qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19#include "qemu/queue.h"
  20
  21#define THREAD __thread
  22
  23/* This is the size of the host kernel's sigset_t, needed where we make
  24 * direct system calls that take a sigset_t pointer and a size.
  25 */
  26#define SIGSET_T_SIZE (_NSIG / 8)
  27
  28/* This struct is used to hold certain information about the image.
  29 * Basically, it replicates in user space what would be certain
  30 * task_struct fields in the kernel
  31 */
  32struct image_info {
  33        abi_ulong       load_bias;
  34        abi_ulong       load_addr;
  35        abi_ulong       start_code;
  36        abi_ulong       end_code;
  37        abi_ulong       start_data;
  38        abi_ulong       end_data;
  39        abi_ulong       start_brk;
  40        abi_ulong       brk;
  41        abi_ulong       start_mmap;
  42        abi_ulong       start_stack;
  43        abi_ulong       stack_limit;
  44        abi_ulong       entry;
  45        abi_ulong       code_offset;
  46        abi_ulong       data_offset;
  47        abi_ulong       saved_auxv;
  48        abi_ulong       auxv_len;
  49        abi_ulong       arg_start;
  50        abi_ulong       arg_end;
  51        abi_ulong       arg_strings;
  52        abi_ulong       env_strings;
  53        abi_ulong       file_string;
  54        uint32_t        elf_flags;
  55        int             personality;
  56#ifdef CONFIG_USE_FDPIC
  57        abi_ulong       loadmap_addr;
  58        uint16_t        nsegs;
  59        void           *loadsegs;
  60        abi_ulong       pt_dynamic_addr;
  61        struct image_info *other_info;
  62#endif
  63};
  64
  65#ifdef TARGET_I386
  66/* Information about the current linux thread */
  67struct vm86_saved_state {
  68    uint32_t eax; /* return code */
  69    uint32_t ebx;
  70    uint32_t ecx;
  71    uint32_t edx;
  72    uint32_t esi;
  73    uint32_t edi;
  74    uint32_t ebp;
  75    uint32_t esp;
  76    uint32_t eflags;
  77    uint32_t eip;
  78    uint16_t cs, ss, ds, es, fs, gs;
  79};
  80#endif
  81
  82#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  83/* FPU emulator */
  84#include "nwfpe/fpa11.h"
  85#endif
  86
  87#define MAX_SIGQUEUE_SIZE 1024
  88
  89struct emulated_sigtable {
  90    int pending; /* true if signal is pending */
  91    target_siginfo_t info;
  92};
  93
  94/* NOTE: we force a big alignment so that the stack stored after is
  95   aligned too */
  96typedef struct TaskState {
  97    pid_t ts_tid;     /* tid (or pid) of this task */
  98#ifdef TARGET_ARM
  99# ifdef TARGET_ABI32
 100    /* FPA state */
 101    FPA11 fpa;
 102# endif
 103    int swi_errno;
 104#endif
 105#ifdef TARGET_UNICORE32
 106    int swi_errno;
 107#endif
 108#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 109    abi_ulong target_v86;
 110    struct vm86_saved_state vm86_saved_regs;
 111    struct target_vm86plus_struct vm86plus;
 112    uint32_t v86flags;
 113    uint32_t v86mask;
 114#endif
 115    abi_ulong child_tidptr;
 116#ifdef TARGET_M68K
 117    int sim_syscalls;
 118    abi_ulong tp_value;
 119#endif
 120#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
 121    /* Extra fields for semihosted binaries.  */
 122    abi_ulong heap_base;
 123    abi_ulong heap_limit;
 124#endif
 125    abi_ulong stack_base;
 126    int used; /* non zero if used */
 127    struct image_info *info;
 128    struct linux_binprm *bprm;
 129
 130    struct emulated_sigtable sync_signal;
 131    struct emulated_sigtable sigtab[TARGET_NSIG];
 132    /* This thread's signal mask, as requested by the guest program.
 133     * The actual signal mask of this thread may differ:
 134     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 135     *  + sometimes we block all signals to avoid races
 136     */
 137    sigset_t signal_mask;
 138    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 139     * currently in the middle of such a syscall
 140     */
 141    sigset_t sigsuspend_mask;
 142    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 143    int in_sigsuspend;
 144
 145    /* Nonzero if process_pending_signals() needs to do something (either
 146     * handle a pending signal or unblock signals).
