* Must update the IQH_REG in time */
1903        vtd_set_quad_raw(s, DMAR_IQH_REG,
1904                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1905                         VTD_IQH_QH_MASK);
1906    }
1907}
1908
1909/* Handle write to Invalidation Queue Tail Register */
1910static void vtd_handle_iqt_write(IntelIOMMUState *s)
1911{
1912    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1913
1914    s->iq_tail = VTD_IQT_QT(val);
1915    trace_vtd_inv_qi_tail(s->iq_tail);
1916
1917    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1918        /* Process Invalidation Queue here */
1919        vtd_fetch_inv_desc(s);
1920    }
1921}
1922
1923static void vtd_handle_fsts_write(IntelIOMMUState *s)
1924{
1925    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1926    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1927    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1928
1929    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1930        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1931        trace_vtd_fsts_clear_ip();
1932    }
1933    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1934     * Descriptors if there are any when Queued Invalidation is enabled?
1935     */
1936}
1937
1938static void vtd_handle_fectl_write(IntelIOMMUState *s)
1939{
1940    uint32_t fectl_reg;
1941    /* FIXME: when software clears the IM field, check the IP field. But do we
1942     * need to compare the old value and the new value to conclude that
1943     * software clears the IM field? Or just check if the IM field is zero?
1944     */
1945    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1946
1947    trace_vtd_reg_write_fectl(fectl_reg);
1948
1949    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1950        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1951        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1952    }
1953}
1954
1955static void vtd_handle_ics_write(IntelIOMMUState *s)
1956{
1957    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1958    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1959
1960    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1961        trace_vtd_reg_ics_clear_ip();
1962        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1963    }
1964}
1965
1966static void vtd_handle_iectl_write(IntelIOMMUState *s)
1967{
1968    uint32_t iectl_reg;
1969    /* FIXME: when software clears the IM field, check the IP field. But do we
1970     * need to compare the old value and the new value to conclude that
1971     * software clears the IM field? Or just check if the IM field is zero?
1972     */
1973    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1974
1975    trace_vtd_reg_write_iectl(iectl_reg);
1976
1977    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1978        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1979        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1980    }
1981}
1982
1983static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1984{
1985    IntelIOMMUState *s = opaque;
1986    uint64_t val;
1987
1988    trace_vtd_reg_read(addr, size);
1989
1990    if (addr + size > DMAR_REG_SIZE) {
1991        trace_vtd_err("Read MMIO over range.");
1992        return (uint64_t)-1;
1993    }
1994
1995    switch (addr) {
1996    /* Root Table Address Register, 64-bit */
1997    case DMAR_RTADDR_REG:
1998        if (size == 4) {
1999            val = s->root & ((1ULL << 32) - 1);
2000        } else {
2001            val = s->root;
2002        }
2003        break;
2004
2005    case DMAR_RTADDR_REG_HI:
2006        assert(size == 4);
2007        val = s->root >> 32;
2008        break;
2009
2010    /* Invalidation Queue Address Register, 64-bit */
2011    case DMAR_IQA_REG:
2012        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2013        if (size == 4) {
2014            val = val & ((1ULL << 32) - 1);
2015        }
2016        break;
2017
2018    case DMAR_IQA_REG_HI:
2019        assert(size == 4);
2020        val = s->iq >> 32;
2021        break;
2022
2023    default:
2024        if (size == 4) {
2025            val = vtd_get_long(s, addr);
2026        } else {
2027            val = vtd_get_quad(s, addr);
2028        }
2029    }
2030
2031    return val;
2032}
2033
2034static void vtd_mem_write(void *opaque, hwaddr addr,
2035                          uint64_t val, unsigned size)
2036{
2037    IntelIOMMUState *s = opaque;
2038
2039    trace_vtd_reg_write(addr, size, val);
2040
2041    if (addr + size > DMAR_REG_SIZE) {
2042        trace_vtd_err("Write MMIO over range.");
2043        return;
2044    }
2045
2046    switch (addr) {
2047    /* Global Command Register, 32-bit */
