qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22
  23#include "exec/address-spaces.h"
  24#include "hw/boards.h"
  25#include "hw/char/serial.h"
  26#include "hw/hw.h"
  27#include "hw/ide/pci.h"
  28#include "hw/ide/ahci.h"
  29#include "hw/loader.h"
  30#include "hw/loader-fit.h"
  31#include "hw/mips/cps.h"
  32#include "hw/mips/cpudevs.h"
  33#include "hw/pci-host/xilinx-pcie.h"
  34#include "qapi/error.h"
  35#include "qemu/cutils.h"
  36#include "qemu/error-report.h"
  37#include "qemu/log.h"
  38#include "chardev/char.h"
  39#include "sysemu/device_tree.h"
  40#include "sysemu/sysemu.h"
  41#include "sysemu/qtest.h"
  42
  43#include <libfdt.h>
  44
  45#define TYPE_MIPS_BOSTON "mips-boston"
  46#define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
  47
  48typedef struct {
  49    SysBusDevice parent_obj;
  50
  51    MachineState *mach;
  52    MIPSCPSState *cps;
  53    SerialState *uart;
  54
  55    CharBackend lcd_display;
  56    char lcd_content[8];
  57    bool lcd_inited;
  58
  59    hwaddr kernel_entry;
  60    hwaddr fdt_base;
  61} BostonState;
  62
  63enum boston_plat_reg {
  64    PLAT_FPGA_BUILD     = 0x00,
  65    PLAT_CORE_CL        = 0x04,
  66    PLAT_WRAPPER_CL     = 0x08,
  67    PLAT_SYSCLK_STATUS  = 0x0c,
  68    PLAT_SOFTRST_CTL    = 0x10,
  69#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
  70    PLAT_DDR3_STATUS    = 0x14,
  71#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
  72#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
  73    PLAT_PCIE_STATUS    = 0x18,
  74#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
  75#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
  76#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
  77    PLAT_FLASH_CTL      = 0x1c,
  78    PLAT_SPARE0         = 0x20,
  79    PLAT_SPARE1         = 0x24,
  80    PLAT_SPARE2         = 0x28,
  81    PLAT_SPARE3         = 0x2c,
  82    PLAT_MMCM_DIV       = 0x30,
  83#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
  84#define PLAT_MMCM_DIV_INPUT_SHIFT       8
  85#define PLAT_MMCM_DIV_MUL_SHIFT         16
  86#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
  87    PLAT_BUILD_CFG      = 0x34,
  88#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
  89#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
  90#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
  91#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
  92    PLAT_DDR_CFG        = 0x38,
  93#define PLAT_DDR_CFG_SIZE               (0xf << 0)
  94#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
  95    PLAT_NOC_PCIE0_ADDR = 0x3c,
  96    PLAT_NOC_PCIE1_ADDR = 0x40,
  97    PLAT_NOC_PCIE2_ADDR = 0x44,
  98    PLAT_SYS_CTL        = 0x48,
  99};
 100
 101static void boston_lcd_event(void *opaque, int event)
 102{
 103    BostonState *s = opaque;
 104    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 105        qemu_chr_fe_printf(&s->lcd_display, "        ");
 106        s->lcd_inited = true;
 107    }
 108}
 109
 110static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 111                                unsigned size)
 112{
 113    BostonState *s = opaque;
 114    uint64_t val = 0;
 115
 116    switch (size) {
 117    case 8:
 118        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 119        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 120        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 121        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 122        /* fall through */
 123    case 4:
 124        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 125        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 126        /* fall through */
 127    case 2:
 128        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 129        /* fall through */
 130    case 1:
 131        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 132        break;
 133    }
 134
 135    return val;
 136}
 137
 138static void boston_lcd_write(void *opaque, hwaddr addr,
 139                             uint64_t val, unsigned size)
 140{
 141    BostonState *s = opaque;
 142
 143    switch (size) {
 144    case 8:
 145        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 146        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 147        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 148        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 149        /* fall through */
 150    case 4:
 151        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 152        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 153        /* fall through */
 154    case 2:
 155        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 156        /* fall through */
 157    case 1:
 158        s->lcd_content[(addr + 0) & 0x7] = val;
 159        break;
 160    }
 161
 162    qemu_chr_fe_printf(&s->lcd_display,
 163                       "\r%-8.8s", s->lcd_content);
 164}
 165
 166static const MemoryRegionOps boston_lcd_ops = {