 147     * This flag is written from a signal handler so should be accessed via
 148     * the atomic_read() and atomic_write() functions. (It is not accessed
 149     * from multiple threads.)
 150     */
 151    int signal_pending;
 152
 153} __attribute__((aligned(16))) TaskState;
 154
 155extern char *exec_path;
 156void init_task_state(TaskState *ts);
 157void task_settid(TaskState *);
 158void stop_all_tasks(void);
 159extern const char *qemu_uname_release;
 160extern unsigned long mmap_min_addr;
 161
 162/* ??? See if we can avoid exposing so much of the loader internals.  */
 163
 164/* Read a good amount of data initially, to hopefully get all the
 165   program headers loaded.  */
 166#define BPRM_BUF_SIZE  1024
 167
 168/*
 169 * This structure is used to hold the arguments that are
 170 * used when loading binaries.
 171 */
 172struct linux_binprm {
 173        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 174        abi_ulong p;
 175        int fd;
 176        int e_uid, e_gid;
 177        int argc, envc;
 178        char **argv;
 179        char **envp;
 180        char * filename;        /* Name of binary */
 181        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 182};
 183
 184void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 185abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 186                              abi_ulong stringp, int push_ptr);
 187int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 188             struct target_pt_regs * regs, struct image_info *infop,
 189             struct linux_binprm *);
 190
 191int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 192int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 193
 194abi_long memcpy_to_target(abi_ulong dest, const void *src,
 195                          unsigned long len);
 196void target_set_brk(abi_ulong new_brk);
 197abi_long do_brk(abi_ulong new_brk);
 198void syscall_init(void);
 199abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 200                    abi_long arg2, abi_long arg3, abi_long arg4,
 201                    abi_long arg5, abi_long arg6, abi_long arg7,
 202                    abi_long arg8);
 203void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 204extern THREAD CPUState *thread_cpu;
 205void cpu_loop(CPUArchState *env);
 206const char *target_strerror(int err);
 207int get_osversion(void);
 208void init_qemu_uname_release(void);
 209void fork_start(void);
 210void fork_end(int child);
 211
 212/* Creates the initial guest address space in the host memory space using
 213 * the given host start address hint and size.  The guest_start parameter
 214 * specifies the start address of the guest space.  guest_base will be the
 215 * difference between the host start address computed by this function and
 216 * guest_start.  If fixed is specified, then the mapped address space must
 217 * start at host_start.  The real start address of the mapped memory space is
 218 * returned or -1 if there was an error.
 219 */
 220unsigned long init_guest_space(unsigned long host_start,
 221                               unsigned long host_size,
 222                               unsigned long guest_start,
 223                               bool fixed);
 224
 225#include "qemu/log.h"
 226
 227/* safe_syscall.S */
 228
 229/**
 230 * safe_syscall:
 231 * @int number: number of system call to make
 232 * ...: arguments to the system call
 233 *
 234 * Call a system call if guest signal not pending.
 235 * This has the same API as the libc syscall() function, except that it
 236 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 237 *
 238 * Returns: the system call result, or -1 with an error code in errno
 239 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 240 * with any of the host errno values.)
 241 */
 242
 243/* A guide to using safe_syscall() to handle interactions between guest
 244 * syscalls and guest signals:
 245 *
 246 * Guest syscalls come in two flavours:
 247 *
 248 * (1) Non-interruptible syscalls
 249 *
 250 * These are guest syscalls that never get interrupted by signals and
 251 * so never return EINTR. They can be implemented straightforwardly in
 252 * QEMU: just make sure that if the implementation code has to make any
 253 * blocking calls that those calls are retried if they return EINTR.
 254 * It's also OK to implement these with safe_syscall, though it will be
 255 * a little less efficient if a signal is delivered at the 'wrong' moment.
 256 *
 257 * Some non-interruptible syscalls need to be handled using block_signals()
 258 * to block signals for the duration of the syscall. This mainly applies
 259 * to code which needs to modify the data structures used by the
 260 * host_signal_handler() function and the functions it calls, including
 261 * all syscalls which change the thread's signal mask.
