qemu/hw/ppc/ppc.c
<<
>>
Prefs
   1/*
   2 * QEMU generic PowerPC hardware System Emulator
   3 *
   4 * Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "qemu-common.h"
  26#include "cpu.h"
  27#include "hw/hw.h"
  28#include "hw/ppc/ppc.h"
  29#include "hw/ppc/ppc_e500.h"
  30#include "qemu/timer.h"
  31#include "sysemu/sysemu.h"
  32#include "sysemu/cpus.h"
  33#include "hw/timer/m48t59.h"
  34#include "qemu/log.h"
  35#include "qemu/error-report.h"
  36#include "qapi/error.h"
  37#include "hw/loader.h"
  38#include "sysemu/kvm.h"
  39#include "kvm_ppc.h"
  40#include "trace.h"
  41
  42//#define PPC_DEBUG_IRQ
  43//#define PPC_DEBUG_TB
  44
  45#ifdef PPC_DEBUG_IRQ
  46#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
  47#else
  48#  define LOG_IRQ(...) do { } while (0)
  49#endif
  50
  51
  52#ifdef PPC_DEBUG_TB
  53#  define LOG_TB(...) qemu_log(__VA_ARGS__)
  54#else
  55#  define LOG_TB(...) do { } while (0)
  56#endif
  57
  58static void cpu_ppc_tb_stop (CPUPPCState *env);
  59static void cpu_ppc_tb_start (CPUPPCState *env);
  60
  61void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
  62{
  63    CPUState *cs = CPU(cpu);
  64    CPUPPCState *env = &cpu->env;
  65    unsigned int old_pending;
  66    bool locked = false;
  67
  68    /* We may already have the BQL if coming from the reset path */
  69    if (!qemu_mutex_iothread_locked()) {
  70        locked = true;
  71        qemu_mutex_lock_iothread();
  72    }
  73
  74    old_pending = env->pending_interrupts;
  75
  76    if (level) {
  77        env->pending_interrupts |= 1 << n_IRQ;
  78        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
  79    } else {
  80        env->pending_interrupts &= ~(1 << n_IRQ);
  81        if (env->pending_interrupts == 0) {
  82            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
  83        }
  84    }
  85
  86    if (old_pending != env->pending_interrupts) {
  87#ifdef CONFIG_KVM
  88        kvmppc_set_interrupt(cpu, n_IRQ, level);
  89#endif
  90    }
  91
  92
  93    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
  94                "req %08x\n", __func__, env, n_IRQ, level,
  95                env->pending_interrupts, CPU(cpu)->interrupt_request);
  96
  97    if (locked) {
  98        qemu_mutex_unlock_iothread();
  99    }
 100}
 101
 102/* PowerPC 6xx / 7xx internal IRQ controller */
 103static void ppc6xx_set_irq(void *opaque, int pin, int level)
 104{
 105    PowerPCCPU *cpu = opaque;
 106    CPUPPCState *env = &cpu->env;
 107    int cur_level;
 108
 109    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 110                env, pin, level);
 111    cur_level = (env->irq_input_state >> pin) & 1;
 112    /* Don't generate spurious events */
 113    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 114        CPUState *cs = CPU(cpu);
 115
 116        switch (pin) {
 117        case PPC6xx_INPUT_TBEN:
 118            /* Level sensitive - active high */
 119            LOG_IRQ("%s: %s the time base\n",
 120                        __func__, level ? "start" : "stop");
 121            if (level) {
 122                cpu_ppc_tb_start(env);
 123            } else {
 124                cpu_ppc_tb_stop(env);
 125            }
 126        case PPC6xx_INPUT_INT:
 127            /* Level sensitive - active high */
 128            LOG_IRQ("%s: set the external IRQ state to %d\n",
 129                        __func__, level);
 130            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 131            break;
 132        case PPC6xx_INPUT_SMI:
 133            /* Level sensitive - active high */
 134            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
 135                        __func__, level);
 136            ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
 137            break;
 138        case PPC6xx_INPUT_MCP:
 139            /* Negative edge sensitive */
 140            /* XXX: TODO: actual reaction may depends on HID0 status
 141             *            603/604/740/750: check HID0[EMCP]
 142             */
 143            if (cur_level == 1 && level == 0) {
 144                LOG_IRQ("%s: raise machine check state\n",
 145                            __func__);
 146                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
 147            }
 148            break;
 149        case PPC6xx_INPUT_CKSTP_IN:
 150            /* Level sensitive - active low */
 151            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
 152            /* XXX: Note that the only way to restart the CPU is to reset it */
 153            if (level) {
 154                LOG_IRQ("%s: stop the CPU\n", __func__);
 155                cs->halted = 1;
 156            }
 157            break;
 158        case PPC6xx_INPUT_HRESET:
 159            /* Level sensitive - active low */
 160            if (level) {
 161                LOG_IRQ("%s: reset the CPU\n", __func__);
 162                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
 163            }
 164            break;
 165        case PPC6xx_INPUT_SRESET:
 166            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
 167                        __func__, level);
 168            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
 169            break;
 170        default:
 171            /* Unknown pin - do nothing */
 172            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 173            return;
 174        }
 175        if (level)
 176            env->irq_input_state |= 1 << pin;
 177        else
 178            env->irq_input_state &= ~(1 << pin);
 179    }
 180}
 181
 182void ppc6xx_irq_init(PowerPCCPU *cpu)
 183{
 184    CPUPPCState *env = &cpu->env;
 185
 186    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
 187                                                  PPC6xx_INPUT_NB);
 188}
 189
 190#if defined(TARGET_PPC64)
 191/* PowerPC 970 internal IRQ controller */
 192static void ppc970_set_irq(void *opaque, int pin, int level)
 193{
 194    PowerPCCPU *cpu = opaque;
 195    CPUPPCState *env = &cpu->env;
 196    int cur_level;
 197