2048    case DMAR_GCMD_REG:
2049        vtd_set_long(s, addr, val);
2050        vtd_handle_gcmd_write(s);
2051        break;
2052
2053    /* Context Command Register, 64-bit */
2054    case DMAR_CCMD_REG:
2055        if (size == 4) {
2056            vtd_set_long(s, addr, val);
2057        } else {
2058            vtd_set_quad(s, addr, val);
2059            vtd_handle_ccmd_write(s);
2060        }
2061        break;
2062
2063    case DMAR_CCMD_REG_HI:
2064        assert(size == 4);
2065        vtd_set_long(s, addr, val);
2066        vtd_handle_ccmd_write(s);
2067        break;
2068
2069    /* IOTLB Invalidation Register, 64-bit */
2070    case DMAR_IOTLB_REG:
2071        if (size == 4) {
2072            vtd_set_long(s, addr, val);
2073        } else {
2074            vtd_set_quad(s, addr, val);
2075            vtd_handle_iotlb_write(s);
2076        }
2077        break;
2078
2079    case DMAR_IOTLB_REG_HI:
2080        assert(size == 4);
2081        vtd_set_long(s, addr, val);
2082        vtd_handle_iotlb_write(s);
2083        break;
2084
2085    /* Invalidate Address Register, 64-bit */
2086    case DMAR_IVA_REG:
2087        if (size == 4) {
2088            vtd_set_long(s, addr, val);
2089        } else {
2090            vtd_set_quad(s, addr, val);
2091        }
2092        break;
2093
2094    case DMAR_IVA_REG_HI:
2095        assert(size == 4);
2096        vtd_set_long(s, addr, val);
2097        break;
2098
2099    /* Fault Status Register, 32-bit */
2100    case DMAR_FSTS_REG:
2101        assert(size == 4);
2102        vtd_set_long(s, addr, val);
2103        vtd_handle_fsts_write(s);
2104        break;
2105
2106    /* Fault Event Control Register, 32-bit */
2107    case DMAR_FECTL_REG:
2108        assert(size == 4);
2109        vtd_set_long(s, addr, val);
2110        vtd_handle_fectl_write(s);
2111        break;
2112
2113    /* Fault Event Data Register, 32-bit */
2114    case DMAR_FEDATA_REG:
2115        assert(size == 4);
2116        vtd_set_long(s, addr, val);
2117        break;
2118
2119    /* Fault Event Address Register, 32-bit */
2120    case DMAR_FEADDR_REG:
2121        assert(size == 4);
2122        vtd_set_long(s, addr, val);
2123        break;
2124
2125    /* Fault Event Upper Address Register, 32-bit */
2126    case DMAR_FEUADDR_REG:
2127        assert(size == 4);
2128        vtd_set_long(s, addr, val);
2129        break;
2130
2131    /* Protected Memory Enable Register, 32-bit */
2132    case DMAR_PMEN_REG:
2133        assert(size == 4);
2134        vtd_set_long(s, addr, val);
2135        break;
2136
2137    /* Root Table Address Register, 64-bit */
2138    case DMAR_RTADDR_REG:
2139        if (size == 4) {
2140            vtd_set_long(s, addr, val);
2141        } else {
2142            vtd_set_quad(s, addr, val);
2143        }
2144        break;
2145
2146    case DMAR_RTADDR_REG_HI:
2147        assert(size == 4);
2148        vtd_set_long(s, addr, val);
2149        break;
2150
2151    /* Invalidation Queue Tail Register, 64-bit */
2152    case DMAR_IQT_REG:
2153        if (size == 4) {
2154            vtd_set_long(s, addr, val);
2155        } else {
2156            vtd_set_quad(s, addr, val);
2157        }
2158        vtd_handle_iqt_write(s);
2159        break;
2160
2161    case DMAR_IQT_REG_HI:
2162        assert(size == 4);
2163        vtd_set_long(s, addr, val);
2164        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2165        break;
2166
2167    /* Invalidation Queue Address Register, 64-bit */
2168    case DMAR_IQA_REG:
2169        if (size == 4) {
2170            vtd_set_long(s, addr, val);
2171        } else {
2172            vtd_set_quad(s, addr, val);
2173        }
2174        break;
2175
2176    case DMAR_IQA_REG_HI:
2177        assert(size == 4);
2178        vtd_set_long(s, addr, val);
2179        break;
2180
2181    /* Invalidation Completion Status Register, 32-bit */
2182    case DMAR_ICS_REG:
2183        assert(size == 4);
2184        vtd_set_long(s, addr, val);
2185        vtd_handle_ics_write(s);
2186        break;
2187
2188    /* Invalidation Event Control Register, 32-bit */
2189    case DMAR_IECTL_REG:
2190        assert(size == 4);
2191        vtd_set_long(s, addr, val);
2192        vtd_handle_iectl_write(s);
2193        break;
2194
2195    /* Invalidation Event Data Register, 32-bit */
2196    case DMAR_IEDATA_REG:
2197        assert(size == 4);
2198        vtd_set_long(s, addr, val);
2199        break;
2200
2201    /* Invalidation Event Address Register, 32-bit */
2202    case DMAR_IEADDR_REG:
2203        assert(size == 4);
2204        vtd_set_long(s, addr, val);
2205        break;
2206
2207    /* Invalidation Event Upper Address Register, 32-bit */
2208    case DMAR_IEUADDR_REG:
2209        assert(size == 4);
