qemu/include/exec/exec-all.h
<<
>>
Prefs
   1/*
   2 * internal execution defines for qemu
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef EXEC_ALL_H
  21#define EXEC_ALL_H
  22
  23#include "qemu-common.h"
  24#include "exec/tb-context.h"
  25
  26/* allow to see translation results - the slowdown should be negligible, so we leave it */
  27#define DEBUG_DISAS
  28
  29/* Page tracking code uses ram addresses in system mode, and virtual
  30   addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
  31   type.  */
  32#if defined(CONFIG_USER_ONLY)
  33typedef abi_ulong tb_page_addr_t;
  34#else
  35typedef ram_addr_t tb_page_addr_t;
  36#endif
  37
  38/* DisasContext is_jmp field values
  39 *
  40 * is_jmp starts as DISAS_NEXT. The translator will keep processing
  41 * instructions until an exit condition is reached. If we reach the
  42 * exit condition and is_jmp is still DISAS_NEXT (because of some
  43 * other condition) we simply "jump" to the next address.
  44 * The remaining exit cases are:
  45 *
  46 *   DISAS_JUMP    - Only the PC was modified dynamically (e.g computed)
  47 *   DISAS_TB_JUMP - Only the PC was modified statically (e.g. branch)
  48 *
  49 * In these cases as long as the PC is updated we can chain to the
  50 * next TB either by exiting the loop or looking up the next TB via
  51 * the loookup helper.
  52 *
  53 *   DISAS_UPDATE  - CPU State was modified dynamically
  54 *
  55 * This covers any other CPU state which necessities us exiting the
  56 * TCG code to the main run-loop. Typically this includes anything
  57 * that might change the interrupt state.
  58 *
  59 * Individual translators may define additional exit cases to deal
  60 * with per-target special conditions.
  61 */
  62#define DISAS_NEXT    0 /* next instruction can be analyzed */
  63#define DISAS_JUMP    1 /* only pc was modified dynamically */
  64#define DISAS_TB_JUMP 2 /* only pc was modified statically */
  65#define DISAS_UPDATE  3 /* cpu state was modified dynamically */
  66
  67#include "qemu/log.h"
  68
  69void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
  70void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
  71                          target_ulong *data);
  72
  73void cpu_gen_init(void);
  74bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
  75
  76void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
  77void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
  78TranslationBlock *tb_gen_code(CPUState *cpu,
  79                              target_ulong pc, target_ulong cs_base,
  80                              uint32_t flags,
  81                              int cflags);
  82
  83void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
  84void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
  85void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
  86
  87#if !defined(CONFIG_USER_ONLY)
  88void cpu_reloading_memory_map(void);
  89/**
  90 * cpu_address_space_init:
  91 * @cpu: CPU to add this address space to
  92 * @as: address space to add
  93 * @asidx: integer index of this address space
  94 *
  95 * Add the specified address space to the CPU's cpu_ases list.
  96 * The address space added with @asidx 0 is the one used for the
  97 * convenience pointer cpu->as.
  98 * The target-specific code which registers ASes is responsible
  99 * for defining what semantics address space 0, 1, 2, etc have.
 100 *
 101 * Before the first call to this function, the caller must set
 102 * cpu->num_ases to the total number of address spaces it needs
 103 * to support.
 104 *
 105 * Note that with KVM only one address space is supported.
 106 */
 107void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
 108#endif
 109
 110#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
 111/* cputlb.c */
 112/**
 113 * tlb_flush_page:
 114 * @cpu: CPU whose TLB should be flushed
 115 * @addr: virtual address of page to be flushed
 116 *
 117 * Flush one page from the TLB of the specified CPU, for all
 118 * MMU indexes.
 119 */
 120void tlb_flush_page(CPUState *cpu, target_ulong addr);
 121/**
 122 * tlb_flush_page_all_cpus:
 123 * @cpu: src CPU of the flush
 124 * @addr: virtual address of page to be flushed
 125 *
 126 * Flush one page from the TLB of the specified CPU, for all
 127 * MMU indexes.
 128 */
 129void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
 130/**
 131 * tlb_flush_page_all_cpus_synced:
 132 * @cpu: src CPU of the flush
 133 * @addr: virtual address of page to be flushed
 134 *
 135 * Flush one page from the TLB of the specified CPU, for all MMU
 136 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
 137 * is scheduled as safe work meaning all flushes will be complete once
 138 * the source vCPUs safe work is complete. This will depend on when
 139 * the guests translation ends the TB.
 140 */
 141void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
 142/**
 143 * tlb_flush:
 144 * @cpu: CPU whose TLB should be flushed
 145 *
 146 * Flush the entire TLB for the specified CPU. Most CPU architectures
 147 * allow the implementation to drop entries from the TLB at any time
 148 * so this is generally safe. If more selective flushing is required
 149 * use one of the other functions for efficiency.