 262 *
 263 * (2) Interruptible syscalls
 264 *
 265 * These are guest syscalls that can be interrupted by signals and
 266 * for which we need to either return EINTR or arrange for the guest
 267 * syscall to be restarted. This category includes both syscalls which
 268 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 269 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 270 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 271 * if the handler was registered with SA_RESTART (kernel returns
 272 * -ERESTARTSYS). System calls which are only interruptible in some
 273 * situations (like 'open') also need to be handled this way.
 274 *
 275 * Here it is important that the host syscall is made
 276 * via this safe_syscall() function, and *not* via the host libc.
 277 * If the host libc is used then the implementation will appear to work
 278 * most of the time, but there will be a race condition where a
 279 * signal could arrive just before we make the host syscall inside libc,
 280 * and then then guest syscall will not correctly be interrupted.
 281 * Instead the implementation of the guest syscall can use the safe_syscall
 282 * function but otherwise just return the result or errno in the usual
 283 * way; the main loop code will take care of restarting the syscall
 284 * if appropriate.
 285 *
 286 * (If the implementation needs to make multiple host syscalls this is
 287 * OK; any which might really block must be via safe_syscall(); for those
 288 * which are only technically blocking (ie which we know in practice won't
 289 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 290 * You must be able to cope with backing out correctly if some safe_syscall
 291 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 292 * EINTR though.)
 293 *
 294 * block_signals() cannot be used for interruptible syscalls.
 295 *
 296 *
 297 * How and why the safe_syscall implementation works:
 298 *
 299 * The basic setup is that we make the host syscall via a known
 300 * section of host native assembly. If a signal occurs, our signal
 301 * handler checks the interrupted host PC against the addresse of that
 302 * known section. If the PC is before or at the address of the syscall
 303 * instruction then we change the PC to point at a "return
 304 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 305 * (causing the safe_syscall() call to immediately return that value).
 306 * Then in the main.c loop if we see this magic return value we adjust
 307 * the guest PC to wind it back to before the system call, and invoke
 308 * the guest signal handler as usual.
 309 *
 310 * This winding-back will happen in two cases:
 311 * (1) signal came in just before we took the host syscall (a race);
 312 *   in this case we'll take the guest signal and have another go
 313 *   at the syscall afterwards, and this is indistinguishable for the
 314 *   guest from the timing having been different such that the guest
 315 *   signal really did win the race
 316 * (2) signal came in while the host syscall was blocking, and the
 317 *   host kernel decided the syscall should be restarted;
 318 *   in this case we want to restart the guest syscall also, and so
 319 *   rewinding is the right thing. (Note that "restart" semantics mean
 320 *   "first call the signal handler, then reattempt the syscall".)
 321 * The other situation to consider is when a signal came in while the
 322 * host syscall was blocking, and the host kernel decided that the syscall
 323 * should not be restarted; in this case QEMU's host signal handler will
 324 * be invoked with the PC pointing just after the syscall instruction,
 325 * with registers indicating an EINTR return; the special code in the
 326 * handler will not kick in, and we will return EINTR to the guest as
 327 * we should.
 328 *
 329 * Notice that we can leave the host kernel to make the decision for
 330 * us about whether to do a restart of the syscall or not; we do not
 331 * need to check SA_RESTART flags in QEMU or distinguish the various
 332 * kinds of restartability.
 333 */
 334#ifdef HAVE_SAFE_SYSCALL
 335/* The core part of this function is implemented in assembly */
 336extern long safe_syscall_base(int *pending, long number, ...);
 337
 338#define safe_syscall(...)                                               \
 339    ({                                                                  \
 340        long ret_;                                                      \
 341        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 342        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 343        if (is_error(ret_)) {                                           \
 344            errno = -ret_;                                              \
 345            ret_ = -1;                                                  \
 346        }                                                               \
 347        ret_;                                                           \
 348    })
 349
 350#else
 351
 352/* Fallback for architectures which don't yet provide a safe-syscall assembly
 353 * fragment; note that this is racy!
 354 * This should go away when all host architectures have been updated.
