1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17#include "qemu/osdep.h"
18#include <dirent.h>
19#include <sys/ioctl.h>
20#include <sys/vfs.h>
21
22#include <linux/kvm.h>
23
24#include "qemu-common.h"
25#include "qapi/error.h"
26#include "qemu/error-report.h"
27#include "cpu.h"
28#include "cpu-models.h"
29#include "qemu/timer.h"
30#include "sysemu/sysemu.h"
31#include "sysemu/hw_accel.h"
32#include "kvm_ppc.h"
33#include "sysemu/cpus.h"
34#include "sysemu/device_tree.h"
35#include "mmu-hash64.h"
36
37#include "hw/sysbus.h"
38#include "hw/ppc/spapr.h"
39#include "hw/ppc/spapr_vio.h"
40#include "hw/ppc/spapr_cpu_core.h"
41#include "hw/ppc/ppc.h"
42#include "sysemu/watchdog.h"
43#include "trace.h"
44#include "exec/gdbstub.h"
45#include "exec/memattrs.h"
46#include "exec/ram_addr.h"
47#include "sysemu/hostmem.h"
48#include "qemu/cutils.h"
49#include "qemu/mmap-alloc.h"
50#if defined(TARGET_PPC64)
51#include "hw/ppc/spapr_cpu_core.h"
52#endif
53#include "elf.h"
54#include "sysemu/kvm_int.h"
55
56
57
58#ifdef DEBUG_KVM
59#define DPRINTF(fmt, ...) \
60 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
61#else
62#define DPRINTF(fmt, ...) \
63 do { } while (0)
64#endif
65
66#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
67
68const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
69 KVM_CAP_LAST_INFO
70};
71
72static int cap_interrupt_unset = false;
73static int cap_interrupt_level = false;
74static int cap_segstate;
75static int cap_booke_sregs;
76static int cap_ppc_smt;
77static int cap_ppc_rma;
78static int cap_spapr_tce;
79static int cap_spapr_tce_64;
80static int cap_spapr_multitce;
81static int cap_spapr_vfio;
82static int cap_hior;
83static int cap_one_reg;
84static int cap_epr;
85static int cap_ppc_watchdog;
86static int cap_papr;
87static int cap_htab_fd;
88static int cap_fixup_hcalls;
89static int cap_htm;
90static int cap_mmu_radix;
91static int cap_mmu_hash_v3;
92static int cap_resize_hpt;
93static int cap_ppc_pvr_compat;
94
95static uint32_t debug_inst_opcode;
96
97
98
99
100
101
102
103
104
105
106static QEMUTimer *idle_timer;
107
108static void kvm_kick_cpu(void *opaque)
109{
110 PowerPCCPU *cpu = opaque;
111
112 qemu_cpu_kick(CPU(cpu));
113}
114
115
116
117
118
119static bool kvmppc_is_pr(KVMState *ks)
120{
121
122 return kvm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
123}
124
125static int kvm_ppc_register_host_cpu_type(void);
126
127int kvm_arch_init(MachineState *ms, KVMState *s)
128{
129 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
130 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
131 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
132 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
133 cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
134 cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
135 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
136 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
137 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
138 cap_spapr_vfio = false;
139 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
140 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
141 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
142 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
143
144
145 cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
146 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
147 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
148 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
149 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
150 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
151
152
153
154
155
156
157 cap_ppc_pvr_compat = false;
158
159 if (!cap_interrupt_level) {
160 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
161 "VM to stall at times!\n");
162 }
163
164 kvm_ppc_register_host_cpu_type();
165
166 return 0;
167}
168
169int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
170{
171 return 0;
172}
173
174static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
175{
176 CPUPPCState *cenv = &cpu->env;
177 CPUState *cs = CPU(cpu);
178 struct kvm_sregs sregs;
179 int ret;
180
181 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
182
183
184
185
186 return 0;
187 } else {
188 if (!cap_segstate) {
189 fprintf(stderr, "kvm error: missing PVR setting capability\n");
190 return -ENOSYS;
191 }
192 }
193
194 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
195 if (ret) {
196 return ret;
197 }
198
199 sregs.pvr = cenv->spr[SPR_PVR];
200 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
201}
202
203
204static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
205{
206 CPUPPCState *env = &cpu->env;
207 CPUState *cs = CPU(cpu);
208 struct kvm_book3e_206_tlb_params params = {};
209 struct kvm_config_tlb cfg = {};
210 unsigned int entries = 0;
211 int ret, i;
212
213 if (!kvm_enabled() ||
214 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
215 return 0;