2210        vtd_set_long(s, addr, val);
2211        break;
2212
2213    /* Fault Recording Registers, 128-bit */
2214    case DMAR_FRCD_REG_0_0:
2215        if (size == 4) {
2216            vtd_set_long(s, addr, val);
2217        } else {
2218            vtd_set_quad(s, addr, val);
2219        }
2220        break;
2221
2222    case DMAR_FRCD_REG_0_1:
2223        assert(size == 4);
2224        vtd_set_long(s, addr, val);
2225        break;
2226
2227    case DMAR_FRCD_REG_0_2:
2228        if (size == 4) {
2229            vtd_set_long(s, addr, val);
2230        } else {
2231            vtd_set_quad(s, addr, val);
2232            /* May clear bit 127 (Fault), update PPF */
2233            vtd_update_fsts_ppf(s);
2234        }
2235        break;
2236
2237    case DMAR_FRCD_REG_0_3:
2238        assert(size == 4);
2239        vtd_set_long(s, addr, val);
2240        /* May clear bit 127 (Fault), update PPF */
2241        vtd_update_fsts_ppf(s);
2242        break;
2243
2244    case DMAR_IRTA_REG:
2245        if (size == 4) {
2246            vtd_set_long(s, addr, val);
2247        } else {
2248            vtd_set_quad(s, addr, val);
2249        }
2250        break;
2251
2252    case DMAR_IRTA_REG_HI:
2253        assert(size == 4);
2254        vtd_set_long(s, addr, val);
2255        break;
2256
2257    default:
2258        if (size == 4) {
2259            vtd_set_long(s, addr, val);
2260        } else {
2261            vtd_set_quad(s, addr, val);
2262        }
2263    }
2264}
2265
2266static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2267                                         IOMMUAccessFlags flag)
2268{
2269    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2270    IntelIOMMUState *s = vtd_as->iommu_state;
2271    IOMMUTLBEntry iotlb = {
2272        /* We'll fill in the rest later. */
2273        .target_as = &address_space_memory,
2274    };
2275    bool success;
2276
2277    if (likely(s->dmar_enabled)) {
2278        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2279                                         addr, flag & IOMMU_WO, &iotlb);
2280    } else {
2281        /* DMAR disabled, passthrough, use 4k-page*/
2282        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2283        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2284        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2285        iotlb.perm = IOMMU_RW;
2286        success = true;
2287    }
2288
2289    if (likely(success)) {
2290        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2291                                 VTD_PCI_SLOT(vtd_as->devfn),
2292                                 VTD_PCI_FUNC(vtd_as->devfn),
2293                                 iotlb.iova, iotlb.translated_addr,
2294                                 iotlb.addr_mask);
2295    } else {
2296        trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2297                                     VTD_PCI_SLOT(vtd_as->devfn),
2298                                     VTD_PCI_FUNC(vtd_as->devfn),
2299                                     iotlb.iova);
2300    }
2301
2302    return iotlb;
2303}
2304
2305static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2306                                          IOMMUNotifierFlag old,
2307                                          IOMMUNotifierFlag new)
2308{
2309    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2310    IntelIOMMUState *s = vtd_as->iommu_state;
2311    IntelIOMMUNotifierNode *node = NULL;
2312    IntelIOMMUNotifierNode *next_node = NULL;
2313
2314    if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2315        error_report("We need to set cache_mode=1 for intel-iommu to enable "
2316                     "device assignment with IOMMU protection.");
2317        exit(1);
2318    }
2319
2320    if (old == IOMMU_NOTIFIER_NONE) {
2321        node = g_malloc0(sizeof(*node));
2322        node->vtd_as = vtd_as;
2323        QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2324        return;
2325    }
2326
2327    /* update notifier node with new flags */
2328    QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2329        if (node->vtd_as == vtd_as) {
2330            if (new == IOMMU_NOTIFIER_NONE) {
2331                QLIST_REMOVE(node, next);
2332                g_free(node);
2333            }
2334            return;
2335        }
2336    }
2337}
2338
2339static int vtd_post_load(void *opaque, int version_id)
2340{
2341    IntelIOMMUState *iommu = opaque;
2342
2343    /*
2344     * Memory regions are dynamically turned on/off depending on
2345     * context entry configurations from the guest. After migration,
2346     * we need to make sure the memory regions are still correct.