 150 */
 151void tlb_flush(CPUState *cpu);
 152/**
 153 * tlb_flush_all_cpus:
 154 * @cpu: src CPU of the flush
 155 */
 156void tlb_flush_all_cpus(CPUState *src_cpu);
 157/**
 158 * tlb_flush_all_cpus_synced:
 159 * @cpu: src CPU of the flush
 160 *
 161 * Like tlb_flush_all_cpus except this except the source vCPUs work is
 162 * scheduled as safe work meaning all flushes will be complete once
 163 * the source vCPUs safe work is complete. This will depend on when
 164 * the guests translation ends the TB.
 165 */
 166void tlb_flush_all_cpus_synced(CPUState *src_cpu);
 167/**
 168 * tlb_flush_page_by_mmuidx:
 169 * @cpu: CPU whose TLB should be flushed
 170 * @addr: virtual address of page to be flushed
 171 * @idxmap: bitmap of MMU indexes to flush
 172 *
 173 * Flush one page from the TLB of the specified CPU, for the specified
 174 * MMU indexes.
 175 */
 176void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
 177                              uint16_t idxmap);
 178/**
 179 * tlb_flush_page_by_mmuidx_all_cpus:
 180 * @cpu: Originating CPU of the flush
 181 * @addr: virtual address of page to be flushed
 182 * @idxmap: bitmap of MMU indexes to flush
 183 *
 184 * Flush one page from the TLB of all CPUs, for the specified
 185 * MMU indexes.
 186 */
 187void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
 188                                       uint16_t idxmap);
 189/**
 190 * tlb_flush_page_by_mmuidx_all_cpus_synced:
 191 * @cpu: Originating CPU of the flush
 192 * @addr: virtual address of page to be flushed
 193 * @idxmap: bitmap of MMU indexes to flush
 194 *
 195 * Flush one page from the TLB of all CPUs, for the specified MMU
 196 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
 197 * vCPUs work is scheduled as safe work meaning all flushes will be
 198 * complete once  the source vCPUs safe work is complete. This will
 199 * depend on when the guests translation ends the TB.
 200 */
 201void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
 202                                              uint16_t idxmap);
 203/**
 204 * tlb_flush_by_mmuidx:
 205 * @cpu: CPU whose TLB should be flushed
 206 * @wait: If true ensure synchronisation by exiting the cpu_loop
 207 * @idxmap: bitmap of MMU indexes to flush
 208 *
 209 * Flush all entries from the TLB of the specified CPU, for the specified
 210 * MMU indexes.
 211 */
 212void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
 213/**
 214 * tlb_flush_by_mmuidx_all_cpus:
 215 * @cpu: Originating CPU of the flush
 216 * @idxmap: bitmap of MMU indexes to flush
 217 *
 218 * Flush all entries from all TLBs of all CPUs, for the specified
 219 * MMU indexes.
 220 */
 221void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
 222/**
 223 * tlb_flush_by_mmuidx_all_cpus_synced:
 224 * @cpu: Originating CPU of the flush
 225 * @idxmap: bitmap of MMU indexes to flush
 226 *
 227 * Flush all entries from all TLBs of all CPUs, for the specified
 228 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
 229 * vCPUs work is scheduled as safe work meaning all flushes will be
 230 * complete once  the source vCPUs safe work is complete. This will
 231 * depend on when the guests translation ends the TB.
 232 */
 233void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
 234/**
 235 * tlb_set_page_with_attrs:
 236 * @cpu: CPU to add this TLB entry for
 237 * @vaddr: virtual address of page to add entry for
 238 * @paddr: physical address of the page
 239 * @attrs: memory transaction attributes
 240 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
 241 * @mmu_idx: MMU index to insert TLB entry for
 242 * @size: size of the page in bytes
 243 *
 244 * Add an entry to this CPU's TLB (a mapping from virtual address
 245 * @vaddr to physical address @paddr) with the specified memory
 246 * transaction attributes. This is generally called by the target CPU
 247 * specific code after it has been called through the tlb_fill()
 248 * entry point and performed a successful page table walk to find
 249 * the physical address and attributes for the virtual address
 250 * which provoked the TLB miss.
 251 *
 252 * At most one entry for a given virtual address is permitted. Only a
 253 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
 254 * used by tlb_flush_page.
 255 */
 256void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 257                             hwaddr paddr, MemTxAttrs attrs,
 258                             int prot, int mmu_idx, target_ulong size);
 259/* tlb_set_page:
 260 *
 261 * This function is equivalent to calling tlb_set_page_with_attrs()
 262 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
 263 * as a convenience for CPUs which don't use memory transaction attributes.