216 }
217
218 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
219
220 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
221 params.tlb_sizes[i] = booke206_tlb_size(env, i);
222 params.tlb_ways[i] = booke206_tlb_ways(env, i);
223 entries += params.tlb_sizes[i];
224 }
225
226 assert(entries == env->nb_tlb);
227 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
228
229 env->tlb_dirty = true;
230
231 cfg.array = (uintptr_t)env->tlb.tlbm;
232 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
233 cfg.params = (uintptr_t)¶ms;
234 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
235
236 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
237 if (ret < 0) {
238 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
239 __func__, strerror(-ret));
240 return ret;
241 }
242
243 env->kvm_sw_tlb = true;
244 return 0;
245}
246
247
248#if defined(TARGET_PPC64)
249static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
250 struct kvm_ppc_smmu_info *info)
251{
252 CPUPPCState *env = &cpu->env;
253 CPUState *cs = CPU(cpu);
254
255 memset(info, 0, sizeof(*info));
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279 if (kvmppc_is_pr(cs->kvm_state)) {
280
281 info->flags = 0;
282 info->slb_size = 64;
283
284
285 info->sps[0].page_shift = 12;
286 info->sps[0].slb_enc = 0;
287 info->sps[0].enc[0].page_shift = 12;
288 info->sps[0].enc[0].pte_enc = 0;
289
290
291 info->sps[1].page_shift = 24;
292 info->sps[1].slb_enc = SLB_VSID_L;
293 info->sps[1].enc[0].page_shift = 24;
294 info->sps[1].enc[0].pte_enc = 0;
295 } else {
296 int i = 0;
297
298
299 info->flags = KVM_PPC_PAGE_SIZES_REAL;
300
301 if (env->mmu_model & POWERPC_MMU_1TSEG) {
302 info->flags |= KVM_PPC_1T_SEGMENTS;
303 }
304
305 if (POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_06 ||
306 POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_07) {
307 info->slb_size = 32;
308 } else {
309 info->slb_size = 64;
310 }
311
312
313 info->sps[i].page_shift = 12;
314 info->sps[i].slb_enc = 0;
315 info->sps[i].enc[0].page_shift = 12;
316 info->sps[i].enc[0].pte_enc = 0;
317 i++;
318
319
320 if (POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_06 ||
321 POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_07) {
322 info->sps[i].page_shift = 16;
323 info->sps[i].slb_enc = 0x110;
324 info->sps[i].enc[0].page_shift = 16;
325 info->sps[i].enc[0].pte_enc = 1;
326 i++;
327 }
328
329
330 info->sps[i].page_shift = 24;
331 info->sps[i].slb_enc = SLB_VSID_L;
332 info->sps[i].enc[0].page_shift = 24;
333 info->sps[i].enc[0].pte_enc = 0;
334 }
335}
336
337static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
338{
339 CPUState *cs = CPU(cpu);
340 int ret;
341
342 if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
343 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
344 if (ret == 0) {
345 return;
346 }
347 }
348
349 kvm_get_fallback_smmu_info(cpu, info);
350}
351
352struct ppc_radix_page_info *kvm_get_radix_page_info(void)
353{
354 KVMState *s = KVM_STATE(current_machine->accelerator);
355 struct ppc_radix_page_info *radix_page_info;
356 struct kvm_ppc_rmmu_info rmmu_info;
357 int i;
358
359 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
360 return NULL;
361 }
362 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
363 return NULL;
364 }
365 radix_page_info = g_malloc0(sizeof(*radix_page_info));
366 radix_page_info->count = 0;
367 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
368 if (rmmu_info.ap_encodings[i]) {
369 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
370 radix_page_info->count++;
371 }
372 }
373 return radix_page_info;
374}
375
376target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
377 bool radix, bool gtse,
378 uint64_t proc_tbl)
379{
380 CPUState *cs = CPU(cpu);
381 int ret;
382 uint64_t flags = 0;
383 struct kvm_ppc_mmuv3_cfg cfg = {
384 .process_table = proc_tbl,
385 };
386
387 if (radix) {
388 flags |= KVM_PPC_MMUV3_RADIX;
389 }
390 if (gtse) {
391 flags |= KVM_PPC_MMUV3_GTSE;
392 }
393 cfg.flags = flags;
394 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
395 switch (ret) {
396 case 0:
397 return H_SUCCESS;
398 case -EINVAL:
399 return H_PARAMETER;
400 case -ENODEV:
401 return H_NOT_AVAILABLE;
402 default:
403 return H_HARDWARE;
404 }
405}
406
407static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
408{
409 if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
410 return true;
411 }
412
413 return (1ul << shift) <= rampgsize;
414}
415
416static long max_cpu_page_size;
417
418static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
419{
420 static struct kvm_ppc_smmu_info smmu_info;
421 static bool has_smmu_info;
422 CPUPPCState *env = &cpu->env;
423 int iq, ik, jq, jk;
424 bool has_64k_pages = false;
425
426
427 if (!(env->mmu_model & POWERPC_MMU_64)) {
428 return;
429 }
430
431
432 if (!has_smmu_info) {
433 kvm_get_smmu_info(cpu, &smmu_info);
434 has_smmu_info = true;
435 }
436
437 if (!max_cpu_page_size) {