2347     */
2348    vtd_switch_address_space_all(iommu);
2349
2350    return 0;
2351}
2352
2353static const VMStateDescription vtd_vmstate = {
2354    .name = "iommu-intel",
2355    .version_id = 1,
2356    .minimum_version_id = 1,
2357    .priority = MIG_PRI_IOMMU,
2358    .post_load = vtd_post_load,
2359    .fields = (VMStateField[]) {
2360        VMSTATE_UINT64(root, IntelIOMMUState),
2361        VMSTATE_UINT64(intr_root, IntelIOMMUState),
2362        VMSTATE_UINT64(iq, IntelIOMMUState),
2363        VMSTATE_UINT32(intr_size, IntelIOMMUState),
2364        VMSTATE_UINT16(iq_head, IntelIOMMUState),
2365        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2366        VMSTATE_UINT16(iq_size, IntelIOMMUState),
2367        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2368        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2369        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2370        VMSTATE_BOOL(root_extended, IntelIOMMUState),
2371        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2372        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2373        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2374        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2375        VMSTATE_END_OF_LIST()
2376    }
2377};
2378
2379static const MemoryRegionOps vtd_mem_ops = {
2380    .read = vtd_mem_read,
2381    .write = vtd_mem_write,
2382    .endianness = DEVICE_LITTLE_ENDIAN,
2383    .impl = {
2384        .min_access_size = 4,
2385        .max_access_size = 8,
2386    },
2387    .valid = {
2388        .min_access_size = 4,
2389        .max_access_size = 8,
2390    },
2391};
2392
2393static Property vtd_properties[] = {
2394    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2395    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2396                            ON_OFF_AUTO_AUTO),
2397    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2398    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2399    DEFINE_PROP_END_OF_LIST(),
2400};
2401
2402/* Read IRTE entry with specific index */
2403static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2404                        VTD_IR_TableEntry *entry, uint16_t sid)
2405{
2406    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2407        {0xffff, 0xfffb, 0xfff9, 0xfff8};
2408    dma_addr_t addr = 0x00;
2409    uint16_t mask, source_id;
2410    uint8_t bus, bus_max, bus_min;
2411
2412    addr = iommu->intr_root + index * sizeof(*entry);
2413    if (dma_memory_read(&address_space_memory, addr, entry,
2414                        sizeof(*entry))) {
2415        trace_vtd_err("Memory read failed for IRTE.");
2416        return -VTD_FR_IR_ROOT_INVAL;
2417    }
2418
2419    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2420                          le64_to_cpu(entry->data[0]));
2421
2422    if (!entry->irte.present) {
2423        trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2424                           le64_to_cpu(entry->data[0]));
2425        return -VTD_FR_IR_ENTRY_P;
2426    }
2427
2428    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2429        entry->irte.__reserved_2) {
2430        trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2431                           le64_to_cpu(entry->data[0]));
2432        return -VTD_FR_IR_IRTE_RSVD;
2433    }
2434
2435    if (sid != X86_IOMMU_SID_INVALID) {
2436        /* Validate IRTE SID */
2437        source_id = le32_to_cpu(entry->irte.source_id);
2438        switch (entry->irte.sid_vtype) {
2439        case VTD_SVT_NONE:
2440            break;
2441
2442        case VTD_SVT_ALL:
2443            mask = vtd_svt_mask[entry->irte.sid_q];
2444            if ((source_id & mask) != (sid & mask)) {
2445                trace_vtd_err_irte_sid(index, sid, source_id);
2446                return -VTD_FR_IR_SID_ERR;
2447            }
2448            break;
2449
2450        case VTD_SVT_BUS:
2451            bus_max = source_id >> 8;
2452            bus_min = source_id & 0xff;
2453            bus = sid >> 8;
2454            if (bus > bus_max || bus < bus_min) {
2455                trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2456                return -VTD_FR_IR_SID_ERR;
2457            }
2458            break;
2459
2460        default:
2461            trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2462            /* Take this as verification failure. */
2463            return -VTD_FR_IR_SID_ERR;
2464            break;
2465        }
2466    }
2467
2468    return 0;
2469}
2470
2471/* Fetch IRQ information of specific IR index */
2472static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2473                             VTDIrq *irq, uint16_t sid)