 355 */
 356#define safe_syscall syscall
 357
 358#endif
 359
 360/* syscall.c */
 361int host_to_target_waitstatus(int status);
 362
 363/* strace.c */
 364void print_syscall(int num,
 365                   abi_long arg1, abi_long arg2, abi_long arg3,
 366                   abi_long arg4, abi_long arg5, abi_long arg6);
 367void print_syscall_ret(int num, abi_long arg1);
 368/**
 369 * print_taken_signal:
 370 * @target_signum: target signal being taken
 371 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 372 *
 373 * Print strace output indicating that this signal is being taken by the guest,
 374 * in a format similar to:
 375 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 376 */
 377void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 378extern int do_strace;
 379
 380/* signal.c */
 381void process_pending_signals(CPUArchState *cpu_env);
 382void signal_init(void);
 383int queue_signal(CPUArchState *env, int sig, int si_type,
 384                 target_siginfo_t *info);
 385void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 386void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 387int target_to_host_signal(int sig);
 388int host_to_target_signal(int sig);
 389long do_sigreturn(CPUArchState *env);
 390long do_rt_sigreturn(CPUArchState *env);
 391abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 392int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 393/**
 394 * block_signals: block all signals while handling this guest syscall
 395 *
 396 * Block all signals, and arrange that the signal mask is returned to
 397 * its correct value for the guest before we resume execution of guest code.
 398 * If this function returns non-zero, then the caller should immediately
 399 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 400 * signal and restart execution of the syscall.
 401 * If block_signals() returns zero, then the caller can continue with
 402 * emulation of the system call knowing that no signals can be taken
 403 * (and therefore that no race conditions will result).
 404 * This should only be called once, because if it is called a second time
 405 * it will always return non-zero. (Think of it like a mutex that can't
 406 * be recursively locked.)
 407 * Signals will be unblocked again by process_pending_signals().
 408 *
 409 * Return value: non-zero if there was a pending signal, zero if not.
 410 */
 411int block_signals(void); /* Returns non zero if signal pending */
 412
 413#ifdef TARGET_I386
 414/* vm86.c */
 415void save_v86_state(CPUX86State *env);
 416void handle_vm86_trap(CPUX86State *env, int trapno);
 417void handle_vm86_fault(CPUX86State *env);
 418int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 419#elif defined(TARGET_SPARC64)
 420void sparc64_set_context(CPUSPARCState *env);
 421void sparc64_get_context(CPUSPARCState *env);
 422#endif
 423
 424/* mmap.c */
 425int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 426abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 427                     int flags, int fd, abi_ulong offset);
 428int target_munmap(abi_ulong start, abi_ulong len);
 429abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 430                       abi_ulong new_size, unsigned long flags,
 431                       abi_ulong new_addr);
 432int target_msync(abi_ulong start, abi_ulong len, int flags);
 433extern unsigned long last_brk;
 434extern abi_ulong mmap_next_start;
 435abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
 436void mmap_fork_start(void);
 437void mmap_fork_end(int child);
 438
 439/* main.c */
 440extern unsigned long guest_stack_size;
 441
 442/* user access */
 443
 444#define VERIFY_READ 0
 445#define VERIFY_WRITE 1 /* implies read access */
 446
 447static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 448{
 449    return page_check_range((target_ulong)addr, size,
 450                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 451}
 452
 453/* NOTE __get_user and __put_user use host pointers and don't check access.
 454   These are usually used to access struct data members once the struct has
 455   been locked - usually with lock_user_struct.  */
 456
 457/* Tricky points:
 458   - Use __builtin_choose_expr to avoid type promotion from ?:,
 459   - Invalid sizes result in a compile time error stemming from
 460     the fact that abort has no parameters.
 461   - It's easier to use the endian-specific unaligned load/store
 462     functions than host-endian unaligned load/store plus tswapN.  */
 463
 464#define __put_user_e(x, hptr, e)                                        \
 465  (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
 466   __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
 467   __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
 468   __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
 469     ((hptr), (x)), (void)0)
 470
 471#define __get_user_e(x, hptr, e)                                        \
 472  ((x) = (typeof(*hptr))(                                               \
 473   __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
 474   __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
 475   __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
 476   __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
 477     (hptr)), (void)0)
 478
 479#ifdef TARGET_WORDS_BIGENDIAN
 480# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 481# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 482#else
 483# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 484# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 485#endif
 486
 487/* put_user()/get_user() take a guest address and check access */
 488/* These are usually used to access an atomic data type, such as an int,
 489 * that has been passed by address.  These internally perform locking
 490 * and unlocking on the data type.