438 max_cpu_page_size = qemu_getrampagesize();
439 }
440
441
442 memset(&env->sps, 0, sizeof(env->sps));
443
444
445
446
447 if (smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL) {
448 env->ci_large_pages = getpagesize() >= 0x10000;
449 }
450
451
452
453
454
455 for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
456 struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
457 struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
458
459 if (!kvm_valid_page_size(smmu_info.flags, max_cpu_page_size,
460 ksps->page_shift)) {
461 continue;
462 }
463 qsps->page_shift = ksps->page_shift;
464 qsps->slb_enc = ksps->slb_enc;
465 for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
466 if (!kvm_valid_page_size(smmu_info.flags, max_cpu_page_size,
467 ksps->enc[jk].page_shift)) {
468 continue;
469 }
470 if (ksps->enc[jk].page_shift == 16) {
471 has_64k_pages = true;
472 }
473 qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
474 qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
475 if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
476 break;
477 }
478 }
479 if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
480 break;
481 }
482 }
483 env->slb_nr = smmu_info.slb_size;
484 if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
485 env->mmu_model &= ~POWERPC_MMU_1TSEG;
486 }
487 if (!has_64k_pages) {
488 env->mmu_model &= ~POWERPC_MMU_64K;
489 }
490}
491
492bool kvmppc_is_mem_backend_page_size_ok(const char *obj_path)
493{
494 Object *mem_obj = object_resolve_path(obj_path, NULL);
495 char *mempath = object_property_get_str(mem_obj, "mem-path", NULL);
496 long pagesize;
497
498 if (mempath) {
499 pagesize = qemu_mempath_getpagesize(mempath);
500 g_free(mempath);
501 } else {
502 pagesize = getpagesize();
503 }
504
505 return pagesize >= max_cpu_page_size;
506}
507
508#else
509
510static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
511{
512}
513
514bool kvmppc_is_mem_backend_page_size_ok(const char *obj_path)
515{
516 return true;
517}
518
519#endif
520
521unsigned long kvm_arch_vcpu_id(CPUState *cpu)
522{
523 return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
524}
525
526
527
528
529
530#define MAX_HW_BKPTS 4
531
532static struct HWBreakpoint {
533 target_ulong addr;
534 int type;
535} hw_debug_points[MAX_HW_BKPTS];
536
537static CPUWatchpoint hw_watchpoint;
538
539
540static int max_hw_breakpoint;
541static int max_hw_watchpoint;
542static int nb_hw_breakpoint;
543static int nb_hw_watchpoint;
544
545static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
546{
547 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
548 max_hw_breakpoint = 2;
549 max_hw_watchpoint = 2;
550 }
551
552 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
553 fprintf(stderr, "Error initializing h/w breakpoints\n");
554 return;
555 }
556}
557
558int kvm_arch_init_vcpu(CPUState *cs)
559{
560 PowerPCCPU *cpu = POWERPC_CPU(cs);
561 CPUPPCState *cenv = &cpu->env;
562 int ret;
563
564
565 kvm_fixup_page_sizes(cpu);
566
567
568 ret = kvm_arch_sync_sregs(cpu);
569 if (ret) {
570 if (ret == -EINVAL) {
571 error_report("Register sync failed... If you're using kvm-hv.ko,"
572 " only \"-cpu host\" is possible");
573 }
574 return ret;
575 }
576
577 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
578
579 switch (cenv->mmu_model) {
580 case POWERPC_MMU_BOOKE206:
581
582 ret = kvm_booke206_tlb_init(cpu);
583 break;
584 case POWERPC_MMU_2_07:
585 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
586
587
588
589 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
590 cap_htm = true;
591 }
592 }
593 break;
594 default:
595 break;
596 }
597
598 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
599 kvmppc_hw_debug_points_init(cenv);
600
601 return ret;
602}
603
604static void kvm_sw_tlb_put(PowerPCCPU *cpu)
605{
606 CPUPPCState *env = &cpu->env;
607 CPUState *cs = CPU(cpu);
608 struct kvm_dirty_tlb dirty_tlb;
609 unsigned char *bitmap;
610 int ret;
611
612 if (!env->kvm_sw_tlb) {
613 return;
614 }
615
616 bitmap = g_malloc((env->nb_tlb + 7) / 8);
617 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
618
619 dirty_tlb.bitmap = (uintptr_t)bitmap;
620 dirty_tlb.num_dirty = env->nb_tlb;
621
622 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
623 if (ret) {
624 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
625 __func__, strerror(-ret));
626 }
627
628 g_free(bitmap);
629}
630
631static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
632{
633 PowerPCCPU *cpu = POWERPC_CPU(cs);
634 CPUPPCState *env = &cpu->env;
635 union {
636 uint32_t u32;
637 uint64_t u64;
638 } val;
639 struct kvm_one_reg reg = {
640 .id = id,
641 .addr = (uintptr_t) &val,
642 };
643 int ret;
644
645 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
646 if (ret != 0) {
647 trace_kvm_failed_spr_get(spr, strerror(errno));
648 } else {
649 switch (id & KVM_REG_SIZE_MASK) {
650 case KVM_REG_SIZE_U32:
651 env->spr[spr] = val.u32;