2474{
2475    VTD_IR_TableEntry irte = {};
2476    int ret = 0;
2477
2478    ret = vtd_irte_get(iommu, index, &irte, sid);
2479    if (ret) {
2480        return ret;
2481    }
2482
2483    irq->trigger_mode = irte.irte.trigger_mode;
2484    irq->vector = irte.irte.vector;
2485    irq->delivery_mode = irte.irte.delivery_mode;
2486    irq->dest = le32_to_cpu(irte.irte.dest_id);
2487    if (!iommu->intr_eime) {
2488#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2489#define  VTD_IR_APIC_DEST_SHIFT        (8)
2490        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2491            VTD_IR_APIC_DEST_SHIFT;
2492    }
2493    irq->dest_mode = irte.irte.dest_mode;
2494    irq->redir_hint = irte.irte.redir_hint;
2495
2496    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2497                       irq->delivery_mode, irq->dest, irq->dest_mode);
2498
2499    return 0;
2500}
2501
2502/* Generate one MSI message from VTDIrq info */
2503static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2504{
2505    VTD_MSIMessage msg = {};
2506
2507    /* Generate address bits */
2508    msg.dest_mode = irq->dest_mode;
2509    msg.redir_hint = irq->redir_hint;
2510    msg.dest = irq->dest;
2511    msg.__addr_hi = irq->dest & 0xffffff00;
2512    msg.__addr_head = cpu_to_le32(0xfee);
2513    /* Keep this from original MSI address bits */
2514    msg.__not_used = irq->msi_addr_last_bits;
2515
2516    /* Generate data bits */
2517    msg.vector = irq->vector;
2518    msg.delivery_mode = irq->delivery_mode;
2519    msg.level = 1;
2520    msg.trigger_mode = irq->trigger_mode;
2521
2522    msg_out->address = msg.msi_addr;
2523    msg_out->data = msg.msi_data;
2524}
2525
2526/* Interrupt remapping for MSI/MSI-X entry */
2527static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2528                                   MSIMessage *origin,
2529                                   MSIMessage *translated,
2530                                   uint16_t sid)
2531{
2532    int ret = 0;
2533    VTD_IR_MSIAddress addr;
2534    uint16_t index;
2535    VTDIrq irq = {};
2536
2537    assert(origin && translated);
2538
2539    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2540
2541    if (!iommu || !iommu->intr_enabled) {
2542        memcpy(translated, origin, sizeof(*origin));
2543        goto out;
2544    }
2545
2546    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2547        trace_vtd_err("MSI address high 32 bits non-zero when "
2548                      "Interrupt Remapping enabled.");
2549        return -VTD_FR_IR_REQ_RSVD;
2550    }
2551
2552    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2553    if (addr.addr.__head != 0xfee) {
2554        trace_vtd_err("MSI addr low 32 bit invalid.");
2555        return -VTD_FR_IR_REQ_RSVD;
2556    }
2557
2558    /* This is compatible mode. */
2559    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2560        memcpy(translated, origin, sizeof(*origin));
2561        goto out;
2562    }
2563
2564    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2565
2566#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2567#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2568
2569    if (addr.addr.sub_valid) {
2570        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2571        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2572    }
2573
2574    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2575    if (ret) {
2576        return ret;
2577    }
2578
2579    if (addr.addr.sub_valid) {
2580        trace_vtd_ir_remap_type("MSI");
2581        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2582            trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2583            return -VTD_FR_IR_REQ_RSVD;
2584        }
2585    } else {
2586        uint8_t vector = origin->data & 0xff;
2587        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2588
2589        trace_vtd_ir_remap_type("IOAPIC");
2590        /* IOAPIC entry vector should be aligned with IRTE vector
2591         * (see vt-d spec 5.1.5.1). */
2592        if (vector != irq.vector) {
2593            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2594        }
2595
2596        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2597         * (see vt-d spec 5.1.5.1). */
2598        if (trigger_mode != irq.trigger_mode) {
2599            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2600                                      irq.trigger_mode);
2601        }
2602    }
2603
2604    /*
2605     * We'd better keep the last two bits, assuming that guest OS
2606     * might modify it. Keep it does not hurt after all.