 198    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 199                env, pin, level);
 200    cur_level = (env->irq_input_state >> pin) & 1;
 201    /* Don't generate spurious events */
 202    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 203        CPUState *cs = CPU(cpu);
 204
 205        switch (pin) {
 206        case PPC970_INPUT_INT:
 207            /* Level sensitive - active high */
 208            LOG_IRQ("%s: set the external IRQ state to %d\n",
 209                        __func__, level);
 210            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 211            break;
 212        case PPC970_INPUT_THINT:
 213            /* Level sensitive - active high */
 214            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
 215                        level);
 216            ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
 217            break;
 218        case PPC970_INPUT_MCP:
 219            /* Negative edge sensitive */
 220            /* XXX: TODO: actual reaction may depends on HID0 status
 221             *            603/604/740/750: check HID0[EMCP]
 222             */
 223            if (cur_level == 1 && level == 0) {
 224                LOG_IRQ("%s: raise machine check state\n",
 225                            __func__);
 226                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
 227            }
 228            break;
 229        case PPC970_INPUT_CKSTP:
 230            /* Level sensitive - active low */
 231            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
 232            if (level) {
 233                LOG_IRQ("%s: stop the CPU\n", __func__);
 234                cs->halted = 1;
 235            } else {
 236                LOG_IRQ("%s: restart the CPU\n", __func__);
 237                cs->halted = 0;
 238                qemu_cpu_kick(cs);
 239            }
 240            break;
 241        case PPC970_INPUT_HRESET:
 242            /* Level sensitive - active low */
 243            if (level) {
 244                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
 245            }
 246            break;
 247        case PPC970_INPUT_SRESET:
 248            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
 249                        __func__, level);
 250            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
 251            break;
 252        case PPC970_INPUT_TBEN:
 253            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
 254                        level);
 255            /* XXX: TODO */
 256            break;
 257        default:
 258            /* Unknown pin - do nothing */
 259            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 260            return;
 261        }
 262        if (level)
 263            env->irq_input_state |= 1 << pin;
 264        else
 265            env->irq_input_state &= ~(1 << pin);
 266    }
 267}
 268
 269void ppc970_irq_init(PowerPCCPU *cpu)
 270{
 271    CPUPPCState *env = &cpu->env;
 272
 273    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
 274                                                  PPC970_INPUT_NB);
 275}
 276
 277/* POWER7 internal IRQ controller */
 278static void power7_set_irq(void *opaque, int pin, int level)
 279{
 280    PowerPCCPU *cpu = opaque;
 281    CPUPPCState *env = &cpu->env;
 282
 283    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 284                env, pin, level);
 285
 286    switch (pin) {
 287    case POWER7_INPUT_INT:
 288        /* Level sensitive - active high */
 289        LOG_IRQ("%s: set the external IRQ state to %d\n",
 290                __func__, level);
 291        ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 292        break;
 293    default:
 294        /* Unknown pin - do nothing */
 295        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 296        return;
 297    }
 298    if (level) {
 299        env->irq_input_state |= 1 << pin;
 300    } else {
 301        env->irq_input_state &= ~(1 << pin);
 302    }
 303}
 304
 305void ppcPOWER7_irq_init(PowerPCCPU *cpu)
 306{
 307    CPUPPCState *env = &cpu->env;
 308
 309    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
 310                                                  POWER7_INPUT_NB);
 311}
 312#endif /* defined(TARGET_PPC64) */
 313
 314/* PowerPC 40x internal IRQ controller */
 315static void ppc40x_set_irq(void *opaque, int pin, int level)
 316{
 317    PowerPCCPU *cpu = opaque;
 318    CPUPPCState *env = &cpu->env;
 319    int cur_level;
 320
 321    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 322                env, pin, level);
 323    cur_level = (env->irq_input_state >> pin) & 1;
 324    /* Don't generate spurious events */
 325    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 326        CPUState *cs = CPU(cpu);
 327
 328        switch (pin) {
 329        case PPC40x_INPUT_RESET_SYS:
 330            if (level) {
 331                LOG_IRQ("%s: reset the PowerPC system\n",
 332                            __func__);
 333                ppc40x_system_reset(cpu);
 334            }
 335            break;
 336        case PPC40x_INPUT_RESET_CHIP:
 337            if (level) {
 338                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
 339                ppc40x_chip_reset(cpu);
 340            }
 341            break;
 342        case PPC40x_INPUT_RESET_CORE:
 343            /* XXX: TODO: update DBSR[MRR] */
 344            if (level) {
 345                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
 346                ppc40x_core_reset(cpu);
 347            }
 348            break;
 349        case PPC40x_INPUT_CINT:
 350            /* Level sensitive - active high */
 351            LOG_IRQ("%s: set the critical IRQ state to %d\n",
 352                        __func__, level);
 353            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
 354            break;
 355        case PPC40x_INPUT_INT:
 356            /* Level sensitive - active high */
 357            LOG_IRQ("%s: set the external IRQ state to %d\n",
 358                        __func__, level);