 167    .read = boston_lcd_read,
 168    .write = boston_lcd_write,
 169    .endianness = DEVICE_NATIVE_ENDIAN,
 170};
 171
 172static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 173                                    unsigned size)
 174{
 175    BostonState *s = opaque;
 176    uint32_t gic_freq, val;
 177
 178    if (size != 4) {
 179        qemu_log_mask(LOG_UNIMP, "%uB platform register read", size);
 180        return 0;
 181    }
 182
 183    switch (addr & 0xffff) {
 184    case PLAT_FPGA_BUILD:
 185    case PLAT_CORE_CL:
 186    case PLAT_WRAPPER_CL:
 187        return 0;
 188    case PLAT_DDR3_STATUS:
 189        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 190    case PLAT_MMCM_DIV:
 191        gic_freq = mips_gictimer_get_freq(s->cps->gic.gic_timer) / 1000000;
 192        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 193        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 194        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 195        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 196        return val;
 197    case PLAT_BUILD_CFG:
 198        val = PLAT_BUILD_CFG_PCIE0_EN;
 199        val |= PLAT_BUILD_CFG_PCIE1_EN;
 200        val |= PLAT_BUILD_CFG_PCIE2_EN;
 201        return val;
 202    case PLAT_DDR_CFG:
 203        val = s->mach->ram_size / G_BYTE;
 204        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 205        val |= PLAT_DDR_CFG_MHZ;
 206        return val;
 207    default:
 208        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx,
 209                      addr & 0xffff);
 210        return 0;
 211    }
 212}
 213
 214static void boston_platreg_write(void *opaque, hwaddr addr,
 215                                 uint64_t val, unsigned size)
 216{
 217    if (size != 4) {
 218        qemu_log_mask(LOG_UNIMP, "%uB platform register write", size);
 219        return;
 220    }
 221
 222    switch (addr & 0xffff) {
 223    case PLAT_FPGA_BUILD:
 224    case PLAT_CORE_CL:
 225    case PLAT_WRAPPER_CL:
 226    case PLAT_DDR3_STATUS:
 227    case PLAT_PCIE_STATUS:
 228    case PLAT_MMCM_DIV:
 229    case PLAT_BUILD_CFG:
 230    case PLAT_DDR_CFG:
 231        /* read only */
 232        break;
 233    case PLAT_SOFTRST_CTL:
 234        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 235            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 236        }
 237        break;
 238    default:
 239        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 240                      " = 0x%" PRIx64, addr & 0xffff, val);
 241        break;
 242    }
 243}
 244
 245static const MemoryRegionOps boston_platreg_ops = {
 246    .read = boston_platreg_read,
 247    .write = boston_platreg_write,
 248    .endianness = DEVICE_NATIVE_ENDIAN,
 249};
 250
 251static void boston_flash_write(void *opaque, hwaddr addr,
 252                               uint64_t val, unsigned size)
 253{
 254}
 255
 256static const MemoryRegionOps boston_flash_ops = {
 257    .write = boston_flash_write,
 258    .endianness = DEVICE_NATIVE_ENDIAN,
 259};
 260
 261static const TypeInfo boston_device = {
 262    .name          = TYPE_MIPS_BOSTON,
 263    .parent        = TYPE_SYS_BUS_DEVICE,
 264    .instance_size = sizeof(BostonState),
 265};
 266
 267static void boston_register_types(void)
 268{
 269    type_register_static(&boston_device);
 270}
 271type_init(boston_register_types)
 272
 273static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
 274                         bool is_64b)
 275{
 276    const uint32_t cm_base = 0x16100000;
 277    const uint32_t gic_base = 0x16120000;
 278    const uint32_t cpc_base = 0x16200000;
 279
 280    /* Move CM GCRs */
 281    if (is_64b) {
 282        stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
 283        stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
 284    } else {
 285        stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
 286        stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
 287    }
 288    stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
 289    stl_p(p++, 0x01094025);                     /* or   $8, $9 */
 290    stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
 291    if (is_64b) {
 292        stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
 293    } else {
 294        stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
 295    }
 296    stl_p(p++, 0x012a4025);                     /* or   $8, $10 */
 297
 298    /* Move & enable GIC GCRs */
 299    stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
 300    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
 301    if (is_64b) {
 302        stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
 303    } else {
 304        stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
 305    }
 306
 307    /* Move & enable CPC GCRs */
 308    stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
 309    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
 310    if (is_64b) {