652 break;
653
654 case KVM_REG_SIZE_U64:
655 env->spr[spr] = val.u64;
656 break;
657
658 default:
659
660 abort();
661 }
662 }
663}
664
665static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
666{
667 PowerPCCPU *cpu = POWERPC_CPU(cs);
668 CPUPPCState *env = &cpu->env;
669 union {
670 uint32_t u32;
671 uint64_t u64;
672 } val;
673 struct kvm_one_reg reg = {
674 .id = id,
675 .addr = (uintptr_t) &val,
676 };
677 int ret;
678
679 switch (id & KVM_REG_SIZE_MASK) {
680 case KVM_REG_SIZE_U32:
681 val.u32 = env->spr[spr];
682 break;
683
684 case KVM_REG_SIZE_U64:
685 val.u64 = env->spr[spr];
686 break;
687
688 default:
689
690 abort();
691 }
692
693 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
694 if (ret != 0) {
695 trace_kvm_failed_spr_set(spr, strerror(errno));
696 }
697}
698
699static int kvm_put_fp(CPUState *cs)
700{
701 PowerPCCPU *cpu = POWERPC_CPU(cs);
702 CPUPPCState *env = &cpu->env;
703 struct kvm_one_reg reg;
704 int i;
705 int ret;
706
707 if (env->insns_flags & PPC_FLOAT) {
708 uint64_t fpscr = env->fpscr;
709 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
710
711 reg.id = KVM_REG_PPC_FPSCR;
712 reg.addr = (uintptr_t)&fpscr;
713 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
714 if (ret < 0) {
715 DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
716 return ret;
717 }
718
719 for (i = 0; i < 32; i++) {
720 uint64_t vsr[2];
721
722#ifdef HOST_WORDS_BIGENDIAN
723 vsr[0] = float64_val(env->fpr[i]);
724 vsr[1] = env->vsr[i];
725#else
726 vsr[0] = env->vsr[i];
727 vsr[1] = float64_val(env->fpr[i]);
728#endif
729 reg.addr = (uintptr_t) &vsr;
730 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
731
732 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
733 if (ret < 0) {
734 DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
735 i, strerror(errno));
736 return ret;
737 }
738 }
739 }
740
741 if (env->insns_flags & PPC_ALTIVEC) {
742 reg.id = KVM_REG_PPC_VSCR;
743 reg.addr = (uintptr_t)&env->vscr;
744 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
745 if (ret < 0) {
746 DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
747 return ret;
748 }
749
750 for (i = 0; i < 32; i++) {
751 reg.id = KVM_REG_PPC_VR(i);
752 reg.addr = (uintptr_t)&env->avr[i];
753 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
754 if (ret < 0) {
755 DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
756 return ret;
757 }
758 }
759 }
760
761 return 0;
762}
763
764static int kvm_get_fp(CPUState *cs)
765{
766 PowerPCCPU *cpu = POWERPC_CPU(cs);
767 CPUPPCState *env = &cpu->env;
768 struct kvm_one_reg reg;
769 int i;
770 int ret;
771
772 if (env->insns_flags & PPC_FLOAT) {
773 uint64_t fpscr;
774 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
775
776 reg.id = KVM_REG_PPC_FPSCR;
777 reg.addr = (uintptr_t)&fpscr;
778 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
779 if (ret < 0) {
780 DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
781 return ret;
782 } else {
783 env->fpscr = fpscr;
784 }
785
786 for (i = 0; i < 32; i++) {
787 uint64_t vsr[2];
788
789 reg.addr = (uintptr_t) &vsr;
790 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
791
792 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
793 if (ret < 0) {
794 DPRINTF("Unable to get %s%d from KVM: %s\n",
795 vsx ? "VSR" : "FPR", i, strerror(errno));
796 return ret;
797 } else {
798#ifdef HOST_WORDS_BIGENDIAN
799 env->fpr[i] = vsr[0];
800 if (vsx) {
801 env->vsr[i] = vsr[1];
802 }
803#else
804 env->fpr[i] = vsr[1];
805 if (vsx) {
806 env->vsr[i] = vsr[0];
807 }
808#endif
809 }
810 }
811 }
812
813 if (env->insns_flags & PPC_ALTIVEC) {
814 reg.id = KVM_REG_PPC_VSCR;
815 reg.addr = (uintptr_t)&env->vscr;
816 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
817 if (ret < 0) {
818 DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
819 return ret;
820 }
821
822 for (i = 0; i < 32; i++) {
823 reg.id = KVM_REG_PPC_VR(i);
824 reg.addr = (uintptr_t)&env->avr[i];
825 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
826 if (ret < 0) {
827 DPRINTF("Unable to get VR%d from KVM: %s\n",
828 i, strerror(errno));
829 return ret;
830 }
831 }
832 }
833
834 return 0;
835}
836
837#if defined(TARGET_PPC64)
838static int kvm_get_vpa(CPUState *cs)
839{
840 PowerPCCPU *cpu = POWERPC_CPU(cs);
841 CPUPPCState *env = &cpu->env;
842 struct kvm_one_reg reg;
843 int ret;
844
845 reg.id = KVM_REG_PPC_VPA_ADDR;
846 reg.addr = (uintptr_t)&env->vpa_addr;
847 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
848 if (ret < 0) {
849 DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
850 return ret;
851 }
852
853 assert((uintptr_t)&env->slb_shadow_size
854 == ((uintptr_t)&env->slb_shadow_addr + 8));
855 reg.id = KVM_REG_PPC_VPA_SLB;
856 reg.addr = (uintptr_t)&env->slb_shadow_addr;
857 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
858 if (ret < 0) {
859 DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
860 strerror(errno));