 359            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 360            break;
 361        case PPC40x_INPUT_HALT:
 362            /* Level sensitive - active low */
 363            if (level) {
 364                LOG_IRQ("%s: stop the CPU\n", __func__);
 365                cs->halted = 1;
 366            } else {
 367                LOG_IRQ("%s: restart the CPU\n", __func__);
 368                cs->halted = 0;
 369                qemu_cpu_kick(cs);
 370            }
 371            break;
 372        case PPC40x_INPUT_DEBUG:
 373            /* Level sensitive - active high */
 374            LOG_IRQ("%s: set the debug pin state to %d\n",
 375                        __func__, level);
 376            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
 377            break;
 378        default:
 379            /* Unknown pin - do nothing */
 380            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 381            return;
 382        }
 383        if (level)
 384            env->irq_input_state |= 1 << pin;
 385        else
 386            env->irq_input_state &= ~(1 << pin);
 387    }
 388}
 389
 390void ppc40x_irq_init(PowerPCCPU *cpu)
 391{
 392    CPUPPCState *env = &cpu->env;
 393
 394    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
 395                                                  cpu, PPC40x_INPUT_NB);
 396}
 397
 398/* PowerPC E500 internal IRQ controller */
 399static void ppce500_set_irq(void *opaque, int pin, int level)
 400{
 401    PowerPCCPU *cpu = opaque;
 402    CPUPPCState *env = &cpu->env;
 403    int cur_level;
 404
 405    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
 406                env, pin, level);
 407    cur_level = (env->irq_input_state >> pin) & 1;
 408    /* Don't generate spurious events */
 409    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
 410        switch (pin) {
 411        case PPCE500_INPUT_MCK:
 412            if (level) {
 413                LOG_IRQ("%s: reset the PowerPC system\n",
 414                            __func__);
 415                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 416            }
 417            break;
 418        case PPCE500_INPUT_RESET_CORE:
 419            if (level) {
 420                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
 421                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
 422            }
 423            break;
 424        case PPCE500_INPUT_CINT:
 425            /* Level sensitive - active high */
 426            LOG_IRQ("%s: set the critical IRQ state to %d\n",
 427                        __func__, level);
 428            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
 429            break;
 430        case PPCE500_INPUT_INT:
 431            /* Level sensitive - active high */
 432            LOG_IRQ("%s: set the core IRQ state to %d\n",
 433                        __func__, level);
 434            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
 435            break;
 436        case PPCE500_INPUT_DEBUG:
 437            /* Level sensitive - active high */
 438            LOG_IRQ("%s: set the debug pin state to %d\n",
 439                        __func__, level);
 440            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
 441            break;
 442        default:
 443            /* Unknown pin - do nothing */
 444            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
 445            return;
 446        }
 447        if (level)
 448            env->irq_input_state |= 1 << pin;
 449        else
 450            env->irq_input_state &= ~(1 << pin);
 451    }
 452}
 453
 454void ppce500_irq_init(PowerPCCPU *cpu)
 455{
 456    CPUPPCState *env = &cpu->env;
 457
 458    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
 459                                                  cpu, PPCE500_INPUT_NB);
 460}
 461
 462/* Enable or Disable the E500 EPR capability */
 463void ppce500_set_mpic_proxy(bool enabled)
 464{
 465    CPUState *cs;
 466
 467    CPU_FOREACH(cs) {
 468        PowerPCCPU *cpu = POWERPC_CPU(cs);
 469
 470        cpu->env.mpic_proxy = enabled;
 471        if (kvm_enabled()) {
 472            kvmppc_set_mpic_proxy(cpu, enabled);
 473        }
 474    }
 475}
 476
 477/*****************************************************************************/
 478/* PowerPC time base and decrementer emulation */
 479
 480uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
 481{
 482    /* TB time in tb periods */
 483    return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
 484}
 485
 486uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
 487{
 488    ppc_tb_t *tb_env = env->tb_env;
 489    uint64_t tb;
 490
 491    if (kvm_enabled()) {
 492        return env->spr[SPR_TBL];
 493    }
 494
 495    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
 496    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 497
 498    return tb;
 499}
 500
 501static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
 502{
 503    ppc_tb_t *tb_env = env->tb_env;
 504    uint64_t tb;
 505
 506    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
 507    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 508
 509    return tb >> 32;
 510}
 511
 512uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
 513{
 514    if (kvm_enabled()) {
 515        return env->spr[SPR_TBU];
 516    }
 517
 518    return _cpu_ppc_load_tbu(env);
 519}
 520
 521static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
 522                                    int64_t *tb_offsetp, uint64_t value)
 523{
 524    *tb_offsetp = value -
 525        muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
 526
 527    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
 528                __func__, value, *tb_offsetp);
 529}
 530
 531void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
 532{
 533    ppc_tb_t *tb_env = env->tb_env;
 534    uint64_t tb;
 535
 536    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
 537    tb &= 0xFFFFFFFF00000000ULL;
 538    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 539                     &tb_env->tb_offset, tb | (uint64_t)value);