 311        stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
 312    } else {
 313        stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
 314    }
 315
 316    /*
 317     * Setup argument registers to follow the UHI boot protocol:
 318     *
 319     * a0/$4 = -2
 320     * a1/$5 = virtual address of FDT
 321     * a2/$6 = 0
 322     * a3/$7 = 0
 323     */
 324    stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
 325                                                /* lui  $5, hi(fdt_addr) */
 326    stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
 327    if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
 328        stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
 329    }
 330    stl_p(p++, 0x34060000);                     /* li   $6, 0 */
 331    stl_p(p++, 0x34070000);                     /* li   $7, 0 */
 332
 333    /* Load kernel entry address & jump to it */
 334                                                /* lui  $25, hi(kernel_entry) */
 335    stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
 336                                                /* ori  $25, lo(kernel_entry) */
 337    stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
 338    stl_p(p++, 0x03200009);                     /* jr   $25 */
 339}
 340
 341static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 342                                     const void *match_data, hwaddr *load_addr)
 343{
 344    BostonState *s = BOSTON(opaque);
 345    MachineState *machine = s->mach;
 346    const char *cmdline;
 347    int err;
 348    void *fdt;
 349    size_t fdt_sz, ram_low_sz, ram_high_sz;
 350
 351    fdt_sz = fdt_totalsize(fdt_orig) * 2;
 352    fdt = g_malloc0(fdt_sz);
 353
 354    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 355    if (err) {
 356        fprintf(stderr, "unable to open FDT\n");
 357        return NULL;
 358    }
 359
 360    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 361            ? machine->kernel_cmdline : " ";
 362    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 363    if (err < 0) {
 364        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 365        return NULL;
 366    }
 367
 368    ram_low_sz = MIN(256 * M_BYTE, machine->ram_size);
 369    ram_high_sz = machine->ram_size - ram_low_sz;
 370    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 371                                 1, 0x00000000, 1, ram_low_sz,
 372                                 1, 0x90000000, 1, ram_high_sz);
 373
 374    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 375    qemu_fdt_dumpdtb(fdt, fdt_sz);
 376
 377    s->fdt_base = *load_addr;
 378
 379    return fdt;
 380}
 381
 382static const void *boston_kernel_filter(void *opaque, const void *kernel,
 383                                        hwaddr *load_addr, hwaddr *entry_addr)
 384{
 385    BostonState *s = BOSTON(opaque);
 386
 387    s->kernel_entry = *entry_addr;
 388
 389    return kernel;
 390}
 391
 392static const struct fit_loader_match boston_matches[] = {
 393    { "img,boston" },
 394    { NULL },
 395};
 396
 397static const struct fit_loader boston_fit_loader = {
 398    .matches = boston_matches,
 399    .addr_to_phys = cpu_mips_kseg0_to_phys,
 400    .fdt_filter = boston_fdt_filter,
 401    .kernel_filter = boston_kernel_filter,
 402};
 403
 404static inline XilinxPCIEHost *
 405xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 406                 hwaddr cfg_base, uint64_t cfg_size,
 407                 hwaddr mmio_base, uint64_t mmio_size,
 408                 qemu_irq irq, bool link_up)
 409{
 410    DeviceState *dev;
 411    MemoryRegion *cfg, *mmio;
 412
 413    dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
 414
 415    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 416    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 417    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 418    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 419    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 420    qdev_prop_set_bit(dev, "link_up", link_up);
 421
 422    qdev_init_nofail(dev);
 423
 424    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 425    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 426
 427    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 428    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 429
 430    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 431
 432    return XILINX_PCIE_HOST(dev);
 433}
 434
 435static void boston_mach_init(MachineState *machine)
 436{
 437    DeviceState *dev;
 438    BostonState *s;
 439    Error *err = NULL;
 440    const char *cpu_model;
 441    MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
 442    MemoryRegion *sys_mem = get_system_memory();
 443    XilinxPCIEHost *pcie2;
 444    PCIDevice *ahci;
 445    DriveInfo *hd[6];
 446    Chardev *chr;
 447    int fw_size, fit_err;
 448    bool is_64b;
 449
 450    if ((machine->ram_size % G_BYTE) ||
 451        (machine->ram_size > (2 * G_BYTE))) {