861 return ret;
862 }
863
864 assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
865 reg.id = KVM_REG_PPC_VPA_DTL;
866 reg.addr = (uintptr_t)&env->dtl_addr;
867 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
868 if (ret < 0) {
869 DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
870 strerror(errno));
871 return ret;
872 }
873
874 return 0;
875}
876
877static int kvm_put_vpa(CPUState *cs)
878{
879 PowerPCCPU *cpu = POWERPC_CPU(cs);
880 CPUPPCState *env = &cpu->env;
881 struct kvm_one_reg reg;
882 int ret;
883
884
885
886
887
888 assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));
889
890 if (env->vpa_addr) {
891 reg.id = KVM_REG_PPC_VPA_ADDR;
892 reg.addr = (uintptr_t)&env->vpa_addr;
893 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
894 if (ret < 0) {
895 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
896 return ret;
897 }
898 }
899
900 assert((uintptr_t)&env->slb_shadow_size
901 == ((uintptr_t)&env->slb_shadow_addr + 8));
902 reg.id = KVM_REG_PPC_VPA_SLB;
903 reg.addr = (uintptr_t)&env->slb_shadow_addr;
904 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
905 if (ret < 0) {
906 DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
907 return ret;
908 }
909
910 assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
911 reg.id = KVM_REG_PPC_VPA_DTL;
912 reg.addr = (uintptr_t)&env->dtl_addr;
913 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
914 if (ret < 0) {
915 DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
916 strerror(errno));
917 return ret;
918 }
919
920 if (!env->vpa_addr) {
921 reg.id = KVM_REG_PPC_VPA_ADDR;
922 reg.addr = (uintptr_t)&env->vpa_addr;
923 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
924 if (ret < 0) {
925 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
926 return ret;
927 }
928 }
929
930 return 0;
931}
932#endif
933
934int kvmppc_put_books_sregs(PowerPCCPU *cpu)
935{
936 CPUPPCState *env = &cpu->env;
937 struct kvm_sregs sregs;
938 int i;
939
940 sregs.pvr = env->spr[SPR_PVR];
941
942 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
943
944
945#ifdef TARGET_PPC64
946 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
947 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
948 if (env->slb[i].esid & SLB_ESID_V) {
949 sregs.u.s.ppc64.slb[i].slbe |= i;
950 }
951 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
952 }
953#endif
954
955
956 for (i = 0; i < 16; i++) {
957 sregs.u.s.ppc32.sr[i] = env->sr[i];
958 }
959
960
961 for (i = 0; i < 8; i++) {
962
963 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
964 | env->DBAT[1][i];
965 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
966 | env->IBAT[1][i];
967 }
968
969 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
970}
971
972int kvm_arch_put_registers(CPUState *cs, int level)
973{
974 PowerPCCPU *cpu = POWERPC_CPU(cs);
975 CPUPPCState *env = &cpu->env;
976 struct kvm_regs regs;
977 int ret;
978 int i;
979
980 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s);
981 if (ret < 0) {
982 return ret;
983 }
984
985 regs.ctr = env->ctr;
986 regs.lr = env->lr;
987 regs.xer = cpu_read_xer(env);
988 regs.msr = env->msr;
989 regs.pc = env->nip;
990
991 regs.srr0 = env->spr[SPR_SRR0];
992 regs.srr1 = env->spr[SPR_SRR1];
993
994 regs.sprg0 = env->spr[SPR_SPRG0];
995 regs.sprg1 = env->spr[SPR_SPRG1];
996 regs.sprg2 = env->spr[SPR_SPRG2];
997 regs.sprg3 = env->spr[SPR_SPRG3];
998 regs.sprg4 = env->spr[SPR_SPRG4];
999 regs.sprg5 = env->spr[SPR_SPRG5];
1000 regs.sprg6 = env->spr[SPR_SPRG6];
1001 regs.sprg7 = env->spr[SPR_SPRG7];
1002
1003 regs.pid = env->spr[SPR_BOOKE_PID];
1004
1005 for (i = 0;i < 32; i++)
1006 regs.gpr[i] = env->gpr[i];
1007
1008 regs.cr = 0;
1009 for (i = 0; i < 8; i++) {
1010 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
1011 }
1012
1013 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s);
1014 if (ret < 0)
1015 return ret;
1016
1017 kvm_put_fp(cs);
1018
1019 if (env->tlb_dirty) {
1020 kvm_sw_tlb_put(cpu);
1021 env->tlb_dirty = false;
1022 }
1023
1024 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
1025 ret = kvmppc_put_books_sregs(cpu);
1026 if (ret < 0) {
1027 return ret;
1028 }
1029 }
1030
1031 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
1032 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1033 }
1034
1035 if (cap_one_reg) {
1036 int i;
1037
1038
1039
1040
1041
1042 for (i = 0; i < 1024; i++) {
1043 uint64_t id = env->spr_cb[i].one_reg_id;
1044
1045 if (id != 0) {
1046 kvm_put_one_spr(cs, id, i);
1047 }
1048 }
1049
1050#ifdef TARGET_PPC64
1051 if (msr_ts) {
1052 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1053 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1054 }
1055 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1056 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1057 }