2607     */
2608    irq.msi_addr_last_bits = addr.addr.__not_care;
2609
2610    /* Translate VTDIrq to MSI message */
2611    vtd_generate_msi_message(&irq, translated);
2612
2613out:
2614    trace_vtd_ir_remap_msi(origin->address, origin->data,
2615                           translated->address, translated->data);
2616    return 0;
2617}
2618
2619static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2620                         MSIMessage *dst, uint16_t sid)
2621{
2622    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2623                                   src, dst, sid);
2624}
2625
2626static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2627                                   uint64_t *data, unsigned size,
2628                                   MemTxAttrs attrs)
2629{
2630    return MEMTX_OK;
2631}
2632
2633static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2634                                    uint64_t value, unsigned size,
2635                                    MemTxAttrs attrs)
2636{
2637    int ret = 0;
2638    MSIMessage from = {}, to = {};
2639    uint16_t sid = X86_IOMMU_SID_INVALID;
2640
2641    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2642    from.data = (uint32_t) value;
2643
2644    if (!attrs.unspecified) {
2645        /* We have explicit Source ID */
2646        sid = attrs.requester_id;
2647    }
2648
2649    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2650    if (ret) {
2651        /* TODO: report error */
2652        /* Drop this interrupt */
2653        return MEMTX_ERROR;
2654    }
2655
2656    apic_get_class()->send_msi(&to);
2657
2658    return MEMTX_OK;
2659}
2660
2661static const MemoryRegionOps vtd_mem_ir_ops = {
2662    .read_with_attrs = vtd_mem_ir_read,
2663    .write_with_attrs = vtd_mem_ir_write,
2664    .endianness = DEVICE_LITTLE_ENDIAN,
2665    .impl = {
2666        .min_access_size = 4,
2667        .max_access_size = 4,
2668    },
2669    .valid = {
2670        .min_access_size = 4,
2671        .max_access_size = 4,
2672    },
2673};
2674
2675VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2676{
2677    uintptr_t key = (uintptr_t)bus;
2678    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2679    VTDAddressSpace *vtd_dev_as;
2680    char name[128];
2681
2682    if (!vtd_bus) {
2683        uintptr_t *new_key = g_malloc(sizeof(*new_key));
2684        *new_key = (uintptr_t)bus;
2685        /* No corresponding free() */
2686        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2687                            X86_IOMMU_PCI_DEVFN_MAX);
2688        vtd_bus->bus = bus;
2689        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2690    }
2691
2692    vtd_dev_as = vtd_bus->dev_as[devfn];
2693
2694    if (!vtd_dev_as) {
2695        snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2696        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2697
2698        vtd_dev_as->bus = bus;
2699        vtd_dev_as->devfn = (uint8_t)devfn;
2700        vtd_dev_as->iommu_state = s;
2701        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2702
2703        /*
2704         * Memory region relationships looks like (Address range shows
2705         * only lower 32 bits to make it short in length...):
2706         *
2707         * |-----------------+-------------------+----------|
2708         * | Name            | Address range     | Priority |
2709         * |-----------------+-------------------+----------+
2710         * | vtd_root        | 00000000-ffffffff |        0 |
2711         * |  intel_iommu    | 00000000-ffffffff |        1 |
2712         * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2713         * |  intel_iommu_ir | fee00000-feefffff |       64 |
2714         * |-----------------+-------------------+----------|
2715         *
2716         * We enable/disable DMAR by switching enablement for
2717         * vtd_sys_alias and intel_iommu regions. IR region is always
2718         * enabled.
2719         */
2720        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2721                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2722                                 "intel_iommu_dmar",
2723                                 UINT64_MAX);
2724        memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2725                                 "vtd_sys_alias", get_system_memory(),
2726                                 0, memory_region_size(get_system_memory()));
2727        memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2728                              &vtd_mem_ir_ops, s, "intel_iommu_ir",
2729                              VTD_INTERRUPT_ADDR_SIZE);
2730        memory_region_init(&vtd_dev_as->root, OBJECT(s),
2731                           "vtd_root", UINT64_MAX);
2732        memory_region_add_subregion_overlap(&vtd_dev_as->root,
2733                                            VTD_INTERRUPT_ADDR_FIRST,
2734                                            &vtd_dev_as->iommu_ir, 64);
2735        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2736        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2737                                            &vtd_dev_as->sys_alias, 1);
2738        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2739                                            MEMORY_REGION(&vtd_dev_as->iommu),
2740                                            1);
2741        vtd_switch_address_space(vtd_dev_as);
2742    }
2743    return vtd_dev_as;
2744}
2745
2746/* Unmap the whole range in the notifier's scope. */
2747static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2748{
2749    IOMMUTLBEntry entry;
2750    hwaddr size;
2751    hwaddr start = n->start;
2752    hwaddr end = n->end;
2753
2754    /*
2755     * Note: all the codes in this function has a assumption that IOVA
2756     * bits are no more than VTD_MGAW bits (which is restricted by
2757     * VT-d spec), otherwise we need to consider overflow of 64 bits.
2758     */
2759
2760    if (end > VTD_ADDRESS_SIZE) {
2761        /*
2762         * Don't need to unmap regions that is bigger than the whole
2763         * VT-d supported address space size
2764         */
2765        end = VTD_ADDRESS_SIZE;
2766    }
2767
2768    assert(start <= end);
2769    size = end - start;
2770
2771    if (ctpop64(size) != 1) {
2772        /*
2773         * This size cannot format a correct mask. Let's enlarge it to
2774         * suite the minimum available mask.