 540}
 541
 542static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
 543{
 544    ppc_tb_t *tb_env = env->tb_env;
 545    uint64_t tb;
 546
 547    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
 548    tb &= 0x00000000FFFFFFFFULL;
 549    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 550                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
 551}
 552
 553void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
 554{
 555    _cpu_ppc_store_tbu(env, value);
 556}
 557
 558uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
 559{
 560    ppc_tb_t *tb_env = env->tb_env;
 561    uint64_t tb;
 562
 563    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
 564    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 565
 566    return tb;
 567}
 568
 569uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
 570{
 571    ppc_tb_t *tb_env = env->tb_env;
 572    uint64_t tb;
 573
 574    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
 575    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
 576
 577    return tb >> 32;
 578}
 579
 580void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
 581{
 582    ppc_tb_t *tb_env = env->tb_env;
 583    uint64_t tb;
 584
 585    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
 586    tb &= 0xFFFFFFFF00000000ULL;
 587    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 588                     &tb_env->atb_offset, tb | (uint64_t)value);
 589}
 590
 591void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
 592{
 593    ppc_tb_t *tb_env = env->tb_env;
 594    uint64_t tb;
 595
 596    tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
 597    tb &= 0x00000000FFFFFFFFULL;
 598    cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 599                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
 600}
 601
 602static void cpu_ppc_tb_stop (CPUPPCState *env)
 603{
 604    ppc_tb_t *tb_env = env->tb_env;
 605    uint64_t tb, atb, vmclk;
 606
 607    /* If the time base is already frozen, do nothing */
 608    if (tb_env->tb_freq != 0) {
 609        vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 610        /* Get the time base */
 611        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
 612        /* Get the alternate time base */
 613        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
 614        /* Store the time base value (ie compute the current offset) */
 615        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
 616        /* Store the alternate time base value (compute the current offset) */
 617        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
 618        /* Set the time base frequency to zero */
 619        tb_env->tb_freq = 0;
 620        /* Now, the time bases are frozen to tb_offset / atb_offset value */
 621    }
 622}
 623
 624static void cpu_ppc_tb_start (CPUPPCState *env)
 625{
 626    ppc_tb_t *tb_env = env->tb_env;
 627    uint64_t tb, atb, vmclk;
 628
 629    /* If the time base is not frozen, do nothing */
 630    if (tb_env->tb_freq == 0) {
 631        vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 632        /* Get the time base from tb_offset */
 633        tb = tb_env->tb_offset;
 634        /* Get the alternate time base from atb_offset */
 635        atb = tb_env->atb_offset;
 636        /* Restore the tb frequency from the decrementer frequency */
 637        tb_env->tb_freq = tb_env->decr_freq;
 638        /* Store the time base value */
 639        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
 640        /* Store the alternate time base value */
 641        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
 642    }
 643}
 644
 645bool ppc_decr_clear_on_delivery(CPUPPCState *env)
 646{
 647    ppc_tb_t *tb_env = env->tb_env;
 648    int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
 649    return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
 650}
 651
 652static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
 653{
 654    ppc_tb_t *tb_env = env->tb_env;
 655    uint32_t decr;
 656    int64_t diff;
 657
 658    diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 659    if (diff >= 0) {
 660        decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
 661    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
 662        decr = 0;
 663    }  else {
 664        decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
 665    }
 666    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
 667
 668    return decr;
 669}
 670
 671uint32_t cpu_ppc_load_decr (CPUPPCState *env)
 672{
 673    ppc_tb_t *tb_env = env->tb_env;
 674
 675    if (kvm_enabled()) {
 676        return env->spr[SPR_DECR];
 677    }
 678
 679    return _cpu_ppc_load_decr(env, tb_env->decr_next);
 680}
 681
 682uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
 683{
 684    ppc_tb_t *tb_env = env->tb_env;
 685
 686    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
 687}
 688
 689uint64_t cpu_ppc_load_purr (CPUPPCState *env)
 690{
 691    ppc_tb_t *tb_env = env->tb_env;
 692    uint64_t diff;
 693
 694    diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
 695
 696    return tb_env->purr_load +
 697        muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
 698}
 699
 700/* When decrementer expires,
 701 * all we need to do is generate or queue a CPU exception
 702 */
 703static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
 704{
 705    /* Raise it */
 706    LOG_TB("raise decrementer exception\n");
 707    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
 708}
 709
 710static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
 711{
 712    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
 713}
 714
 715static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
 716{
 717    CPUPPCState *env = &cpu->env;
 718
 719    /* Raise it */
 720    LOG_TB("raise hv decrementer exception\n");
 721
 722    /* The architecture specifies that we don't deliver HDEC
 723     * interrupts in a PM state. Not only they don't cause a
 724     * wakeup but they also get effectively discarded.
