qemu/target/arm/psci.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014 - Linaro
   3 * Author: Rob Herring <rob.herring@linaro.org>
   4 *
   5 *  This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation; either version 2 of the License, or
   8 *  (at your option) any later version.
   9 *
  10 *  This program is distributed in the hope that it will be useful,
  11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *  GNU General Public License for more details.
  14 *
  15 *  You should have received a copy of the GNU General Public License
  16 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18#include "qemu/osdep.h"
  19#include "cpu.h"
  20#include "exec/helper-proto.h"
  21#include "kvm-consts.h"
  22#include "sysemu/sysemu.h"
  23#include "internals.h"
  24#include "arm-powerctl.h"
  25#include "exec/exec-all.h"
  26
  27bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
  28{
  29    /* Return true if the r0/x0 value indicates a PSCI call and
  30     * the exception type matches the configured PSCI conduit. This is
  31     * called before the SMC/HVC instruction is executed, to decide whether
  32     * we should treat it as a PSCI call or with the architecturally
  33     * defined behaviour for an SMC or HVC (which might be UNDEF or trap
  34     * to EL2 or to EL3).
  35     */
  36    CPUARMState *env = &cpu->env;
  37    uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
  38
  39    switch (excp_type) {
  40    case EXCP_HVC:
  41        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
  42            return false;
  43        }
  44        break;
  45    case EXCP_SMC:
  46        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
  47            return false;
  48        }
  49        break;
  50    default:
  51        return false;
  52    }
  53
  54    switch (param) {
  55    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
  56    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
  57    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
  58    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
  59    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
  60    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
  61    case QEMU_PSCI_0_1_FN_CPU_ON:
  62    case QEMU_PSCI_0_2_FN_CPU_ON:
  63    case QEMU_PSCI_0_2_FN64_CPU_ON:
  64    case QEMU_PSCI_0_1_FN_CPU_OFF:
  65    case QEMU_PSCI_0_2_FN_CPU_OFF:
  66    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
  67    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
  68    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
  69    case QEMU_PSCI_0_1_FN_MIGRATE:
  70    case QEMU_PSCI_0_2_FN_MIGRATE:
  71        return true;
  72    default:
  73        return false;
  74    }
  75}
  76
  77void arm_handle_psci_call(ARMCPU *cpu)
  78{
  79    /*
  80     * This function partially implements the logic for dispatching Power State
  81     * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
  82     * to the extent required for bringing up and taking down secondary cores,
  83     * and for handling reset and poweroff requests.
  84     * Additional information about the calling convention used is available in
  85     * the document 'SMC Calling Convention' (ARM DEN 0028)
  86     */
  87    CPUARMState *env = &cpu->env;
  88    uint64_t param[4];
  89    uint64_t context_id, mpidr;
  90    target_ulong entry;
  91    int32_t ret = 0;
  92    int i;
  93
  94    for (i = 0; i < 4; i++) {
  95        /*
  96         * All PSCI functions take explicit 32-bit or native int sized
  97         * arguments so we can simply zero-extend all arguments regardless
  98         * of which exact function we are about to call.
  99         */
 100        param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
 101    }
 102
 103    if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
 104        ret = QEMU_PSCI_RET_INVALID_PARAMS;
 105        goto err;
 106    }
 107
 108    switch (param[0]) {
 109        CPUState *target_cpu_state;
 110        ARMCPU *target_cpu;
 111
 112    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
 113        ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
 114        break;
 115    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
 116        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
 117        break;
 118    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
 119    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
 120        mpidr = param[1];
 121
 122        switch (param[2]) {
 123        case 0:
 124            target_cpu_state = arm_get_cpu_by_id(mpidr);
 125            if (!target_cpu_state) {
 126                ret = QEMU_PSCI_RET_INVALID_PARAMS;
 127                break;
 128            }
 129            target_cpu = ARM_CPU(target_cpu_state);
 130
 131            g_assert(qemu_mutex_iothread_locked());
 132            ret = target_cpu->power_state;
 133            break;
 134        default:
 135            /* Everything above affinity level 0 is always on. */
 136            ret = 0;
 137        }
 138        break;
 139    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
 140        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 141        /* QEMU reset and shutdown are async requests, but PSCI
 142         * mandates that we never return from the reset/shutdown
 143         * call, so power the CPU off now so it doesn't execute
 144         * anything further.
 145         */
 146        goto cpu_off;
 147    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
 148        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 149        goto cpu_off;
 150    case QEMU_PSCI_0_1_FN_CPU_ON:
 151    case QEMU_PSCI_0_2_FN_CPU_ON:
 152    case QEMU_PSCI_0_2_FN64_CPU_ON:
 153    {
 154        /* The PSCI spec mandates that newly brought up CPUs start
 155         * in the highest exception level which exists and is enabled
 156         * on the calling CPU. Since the QEMU PSCI implementation is
 157         * acting as a "fake EL3" or "fake EL2" firmware, this for us
 158         * means that we want to start at the highest NS exception level
 159         * that we are providing to the guest.
 160         * The execution mode should be that which is currently in use
 161         * by the same exception level on the calling CPU.
 162         * The CPU should be started with the context_id value
 163         * in x0 (if AArch64) or r0 (if AArch32).
 164         */
 165        int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
 166        bool target_aarch64 = arm_el_is_aa64(env, target_el);
 167
 168        mpidr = param[1];
 169        entry = param[2];
 170        context_id = param[3];
 171        ret = arm_set_cpu_on(mpidr, entry, context_id,
 172                             target_el, target_aarch64);
 173        break;
 174    }
 175    case QEMU_PSCI_0_1_FN_CPU_OFF:
 176    case QEMU_PSCI_0_2_FN_CPU_OFF:
 177        goto cpu_off;
 178    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
 179    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
 180    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
 181        /* Affinity levels are not supported in QEMU */
 182        if (param[1] & 0xfffe0000) {
 183            ret = QEMU_PSCI_RET_INVALID_PARAMS;
 184            break;
 185        }
 186        /* Powerdown is not supported, we always go into WFI */
 187        if (is_a64(env)) {
 188            env->xregs[0] = 0;
 189        } else {
 190            env->regs[0] = 0;
 191        }
 192        helper_wfi(env);
 193        break;
 194    case QEMU_PSCI_0_1_FN_MIGRATE:
 195    case QEMU_PSCI_0_2_FN_MIGRATE:
 196        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
 197        break;
 198    default:
 199        g_assert_not_reached();
 200    }
 201
 202err:
 203    if (is_a64(env)) {
 204        env->xregs[0] = ret;
 205    } else {
 206        env->regs[0] = ret;
 207    }
 208    return;
 209
 210cpu_off:
 211    ret = arm_set_cpu_off(cpu->mp_affinity);
 212    /* notreached */
 213    /* sanity check in case something failed */
 214    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
 215}
 216