1058 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1059 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1060 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1061 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1062 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1063 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1064 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1065 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1066 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1067 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1068 }
1069
1070 if (cap_papr) {
1071 if (kvm_put_vpa(cs) < 0) {
1072 DPRINTF("Warning: Unable to set VPA information to KVM\n");
1073 }
1074 }
1075
1076 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1077#endif
1078 }
1079
1080 return ret;
1081}
1082
1083static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1084{
1085 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1086}
1087
1088static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1089{
1090 CPUPPCState *env = &cpu->env;
1091 struct kvm_sregs sregs;
1092 int ret;
1093
1094 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1095 if (ret < 0) {
1096 return ret;
1097 }
1098
1099 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1100 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1101 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1102 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1103 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1104 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1105 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1106 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1107 env->spr[SPR_DECR] = sregs.u.e.dec;
1108 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1109 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1110 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1111 }
1112
1113 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1114 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1115 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1116 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1117 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1118 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1119 }
1120
1121 if (sregs.u.e.features & KVM_SREGS_E_64) {
1122 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1123 }
1124
1125 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1126 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1127 }
1128
1129 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1130 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1131 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1132 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1133 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1134 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1135 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1136 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1137 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1138 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1139 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1140 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1141 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1142 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1143 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1144 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1145 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1146 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1147 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1148 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1149 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1150 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1151 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1152 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1153 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1154 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1155 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1156 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1157 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1158 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1159 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1160 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1161 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1162
1163 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1164 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1165 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1166 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1167 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1168 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1169 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1170 }
1171
1172 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1173 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1174 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1175 }
1176