 491 */
 492#define put_user(x, gaddr, target_type)                                 \
 493({                                                                      \
 494    abi_ulong __gaddr = (gaddr);                                        \
 495    target_type *__hptr;                                                \
 496    abi_long __ret = 0;                                                 \
 497    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 498        __put_user((x), __hptr);                                \
 499        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 500    } else                                                              \
 501        __ret = -TARGET_EFAULT;                                         \
 502    __ret;                                                              \
 503})
 504
 505#define get_user(x, gaddr, target_type)                                 \
 506({                                                                      \
 507    abi_ulong __gaddr = (gaddr);                                        \
 508    target_type *__hptr;                                                \
 509    abi_long __ret = 0;                                                 \
 510    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 511        __get_user((x), __hptr);                                \
 512        unlock_user(__hptr, __gaddr, 0);                                \
 513    } else {                                                            \
 514        /* avoid warning */                                             \
 515        (x) = 0;                                                        \
 516        __ret = -TARGET_EFAULT;                                         \
 517    }                                                                   \
 518    __ret;                                                              \
 519})
 520
 521#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 522#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 523#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 524#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 525#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 526#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 527#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 528#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 529#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 530#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 531
 532#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 533#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 534#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 535#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 536#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 537#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 538#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 539#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 540#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 541#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 542
 543/* copy_from_user() and copy_to_user() are usually used to copy data
 544 * buffers between the target and host.  These internally perform
 545 * locking/unlocking of the memory.
 546 */
 547abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 548abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 549
 550/* Functions for accessing guest memory.  The tget and tput functions
 551   read/write single values, byteswapping as necessary.  The lock_user function
 552   gets a pointer to a contiguous area of guest memory, but does not perform
 553   any byteswapping.  lock_user may return either a pointer to the guest
 554   memory, or a temporary buffer.  */
 555
 556/* Lock an area of guest memory into the host.  If copy is true then the
 557   host area will have the same contents as the guest.  */
 558static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 559{
 560    if (!access_ok(type, guest_addr, len))
 561        return NULL;
 562#ifdef DEBUG_REMAP
 563    {
 564        void *addr;
 565        addr = g_malloc(len);
 566        if (copy)
 567            memcpy(addr, g2h(guest_addr), len);
 568        else
 569            memset(addr, 0, len);
 570        return addr;
 571    }
 572#else
 573    return g2h(guest_addr);
 574#endif
 575}
 576
 577/* Unlock an area of guest memory.  The first LEN bytes must be
 578   flushed back to guest memory. host_ptr = NULL is explicitly
 579   allowed and does nothing. */
 580static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 581                               long len)
 582{
 583
 584#ifdef DEBUG_REMAP
 585    if (!host_ptr)
 586        return;
 587    if (host_ptr == g2h(guest_addr))
 588        return;
 589    if (len > 0)
 590        memcpy(g2h(guest_addr), host_ptr, len);
 591    g_free(host_ptr);
 592#endif
 593}
 594
 595/* Return the length of a string in target memory or -TARGET_EFAULT if
 596   access error. */
 597abi_long target_strlen(abi_ulong gaddr);
 598
 599/* Like lock_user but for null terminated strings.  */
 600static inline void *lock_user_string(abi_ulong guest_addr)
 601{
 602    abi_long len;
 603    len = target_strlen(guest_addr);
 604    if (len < 0)
 605        return NULL;
 606    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 607}
 608
 609/* Helper macros for locking/unlocking a target struct.  */
 610#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 611    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 612#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 613    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 614
 615#include <pthread.h>
 616
 617/* Include target-specific struct and function definitions;
 618 * they may need access to the target-independent structures
 619 * above, so include them last.
 620 */
 621#include "target_cpu.h"
 622#include "target_signal.h"
 623#include "target_structs.h"
 624
 625#endif /* QEMU_H */
 626