2775         */
2776        int n = 64 - clz64(size);
2777        if (n > VTD_MGAW) {
2778            /* should not happen, but in case it happens, limit it */
2779            n = VTD_MGAW;
2780        }
2781        size = 1ULL << n;
2782    }
2783
2784    entry.target_as = &address_space_memory;
2785    /* Adjust iova for the size */
2786    entry.iova = n->start & ~(size - 1);
2787    /* This field is meaningless for unmap */
2788    entry.translated_addr = 0;
2789    entry.perm = IOMMU_NONE;
2790    entry.addr_mask = size - 1;
2791
2792    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2793                             VTD_PCI_SLOT(as->devfn),
2794                             VTD_PCI_FUNC(as->devfn),
2795                             entry.iova, size);
2796
2797    memory_region_notify_one(n, &entry);
2798}
2799
2800static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2801{
2802    IntelIOMMUNotifierNode *node;
2803    VTDAddressSpace *vtd_as;
2804    IOMMUNotifier *n;
2805
2806    QLIST_FOREACH(node, &s->notifiers_list, next) {
2807        vtd_as = node->vtd_as;
2808        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2809            vtd_address_space_unmap(vtd_as, n);
2810        }
2811    }
2812}
2813
2814static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2815{
2816    memory_region_notify_one((IOMMUNotifier *)private, entry);
2817    return 0;
2818}
2819
2820static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2821{
2822    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2823    IntelIOMMUState *s = vtd_as->iommu_state;
2824    uint8_t bus_n = pci_bus_num(vtd_as->bus);
2825    VTDContextEntry ce;
2826
2827    /*
2828     * The replay can be triggered by either a invalidation or a newly
2829     * created entry. No matter what, we release existing mappings
2830     * (it means flushing caches for UNMAP-only registers).
2831     */
2832    vtd_address_space_unmap(vtd_as, n);
2833
2834    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2835        trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2836                                  PCI_FUNC(vtd_as->devfn),
2837                                  VTD_CONTEXT_ENTRY_DID(ce.hi),
2838                                  ce.hi, ce.lo);
2839        vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false);
2840    } else {
2841        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2842                                    PCI_FUNC(vtd_as->devfn));
2843    }
2844
2845    return;
2846}
2847
2848/* Do the initialization. It will also be called when reset, so pay
2849 * attention when adding new initialization stuff.
2850 */
2851static void vtd_init(IntelIOMMUState *s)
2852{
2853    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2854
2855    memset(s->csr, 0, DMAR_REG_SIZE);
2856    memset(s->wmask, 0, DMAR_REG_SIZE);
2857    memset(s->w1cmask, 0, DMAR_REG_SIZE);
2858    memset(s->womask, 0, DMAR_REG_SIZE);
2859
2860    s->root = 0;
2861    s->root_extended = false;
2862    s->dmar_enabled = false;
2863    s->iq_head = 0;
2864    s->iq_tail = 0;
2865    s->iq = 0;
2866    s->iq_size = 0;
2867    s->qi_enabled = false;
2868    s->iq_last_desc_type = VTD_INV_DESC_NONE;
2869    s->next_frcd_reg = 0;
2870    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2871             VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2872    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2873
2874    if (x86_iommu->intr_supported) {
2875        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2876        if (s->intr_eim == ON_OFF_AUTO_ON) {
2877            s->ecap |= VTD_ECAP_EIM;
2878        }
2879        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2880    }
2881
2882    if (x86_iommu->dt_supported) {
2883        s->ecap |= VTD_ECAP_DT;
2884    }
2885
2886    if (x86_iommu->pt_supported) {
2887        s->ecap |= VTD_ECAP_PT;
2888    }
2889
2890    if (s->caching_mode) {
2891        s->cap |= VTD_CAP_CM;
2892    }
2893
2894    vtd_reset_context_cache(s);
2895    vtd_reset_iotlb(s);
2896
2897    /* Define registers with default values and bit semantics */
2898    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2899    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2900    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2901    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2902    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2903    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2904    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2905    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2906    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2907
2908    /* Advanced Fault Logging not supported */
2909    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2910    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2911    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2912    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2913
2914    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2915     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2916     */
2917    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2918
2919    /* Treated as RO for implementations that PLMR and PHMR fields reported
2920     * as Clear in the CAP_REG.