1177 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1178 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1179 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1180 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1181 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1182 }
1183 }
1184
1185 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1186 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1187 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1188 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1189 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1190 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1191 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1192 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1193 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1194 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1195 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1196 }
1197
1198 if (sregs.u.e.features & KVM_SREGS_EXP) {
1199 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1200 }
1201
1202 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1203 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1204 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1205 }
1206
1207 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1208 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1209 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1210 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1211
1212 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1213 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1214 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1215 }
1216 }
1217
1218 return 0;
1219}
1220
1221static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1222{
1223 CPUPPCState *env = &cpu->env;
1224 struct kvm_sregs sregs;
1225 int ret;
1226 int i;
1227
1228 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1229 if (ret < 0) {
1230 return ret;
1231 }
1232
1233 if (!cpu->vhyp) {
1234 ppc_store_sdr1(env, sregs.u.s.sdr1);
1235 }
1236
1237
1238#ifdef TARGET_PPC64
1239
1240
1241
1242
1243
1244
1245 memset(env->slb, 0, sizeof(env->slb));
1246 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1247 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1248 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1249
1250
1251
1252 if (rb & SLB_ESID_V) {
1253 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1254 }
1255 }
1256#endif
1257
1258
1259 for (i = 0; i < 16; i++) {
1260 env->sr[i] = sregs.u.s.ppc32.sr[i];
1261 }
1262
1263
1264 for (i = 0; i < 8; i++) {
1265 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1266 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1267 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1268 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1269 }
1270
1271 return 0;
1272}
1273
1274int kvm_arch_get_registers(CPUState *cs)
1275{
1276 PowerPCCPU *cpu = POWERPC_CPU(cs);
1277 CPUPPCState *env = &cpu->env;
1278 struct kvm_regs regs;
1279 uint32_t cr;
1280 int i, ret;
1281
1282 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s);
1283 if (ret < 0)
1284 return ret;
1285
1286 cr = regs.cr;
1287 for (i = 7; i >= 0; i--) {
1288 env->crf[i] = cr & 15;
1289 cr >>= 4;
1290 }
1291
1292 env->ctr = regs.ctr;
1293 env->lr = regs.lr;
1294 cpu_write_xer(env, regs.xer);
1295 env->msr = regs.msr;
1296 env->nip = regs.pc;
1297
1298 env->spr[SPR_SRR0] = regs.srr0;
1299 env->spr[SPR_SRR1] = regs.srr1;
1300
1301 env->spr[SPR_SPRG0] = regs.sprg0;
1302 env->spr[SPR_SPRG1] = regs.sprg1;
1303 env->spr[SPR_SPRG2] = regs.sprg2;
1304 env->spr[SPR_SPRG3] = regs.sprg3;
1305 env->spr[SPR_SPRG4] = regs.sprg4;
1306 env->spr[SPR_SPRG5] = regs.sprg5;
1307 env->spr[SPR_SPRG6] = regs.sprg6;
1308 env->spr[SPR_SPRG7] = regs.sprg7;
1309
1310 env->spr[SPR_BOOKE_PID] = regs.pid;
1311
1312 for (i = 0;i < 32; i++)
1313 env->gpr[i] = regs.gpr[i];
1314
1315 kvm_get_fp(cs);
1316
1317 if (cap_booke_sregs) {
1318 ret = kvmppc_get_booke_sregs(cpu);
1319 if (ret < 0) {
1320 return ret;
1321 }
1322 }
1323
1324 if (cap_segstate) {
1325 ret = kvmppc_get_books_sregs(cpu);
1326 if (ret < 0) {
1327 return ret;
1328 }
1329 }
1330
1331 if (cap_hior) {
1332 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1333 }
1334
1335 if (cap_one_reg) {
1336 int i;
1337
1338
1339
1340
1341
1342 for (i = 0; i < 1024; i++) {
1343 uint64_t id = env->spr_cb[i].one_reg_id;
1344
1345 if (id != 0) {
1346 kvm_get_one_spr(cs, id, i);
1347 }
1348 }
1349
1350#ifdef TARGET_PPC64
1351 if (msr_ts) {
1352 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1353 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1354 }
1355 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1356 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1357 }