 725     */
 726    if (!env->in_pm_state) {
 727        ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
 728    }
 729}
 730
 731static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
 732{
 733    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
 734}
 735
 736static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
 737                                 QEMUTimer *timer,
 738                                 void (*raise_excp)(void *),
 739                                 void (*lower_excp)(PowerPCCPU *),
 740                                 uint32_t decr, uint32_t value)
 741{
 742    CPUPPCState *env = &cpu->env;
 743    ppc_tb_t *tb_env = env->tb_env;
 744    uint64_t now, next;
 745
 746    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
 747                decr, value);
 748
 749    if (kvm_enabled()) {
 750        /* KVM handles decrementer exceptions, we don't need our own timer */
 751        return;
 752    }
 753
 754    /*
 755     * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
 756     * interrupt.
 757     *
 758     * If we get a really small DEC value, we can assume that by the time we
 759     * handled it we should inject an interrupt already.
 760     *
 761     * On MSB level based DEC implementations the MSB always means the interrupt
 762     * is pending, so raise it on those.
 763     *
 764     * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
 765     * an edge interrupt, so raise it here too.
 766     */
 767    if ((value < 3) ||
 768        ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
 769        ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
 770          && !(decr & 0x80000000))) {
 771        (*raise_excp)(cpu);
 772        return;
 773    }
 774
 775    /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
 776    if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
 777        (*lower_excp)(cpu);
 778    }
 779
 780    /* Calculate the next timer event */
 781    now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 782    next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
 783    *nextp = next;
 784
 785    /* Adjust timer */
 786    timer_mod(timer, next);
 787}
 788
 789static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
 790                                       uint32_t value)
 791{
 792    ppc_tb_t *tb_env = cpu->env.tb_env;
 793
 794    __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
 795                         tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
 796                         value);
 797}
 798
 799void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
 800{
 801    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 802
 803    _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
 804}
 805
 806static void cpu_ppc_decr_cb(void *opaque)
 807{
 808    PowerPCCPU *cpu = opaque;
 809
 810    cpu_ppc_decr_excp(cpu);
 811}
 812
 813static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
 814                                        uint32_t value)
 815{
 816    ppc_tb_t *tb_env = cpu->env.tb_env;
 817
 818    if (tb_env->hdecr_timer != NULL) {
 819        __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
 820                             tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
 821                             hdecr, value);
 822    }
 823}
 824
 825void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
 826{
 827    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 828
 829    _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
 830}
 831
 832static void cpu_ppc_hdecr_cb(void *opaque)
 833{
 834    PowerPCCPU *cpu = opaque;
 835
 836    cpu_ppc_hdecr_excp(cpu);
 837}
 838
 839static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
 840{
 841    ppc_tb_t *tb_env = cpu->env.tb_env;
 842
 843    tb_env->purr_load = value;
 844    tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 845}
 846
 847static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
 848{
 849    CPUPPCState *env = opaque;
 850    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 851    ppc_tb_t *tb_env = env->tb_env;
 852
 853    tb_env->tb_freq = freq;
 854    tb_env->decr_freq = freq;
 855    /* There is a bug in Linux 2.4 kernels:
 856     * if a decrementer exception is pending when it enables msr_ee at startup,
 857     * it's not ready to handle it...