2921     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2922     */
2923    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2924
2925    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2926    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2927    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2928    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2929    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2930    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2931    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2932    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2933    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2934
2935    /* IOTLB registers */
2936    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2937    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2938    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2939
2940    /* Fault Recording Registers, 128-bit */
2941    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2942    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2943
2944    /*
2945     * Interrupt remapping registers.
2946     */
2947    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2948}
2949
2950/* Should not reset address_spaces when reset because devices will still use
2951 * the address space they got at first (won't ask the bus again).
2952 */
2953static void vtd_reset(DeviceState *dev)
2954{
2955    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2956
2957    vtd_init(s);
2958
2959    /*
2960     * When device reset, throw away all mappings and external caches
2961     */
2962    vtd_address_space_unmap_all(s);
2963}
2964
2965static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2966{
2967    IntelIOMMUState *s = opaque;
2968    VTDAddressSpace *vtd_as;
2969
2970    assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2971
2972    vtd_as = vtd_find_add_as(s, bus, devfn);
2973    return &vtd_as->as;
2974}
2975
2976static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2977{
2978    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2979
2980    /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2981    if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2982        !kvm_irqchip_is_split()) {
2983        error_setg(errp, "Intel Interrupt Remapping cannot work with "
2984                         "kernel-irqchip=on, please use 'split|off'.");
2985        return false;
2986    }
2987    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2988        error_setg(errp, "eim=on cannot be selected without intremap=on");
2989        return false;
2990    }
2991
2992    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
2993        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2994                      && x86_iommu->intr_supported ?
2995                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2996    }
2997    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2998        if (!kvm_irqchip_in_kernel()) {
2999            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3000            return false;
3001        }
3002        if (!kvm_enable_x2apic()) {
3003            error_setg(errp, "eim=on requires support on the KVM side"
3004                             "(X2APIC_API, first shipped in v4.7)");
3005            return false;
3006        }
3007    }
3008
3009    return true;
3010}
3011
3012static void vtd_realize(DeviceState *dev, Error **errp)
3013{
3014    MachineState *ms = MACHINE(qdev_get_machine());
3015    MachineClass *mc = MACHINE_GET_CLASS(ms);
3016    PCMachineState *pcms =
3017        PC_MACHINE(object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE));
3018    PCIBus *bus;
3019    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3020    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3021
3022    if (!pcms) {
3023        error_setg(errp, "Machine-type '%s' not supported by intel-iommu",
3024                   mc->name);
3025        return;
3026    }
3027
3028    bus = pcms->bus;
3029    x86_iommu->type = TYPE_INTEL;
3030
3031    if (!vtd_decide_config(s, errp)) {
3032        return;
3033    }
3034
3035    QLIST_INIT(&s->notifiers_list);
3036    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3037    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3038                          "intel_iommu", DMAR_REG_SIZE);
3039    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3040    /* No corresponding destroy */
3041    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3042                                     g_free, g_free);
3043    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3044                                              g_free, g_free);
3045    vtd_init(s);
3046    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3047    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3048    /* Pseudo address space under root PCI bus. */
3049    pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3050}
3051
3052static void vtd_class_init(ObjectClass *klass, void *data)
3053{
3054    DeviceClass *dc = DEVICE_CLASS(klass);
3055    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3056
3057    dc->reset = vtd_reset;
3058    dc->vmsd = &vtd_vmstate;
3059    dc->props = vtd_properties;
3060    dc->hotpluggable = false;
3061    x86_class->realize = vtd_realize;
3062    x86_class->int_remap = vtd_int_remap;
3063    /* Supported by the pc-q35-* machine types */
3064    dc->user_creatable = true;
3065}
3066
3067static const TypeInfo vtd_info = {
3068    .name          = TYPE_INTEL_IOMMU_DEVICE,
3069    .parent        = TYPE_X86_IOMMU_DEVICE,
3070    .instance_size = sizeof(IntelIOMMUState),
3071    .class_init    = vtd_class_init,
3072};
3073
3074static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3075                                                     void *data)
3076{
3077    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3078
3079    imrc->translate = vtd_iommu_translate;
3080    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3081    imrc->replay = vtd_iommu_replay;
3082}
3083
3084static const TypeInfo vtd_iommu_memory_region_info = {
3085    .parent = TYPE_IOMMU_MEMORY_REGION,
3086    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3087    .class_init = vtd_iommu_memory_region_class_init,
3088};
3089
3090static void vtd_register_types(void)
3091{
3092    type_register_static(&vtd_info);
3093    type_register_static(&vtd_iommu_memory_region_info);
3094}
3095
3096type_init(vtd_register_types)
3097