 264 */
 265void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 266                  hwaddr paddr, int prot,
 267                  int mmu_idx, target_ulong size);
 268void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
 269void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
 270                 uintptr_t retaddr);
 271#else
 272static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
 273{
 274}
 275static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 276{
 277}
 278static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
 279                                                  target_ulong addr)
 280{
 281}
 282static inline void tlb_flush(CPUState *cpu)
 283{
 284}
 285static inline void tlb_flush_all_cpus(CPUState *src_cpu)
 286{
 287}
 288static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 289{
 290}
 291static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
 292                                            target_ulong addr, uint16_t idxmap)
 293{
 294}
 295
 296static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 297{
 298}
 299static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
 300                                                     target_ulong addr,
 301                                                     uint16_t idxmap)
 302{
 303}
 304static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
 305                                                            target_ulong addr,
 306                                                            uint16_t idxmap)
 307{
 308}
 309static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
 310{
 311}
 312static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
 313                                                       uint16_t idxmap)
 314{
 315}
 316static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
 317{
 318}
 319#endif
 320
 321#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
 322
 323/* Estimated block size for TB allocation.  */
 324/* ??? The following is based on a 2015 survey of x86_64 host output.
 325   Better would seem to be some sort of dynamically sized TB array,
 326   adapting to the block sizes actually being produced.  */
 327#if defined(CONFIG_SOFTMMU)
 328#define CODE_GEN_AVG_BLOCK_SIZE 400
 329#else
 330#define CODE_GEN_AVG_BLOCK_SIZE 150
 331#endif
 332
 333#if defined(_ARCH_PPC) \
 334    || defined(__x86_64__) || defined(__i386__) \
 335    || defined(__sparc__) || defined(__aarch64__) \
 336    || defined(__s390x__) || defined(__mips__) \
 337    || defined(CONFIG_TCG_INTERPRETER)
 338/* NOTE: Direct jump patching must be atomic to be thread-safe. */
 339#define USE_DIRECT_JUMP
 340#endif
 341
 342struct TranslationBlock {
 343    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
 344    target_ulong cs_base; /* CS base for this block */
 345    uint32_t flags; /* flags defining in which context the code was generated */
 346    uint16_t size;      /* size of target code for this block (1 <=
 347                           size <= TARGET_PAGE_SIZE) */
 348    uint16_t icount;
 349    uint32_t cflags;    /* compile flags */
 350#define CF_COUNT_MASK  0x7fff
 351#define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
 352#define CF_NOCACHE     0x10000 /* To be freed after execution */
 353#define CF_USE_ICOUNT  0x20000
 354#define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
 355
 356    /* Per-vCPU dynamic tracing state used to generate this TB */
 357    uint32_t trace_vcpu_dstate;
 358
 359    uint16_t invalid;
 360
 361    void *tc_ptr;    /* pointer to the translated code */
 362    uint8_t *tc_search;  /* pointer to search data */
 363    /* original tb when cflags has CF_NOCACHE */
 364    struct TranslationBlock *orig_tb;
 365    /* first and second physical page containing code. The lower bit
 366       of the pointer tells the index in page_next[] */
 367    struct TranslationBlock *page_next[2];
 368    tb_page_addr_t page_addr[2];
 369
 370    /* The following data are used to directly call another TB from
 371     * the code of this one. This can be done either by emitting direct or
 372     * indirect native jump instructions. These jumps are reset so that the TB
 373     * just continue its execution. The TB can be linked to another one by
 374     * setting one of the jump targets (or patching the jump instruction). Only
 375     * two of such jumps are supported.
 376     */
 377    uint16_t jmp_reset_offset[2]; /* offset of original jump target */
 378#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
 379#ifdef USE_DIRECT_JUMP
 380    uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
 381#else
 382    uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
 383#endif
 384    /* Each TB has an assosiated circular list of TBs jumping to this one.
 385     * jmp_list_first points to the first TB jumping to this one.
 386     * jmp_list_next is used to point to the next TB in a list.
 387     * Since each TB can have two jumps, it can participate in two lists.
 388     * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
 389     * TranslationBlock structure, but the two least significant bits of
 390     * them are used to encode which data field of the pointed TB should
 391     * be used to traverse the list further from that TB:
 392     * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
 393     * In other words, 0/1 tells which jump is used in the pointed TB,
 394     * and 2 means that this is a pointer back to the target TB of this list.