 858     */
 859    _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
 860    _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
 861    cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
 862}
 863
 864static void timebase_save(PPCTimebase *tb)
 865{
 866    uint64_t ticks = cpu_get_host_ticks();
 867    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 868
 869    if (!first_ppc_cpu->env.tb_env) {
 870        error_report("No timebase object");
 871        return;
 872    }
 873
 874    /* not used anymore, we keep it for compatibility */
 875    tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
 876    /*
 877     * tb_offset is only expected to be changed by QEMU so
 878     * there is no need to update it from KVM here
 879     */
 880    tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
 881}
 882
 883static void timebase_load(PPCTimebase *tb)
 884{
 885    CPUState *cpu;
 886    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 887    int64_t tb_off_adj, tb_off;
 888    unsigned long freq;
 889
 890    if (!first_ppc_cpu->env.tb_env) {
 891        error_report("No timebase object");
 892        return;
 893    }
 894
 895    freq = first_ppc_cpu->env.tb_env->tb_freq;
 896
 897    tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
 898
 899    tb_off = first_ppc_cpu->env.tb_env->tb_offset;
 900    trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
 901                        (tb_off_adj - tb_off) / freq);
 902
 903    /* Set new offset to all CPUs */
 904    CPU_FOREACH(cpu) {
 905        PowerPCCPU *pcpu = POWERPC_CPU(cpu);
 906        pcpu->env.tb_env->tb_offset = tb_off_adj;
 907#if defined(CONFIG_KVM)
 908        kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
 909                        &pcpu->env.tb_env->tb_offset);
 910#endif
 911    }
 912}
 913
 914void cpu_ppc_clock_vm_state_change(void *opaque, int running,
 915                                   RunState state)
 916{
 917    PPCTimebase *tb = opaque;
 918
 919    if (running) {
 920        timebase_load(tb);
 921    } else {
 922        timebase_save(tb);
 923    }
 924}
 925
 926/*
 927 * When migrating, read the clock just before migration,
 928 * so that the guest clock counts during the events
 929 * between:
 930 *
 931 *  * vm_stop()
 932 *  *
 933 *  * pre_save()
 934 *
 935 *  This reduces clock difference on migration from 5s
 936 *  to 0.1s (when max_downtime == 5s), because sending the
 937 *  final pages of memory (which happens between vm_stop()
 938 *  and pre_save()) takes max_downtime.
 939 */
 940static void timebase_pre_save(void *opaque)
 941{
 942    PPCTimebase *tb = opaque;
 943
 944    timebase_save(tb);
 945}
 946
 947const VMStateDescription vmstate_ppc_timebase = {
 948    .name = "timebase",
 949    .version_id = 1,
 950    .minimum_version_id = 1,
 951    .minimum_version_id_old = 1,
 952    .pre_save = timebase_pre_save,
 953    .fields      = (VMStateField []) {
 954        VMSTATE_UINT64(guest_timebase, PPCTimebase),
 955        VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
 956        VMSTATE_END_OF_LIST()
 957    },
 958};
 959
 960/* Set up (once) timebase frequency (in Hz) */
 961clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
 962{
 963    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 964    ppc_tb_t *tb_env;
 965
 966    tb_env = g_malloc0(sizeof(ppc_tb_t));
 967    env->tb_env = tb_env;
 968    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
 969    if (env->insns_flags & PPC_SEGMENT_64B) {
 970        /* All Book3S 64bit CPUs implement level based DEC logic */
 971        tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
 972    }
 973    /* Create new timer */
 974    tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
 975    if (env->has_hv_mode) {
 976        tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
 977                                                cpu);
 978    } else {
 979        tb_env->hdecr_timer = NULL;
 980    }
 981    cpu_ppc_set_tb_clk(env, freq);
 982
 983    return &cpu_ppc_set_tb_clk;
 984}
 985
 986/* Specific helpers for POWER & PowerPC 601 RTC */
 987void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
 988{
 989    _cpu_ppc_store_tbu(env, value);
 990}
 991
 992uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
 993{
 994    return _cpu_ppc_load_tbu(env);
 995}
 996
 997void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
 998{
 999    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1000}
1001
1002uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1003{
1004    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1005}
1006
1007/*****************************************************************************/
1008/* PowerPC 40x timers */
1009
1010/* PIT, FIT & WDT */
1011typedef struct ppc40x_timer_t ppc40x_timer_t;
1012struct ppc40x_timer_t {
1013    uint64_t pit_reload;  /* PIT auto-reload value        */
1014    uint64_t fit_next;    /* Tick for next FIT interrupt  */
1015    QEMUTimer *fit_timer;
1016    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1017    QEMUTimer *wdt_timer;
1018
1019    /* 405 have the PIT, 440 have a DECR.  */
1020    unsigned int decr_excp;
1021};
1022
1023/* Fixed interval timer */
1024static void cpu_4xx_fit_cb (void *opaque)
1025{
1026    PowerPCCPU *cpu;
1027    CPUPPCState *env;
1028    ppc_tb_t *tb_env;
1029    ppc40x_timer_t *ppc40x_timer;
1030    uint64_t now, next;
1031
1032    env = opaque;
1033    cpu = ppc_env_get_cpu(env);
1034    tb_env = env->tb_env;
1035    ppc40x_timer = tb_env->opaque;
1036    now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1037    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1038    case 0:
1039        next = 1 << 9;
1040        break;
1041    case 1:
1042        next = 1 << 13;
1043        break;
1044    case 2:
1045        next = 1 << 17;
1046        break;
1047    case 3:
1048        next = 1 << 21;
1049        break;
1050    default:
1051        /* Cannot occur, but makes gcc happy */
1052        return;
1053    }
1054    next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1055    if (next == now)
1056        next++;
1057    timer_mod(ppc40x_timer->fit_timer, next);
1058    env->spr[SPR_40x_TSR] |= 1 << 26;
1059    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1060        ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1061    }
1062    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1063           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1064           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1065}
1066
1067/* Programmable interval timer */
1068static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1069{
1070    ppc40x_timer_t *ppc40x_timer;
1071    uint64_t now, next;
1072
1073    ppc40x_timer = tb_env->opaque;
1074    if (ppc40x_timer->pit_reload <= 1 ||
1075        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1076        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1077        /* Stop PIT */
1078        LOG_TB("%s: stop PIT\n", __func__);
1079        timer_del(tb_env->decr_timer);
1080    } else {
1081        LOG_TB("%s: start PIT %016" PRIx64 "\n",
1082                    __func__, ppc40x_timer->pit_reload);
1083        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1084        next = now + muldiv64(ppc40x_timer->pit_reload,
1085                              NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1086        if (is_excp)
1087            next += tb_env->decr_next - now;
1088        if (next == now)
1089            next++;
1090        timer_mod(tb_env->decr_timer, next);
1091        tb_env->decr_next = next;
1092    }
1093}
1094
1095static void cpu_4xx_pit_cb (void *opaque)
1096{
1097    PowerPCCPU *cpu;
1098    CPUPPCState *env;
1099    ppc_tb_t *tb_env;
1100    ppc40x_timer_t *ppc40x_timer;
1101
1102    env = opaque;
1103    cpu = ppc_env_get_cpu(env);
1104    tb_env = env->tb_env;
1105    ppc40x_timer = tb_env->opaque;
1106    env->spr[SPR_40x_TSR] |= 1 << 27;
1107    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1108        ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1109    }
1110    start_stop_pit(env, tb_env, 1);
1111    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1112           "%016" PRIx64 "\n", __func__,
1113           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1114           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1115           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1116           ppc40x_timer->pit_reload);
1117}
1118
1119/* Watchdog timer */
1120static void cpu_4xx_wdt_cb (void *opaque)
1121{
1122    PowerPCCPU *cpu;
1123    CPUPPCState *env;
1124    ppc_tb_t *tb_env;
1125    ppc40x_timer_t *ppc40x_timer;
1126    uint64_t now, next;
1127
1128    env = opaque;
1129    cpu = ppc_env_get_cpu(env);
1130    tb_env = env->tb_env;
1131    ppc40x_timer = tb_env->opaque;
1132    now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1133    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1134    case 0:
1135        next = 1 << 17;
1136        break;
1137    case 1:
1138        next = 1 << 21;
1139        break;
1140    case 2:
1141        next = 1 << 25;
1142        break;
1143    case 3:
1144        next = 1 << 29;
1145        break;
1146    default:
1147        /* Cannot occur, but makes gcc happy */
1148        return;
1149    }
1150    next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1151    if (next == now)
1152        next++;
1153    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1154           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1155    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1156    case 0x0:
1157    case 0x1:
1158        timer_mod(ppc40x_timer->wdt_timer, next);
1159        ppc40x_timer->wdt_next = next;
1160        env->spr[SPR_40x_TSR] |= 1U << 31;
1161        break;
1162    case 0x2:
1163        timer_mod(ppc40x_timer->wdt_timer, next);
1164        ppc40x_timer->wdt_next = next;
1165        env->spr[SPR_40x_TSR] |= 1 << 30;
1166        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1167            ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1168        }
1169        break;
1170    case 0x3:
1171        env->spr[SPR_40x_TSR] &= ~0x30000000;
1172        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1173        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1174        case 0x0:
1175            /* No reset */
1176            break;
1177        case 0x1: /* Core reset */
1178            ppc40x_core_reset(cpu);
1179            break;
1180        case 0x2: /* Chip reset */
1181            ppc40x_chip_reset(cpu);
1182            break;
1183        case 0x3: /* System reset */
1184            ppc40x_system_reset(cpu);
1185            break;
1186        }
1187    }
1188}
1189
1190void store_40x_pit (CPUPPCState *env, target_ulong val)
1191{
1192    ppc_tb_t *tb_env;
1193    ppc40x_timer_t *ppc40x_timer;
1194
1195    tb_env = env->tb_env;
1196    ppc40x_timer = tb_env->opaque;
1197    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1198    ppc40x_timer->pit_reload = val;
1199    start_stop_pit(env, tb_env, 0);
1200}
1201
1202target_ulong load_40x_pit (CPUPPCState *env)
1203{
1204    return cpu_ppc_load_decr(env);
1205}
1206