 452        error_report("Memory size must be 1GB or 2GB");
 453        exit(1);
 454    }
 455
 456    cpu_model = machine->cpu_model ?: "I6400";
 457
 458    dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
 459    qdev_init_nofail(dev);
 460
 461    s = BOSTON(dev);
 462    s->mach = machine;
 463    s->cps = g_new0(MIPSCPSState, 1);
 464
 465    if (!cpu_supports_cps_smp(cpu_model)) {
 466        error_report("Boston requires CPUs which support CPS");
 467        exit(1);
 468    }
 469
 470    is_64b = cpu_supports_isa(cpu_model, ISA_MIPS64);
 471
 472    object_initialize(s->cps, sizeof(MIPSCPSState), TYPE_MIPS_CPS);
 473    qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
 474
 475    object_property_set_str(OBJECT(s->cps), cpu_model, "cpu-model", &err);
 476    object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
 477    object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
 478
 479    if (err != NULL) {
 480        error_report("%s", error_get_pretty(err));
 481        exit(1);
 482    }
 483
 484    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
 485
 486    flash =  g_new(MemoryRegion, 1);
 487    memory_region_init_rom_device_nomigrate(flash, NULL, &boston_flash_ops, s,
 488                                  "boston.flash", 128 * M_BYTE, &err);
 489    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
 490
 491    ddr = g_new(MemoryRegion, 1);
 492    memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
 493                                         machine->ram_size);
 494    memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
 495
 496    ddr_low_alias = g_new(MemoryRegion, 1);
 497    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 498                             ddr, 0, MIN(machine->ram_size, (256 * M_BYTE)));
 499    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 500
 501    xilinx_pcie_init(sys_mem, 0,
 502                     0x10000000, 32 * M_BYTE,
 503                     0x40000000, 1 * G_BYTE,
 504                     get_cps_irq(s->cps, 2), false);
 505
 506    xilinx_pcie_init(sys_mem, 1,
 507                     0x12000000, 32 * M_BYTE,
 508                     0x20000000, 512 * M_BYTE,
 509                     get_cps_irq(s->cps, 1), false);
 510
 511    pcie2 = xilinx_pcie_init(sys_mem, 2,
 512                             0x14000000, 32 * M_BYTE,
 513                             0x16000000, 1 * M_BYTE,
 514                             get_cps_irq(s->cps, 0), true);
 515
 516    platreg = g_new(MemoryRegion, 1);
 517    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 518                          "boston-platregs", 0x1000);
 519    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
 520
 521    if (!serial_hds[0]) {
 522        serial_hds[0] = qemu_chr_new("serial0", "null");
 523    }
 524
 525    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
 526                             get_cps_irq(s->cps, 3), 10000000,
 527                             serial_hds[0], DEVICE_NATIVE_ENDIAN);
 528
 529    lcd = g_new(MemoryRegion, 1);
 530    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 531    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
 532
 533    chr = qemu_chr_new("lcd", "vc:320x240");
 534    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 535    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 536                             boston_lcd_event, NULL, s, NULL, true);
 537
 538    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 539                                           PCI_DEVFN(0, 0),
 540                                           true, TYPE_ICH9_AHCI);
 541    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 542    ide_drive_get(hd, ahci_get_num_ports(ahci));
 543    ahci_ide_create_devs(ahci, hd);
 544
 545    if (machine->firmware) {
 546        fw_size = load_image_targphys(machine->firmware,
 547                                      0x1fc00000, 4 * M_BYTE);
 548        if (fw_size == -1) {
 549            error_printf("unable to load firmware image '%s'\n",
 550                          machine->firmware);
 551            exit(1);
 552        }
 553    } else if (machine->kernel_filename) {
 554        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 555        if (fit_err) {
 556            error_printf("unable to load FIT image\n");
 557            exit(1);
 558        }
 559
 560        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 561                     s->kernel_entry, s->fdt_base, is_64b);
 562    } else if (!qtest_enabled()) {
 563        error_printf("Please provide either a -kernel or -bios argument\n");
 564        exit(1);
 565    }
 566}
 567
 568static void boston_mach_class_init(MachineClass *mc)
 569{
 570    mc->desc = "MIPS Boston";
 571    mc->init = boston_mach_init;
 572    mc->block_default_type = IF_IDE;
 573    mc->default_ram_size = 1 * G_BYTE;
 574    mc->max_cpus = 16;
 575}
 576
 577DEFINE_MACHINE("boston", boston_mach_class_init)
 578