 395     */
 396    uintptr_t jmp_list_next[2];
 397    uintptr_t jmp_list_first;
 398};
 399
 400void tb_free(TranslationBlock *tb);
 401void tb_flush(CPUState *cpu);
 402void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
 403TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
 404                                   target_ulong cs_base, uint32_t flags);
 405
 406#if defined(USE_DIRECT_JUMP)
 407
 408#if defined(CONFIG_TCG_INTERPRETER)
 409static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
 410{
 411    /* patch the branch destination */
 412    atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
 413    /* no need to flush icache explicitly */
 414}
 415#elif defined(_ARCH_PPC)
 416void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
 417#define tb_set_jmp_target1 ppc_tb_set_jmp_target
 418#elif defined(__i386__) || defined(__x86_64__)
 419static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
 420{
 421    /* patch the branch destination */
 422    atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
 423    /* no need to flush icache explicitly */
 424}
 425#elif defined(__s390x__)
 426static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
 427{
 428    /* patch the branch destination */
 429    intptr_t disp = addr - (jmp_addr - 2);
 430    atomic_set((int32_t *)jmp_addr, disp / 2);
 431    /* no need to flush icache explicitly */
 432}
 433#elif defined(__aarch64__)
 434void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
 435#define tb_set_jmp_target1 aarch64_tb_set_jmp_target
 436#elif defined(__sparc__) || defined(__mips__)
 437void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
 438#else
 439#error tb_set_jmp_target1 is missing
 440#endif
 441
 442static inline void tb_set_jmp_target(TranslationBlock *tb,
 443                                     int n, uintptr_t addr)
 444{
 445    uint16_t offset = tb->jmp_insn_offset[n];
 446    tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
 447}
 448
 449#else
 450
 451/* set the jump target */
 452static inline void tb_set_jmp_target(TranslationBlock *tb,
 453                                     int n, uintptr_t addr)
 454{
 455    tb->jmp_target_addr[n] = addr;
 456}
 457
 458#endif
 459
 460/* Called with tb_lock held.  */
 461static inline void tb_add_jump(TranslationBlock *tb, int n,
 462                               TranslationBlock *tb_next)
 463{
 464    assert(n < ARRAY_SIZE(tb->jmp_list_next));
 465    if (tb->jmp_list_next[n]) {
 466        /* Another thread has already done this while we were
 467         * outside of the lock; nothing to do in this case */
 468        return;
 469    }
 470    qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
 471                           "Linking TBs %p [" TARGET_FMT_lx
 472                           "] index %d -> %p [" TARGET_FMT_lx "]\n",
 473                           tb->tc_ptr, tb->pc, n,
 474                           tb_next->tc_ptr, tb_next->pc);
 475
 476    /* patch the native jump address */
 477    tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
 478
 479    /* add in TB jmp circular list */
 480    tb->jmp_list_next[n] = tb_next->jmp_list_first;
 481    tb_next->jmp_list_first = (uintptr_t)tb | n;
 482}
 483
 484/* GETPC is the true target of the return instruction that we'll execute.  */
 485#if defined(CONFIG_TCG_INTERPRETER)
 486extern uintptr_t tci_tb_ptr;
 487# define GETPC() tci_tb_ptr
 488#else
 489# define GETPC() \
 490    ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
 491#endif
 492
 493/* The true return address will often point to a host insn that is part of
 494   the next translated guest insn.  Adjust the address backward to point to
 495   the middle of the call insn.  Subtracting one would do the job except for
 496   several compressed mode architectures (arm, mips) which set the low bit
 497   to indicate the compressed mode; subtracting two works around that.  It
 498   is also the case that there are no host isas that contain a call insn
 499   smaller than 4 bytes, so we don't worry about special-casing this.  */
 500#define GETPC_ADJ   2
 501
 502void tb_lock(void);
 503void tb_unlock(void);
 504void tb_lock_reset(void);
 505
 506#if !defined(CONFIG_USER_ONLY)
 507
 508struct MemoryRegion *iotlb_to_region(CPUState *cpu,
 509                                     hwaddr index, MemTxAttrs attrs);
 510
 511void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
 512              int mmu_idx, uintptr_t retaddr);
 513
 514#endif
 515
 516#if defined(CONFIG_USER_ONLY)
 517void mmap_lock(void);
 518void mmap_unlock(void);
 519bool have_mmap_lock(void);
 520
 521static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 522{
 523    return addr;
 524}
 525#else
 526static inline void mmap_lock(void) {}
 527static inline void mmap_unlock(void) {}
 528
 529/* cputlb.c */
 530tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
 531
 532void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
 533void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
 534
 535/* exec.c */
 536void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
 537
 538MemoryRegionSection *
 539address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 540                                  hwaddr *xlat, hwaddr *plen);
 541hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 542                                       MemoryRegionSection *section,
 543                                       target_ulong vaddr,
 544                                       hwaddr paddr, hwaddr xlat,
 545                                       int prot,
 546                                       target_ulong *address);
 547bool memory_region_is_unassigned(MemoryRegion *mr);
 548
 549#endif
 550
 551/* vl.c */
 552extern int singlestep;
 553
 554#endif
 555