1207static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1208{
1209    CPUPPCState *env = opaque;
1210    ppc_tb_t *tb_env = env->tb_env;
1211
1212    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1213                freq);
1214    tb_env->tb_freq = freq;
1215    tb_env->decr_freq = freq;
1216    /* XXX: we should also update all timers */
1217}
1218
1219clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1220                                  unsigned int decr_excp)
1221{
1222    ppc_tb_t *tb_env;
1223    ppc40x_timer_t *ppc40x_timer;
1224
1225    tb_env = g_malloc0(sizeof(ppc_tb_t));
1226    env->tb_env = tb_env;
1227    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1228    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1229    tb_env->tb_freq = freq;
1230    tb_env->decr_freq = freq;
1231    tb_env->opaque = ppc40x_timer;
1232    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1233    if (ppc40x_timer != NULL) {
1234        /* We use decr timer for PIT */
1235        tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1236        ppc40x_timer->fit_timer =
1237            timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1238        ppc40x_timer->wdt_timer =
1239            timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1240        ppc40x_timer->decr_excp = decr_excp;
1241    }
1242
1243    return &ppc_40x_set_tb_clk;
1244}
1245
1246/*****************************************************************************/
1247/* Embedded PowerPC Device Control Registers */
1248typedef struct ppc_dcrn_t ppc_dcrn_t;
1249struct ppc_dcrn_t {
1250    dcr_read_cb dcr_read;
1251    dcr_write_cb dcr_write;
1252    void *opaque;
1253};
1254
1255/* XXX: on 460, DCR addresses are 32 bits wide,
1256 *      using DCRIPR to get the 22 upper bits of the DCR address
1257 */
1258#define DCRN_NB 1024
1259struct ppc_dcr_t {
1260    ppc_dcrn_t dcrn[DCRN_NB];
1261    int (*read_error)(int dcrn);
1262    int (*write_error)(int dcrn);
1263};
1264
1265int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1266{
1267    ppc_dcrn_t *dcr;
1268
1269    if (dcrn < 0 || dcrn >= DCRN_NB)
1270        goto error;
1271    dcr = &dcr_env->dcrn[dcrn];
1272    if (dcr->dcr_read == NULL)
1273        goto error;
1274    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1275
1276    return 0;
1277
1278 error:
1279    if (dcr_env->read_error != NULL)
1280        return (*dcr_env->read_error)(dcrn);
1281
1282    return -1;
1283}
1284
1285int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1286{
1287    ppc_dcrn_t *dcr;
1288
1289    if (dcrn < 0 || dcrn >= DCRN_NB)
1290        goto error;
1291    dcr = &dcr_env->dcrn[dcrn];
1292    if (dcr->dcr_write == NULL)
1293        goto error;
1294    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1295
1296    return 0;
1297
1298 error:
1299    if (dcr_env->write_error != NULL)
1300        return (*dcr_env->write_error)(dcrn);
1301
1302    return -1;
1303}
1304
1305int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1306                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1307{
1308    ppc_dcr_t *dcr_env;
1309    ppc_dcrn_t *dcr;
1310
1311    dcr_env = env->dcr_env;
1312    if (dcr_env == NULL)
1313        return -1;
1314    if (dcrn < 0 || dcrn >= DCRN_NB)
1315        return -1;
1316    dcr = &dcr_env->dcrn[dcrn];
1317    if (dcr->opaque != NULL ||
1318        dcr->dcr_read != NULL ||
1319        dcr->dcr_write != NULL)
1320        return -1;
1321    dcr->opaque = opaque;
1322    dcr->dcr_read = dcr_read;
1323    dcr->dcr_write = dcr_write;
1324
1325    return 0;
1326}
1327
1328int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1329                  int (*write_error)(int dcrn))
1330{
1331    ppc_dcr_t *dcr_env;
1332
1333    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1334    dcr_env->read_error = read_error;
1335    dcr_env->write_error = write_error;
1336    env->dcr_env = dcr_env;
1337
1338    return 0;
1339}
1340
1341/*****************************************************************************/
1342/* Debug port */
1343void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1344{
1345    addr &= 0xF;
1346    switch (addr) {
1347    case 0:
1348        printf("%c", val);
1349        break;
1350    case 1:
1351        printf("\n");
1352        fflush(stdout);
1353        break;
1354    case 2:
1355        printf("Set loglevel to %04" PRIx32 "\n", val);
1356        qemu_set_log(val | 0x100);
1357        break;
1358    }
1359}
1360
1361/* CPU device-tree ID helpers */
1362int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1363{
1364    return cpu->cpu_dt_id;
1365}
1366
1367PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1368{
1369    CPUState *cs;
1370
1371    CPU_FOREACH(cs) {
1372        PowerPCCPU *cpu = POWERPC_CPU(cs);
1373
1374        if (cpu->cpu_dt_id == cpu_dt_id) {
1375            return cpu;
1376        }
1377    }
1378
1379    return NULL;
1380}
1381
1382void ppc_cpu_parse_features(const char *cpu_model)
1383{
1384    CPUClass *cc;
1385    ObjectClass *oc;
1386    const char *typename;
1387    gchar **model_pieces;
1388
1389    model_pieces = g_strsplit(cpu_model, ",", 2);
1390    if (!model_pieces[0]) {
1391        error_report("Invalid/empty CPU model name");
1392        exit(1);
1393    }
1394
1395    oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
1396    if (oc == NULL) {
1397        error_report("Unable to find CPU definition: %s", model_pieces[0]);
1398        exit(1);
1399    }
1400
1401    typename = object_class_get_name(oc);
1402    cc = CPU_CLASS(oc);
1403    cc->parse_features(typename, model_pieces[1], &error_fatal);
1404    g_strfreev(model_pieces);
1405}
1406