1358 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1359 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1360 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1361 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1362 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1363 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1364 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1365 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1366 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1367 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1368 }
1369
1370 if (cap_papr) {
1371 if (kvm_get_vpa(cs) < 0) {
1372 DPRINTF("Warning: Unable to get VPA information from KVM\n");
1373 }
1374 }
1375
1376 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1377#endif
1378 }
1379
1380 return 0;
1381}
1382
1383int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1384{
1385 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1386
1387 if (irq != PPC_INTERRUPT_EXT) {
1388 return 0;
1389 }
1390
1391 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1392 return 0;
1393 }
1394
1395 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1396
1397 return 0;
1398}
1399
1400#if defined(TARGET_PPCEMB)
1401#define PPC_INPUT_INT PPC40x_INPUT_INT
1402#elif defined(TARGET_PPC64)
1403#define PPC_INPUT_INT PPC970_INPUT_INT
1404#else
1405#define PPC_INPUT_INT PPC6xx_INPUT_INT
1406#endif
1407
1408void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1409{
1410 PowerPCCPU *cpu = POWERPC_CPU(cs);
1411 CPUPPCState *env = &cpu->env;
1412 int r;
1413 unsigned irq;
1414
1415 qemu_mutex_lock_iothread();
1416
1417
1418
1419 if (!cap_interrupt_level &&
1420 run->ready_for_interrupt_injection &&
1421 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1422 (env->irq_input_state & (1<<PPC_INPUT_INT)))
1423 {
1424
1425
1426
1427
1428 irq = KVM_INTERRUPT_SET;
1429
1430 DPRINTF("injected interrupt %d\n", irq);
1431 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1432 if (r < 0) {
1433 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1434 }
1435
1436
1437 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1438 (NANOSECONDS_PER_SECOND / 50));
1439 }
1440
1441
1442
1443
1444
1445 qemu_mutex_unlock_iothread();
1446}
1447
1448MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1449{
1450 return MEMTXATTRS_UNSPECIFIED;
1451}
1452
1453int kvm_arch_process_async_events(CPUState *cs)
1454{
1455 return cs->halted;
1456}
1457
1458static int kvmppc_handle_halt(PowerPCCPU *cpu)
1459{
1460 CPUState *cs = CPU(cpu);
1461 CPUPPCState *env = &cpu->env;
1462
1463 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1464 cs->halted = 1;
1465 cs->exception_index = EXCP_HLT;
1466 }
1467
1468 return 0;
1469}
1470
1471
1472static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
1473{
1474 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
1475 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1476
1477 return 0;
1478}
1479
1480static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
1481{
1482 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
1483 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1484
1485 return 0;
1486}
1487
1488int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1489{
1490
1491 uint32_t sc = debug_inst_opcode;
1492
1493 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1494 sizeof(sc), 0) ||
1495 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1496 return -EINVAL;
1497 }
1498
1499 return 0;
1500}
1501
1502int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1503{
1504 uint32_t sc;
1505
1506 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1507 sc != debug_inst_opcode ||
1508 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1509 sizeof(sc), 1)) {
1510 return -EINVAL;
1511 }
1512
1513 return 0;
1514}
1515
1516static int find_hw_breakpoint(target_ulong addr, int type)
1517{
1518 int n;
1519
1520 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1521 <= ARRAY_SIZE(hw_debug_points));
1522
1523 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1524 if (hw_debug_points[n].addr == addr &&
1525 hw_debug_points[n].type == type) {
1526 return n;
1527 }
1528 }
1529
1530 return -1;
1531}
1532
1533static int find_hw_watchpoint(target_ulong addr, int *flag)
1534{
1535 int n;
1536
1537 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1538 if (n >= 0) {
1539 *flag = BP_MEM_ACCESS;
1540 return n;
1541 }
1542
1543 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1544 if (n >= 0) {
1545 *flag = BP_MEM_WRITE;
1546 return n;
1547 }
1548
1549 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1550 if (n >= 0) {
1551 *flag = BP_MEM_READ;
1552 return n;
1553 }
1554
1555 return -1;
1556}
1557
1558int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1559 target_ulong len, int type)
1560{
1561 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1562 return -ENOBUFS;
1563 }
1564
1565 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1566 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1567
1568 switch (type) {
1569 case GDB_BREAKPOINT_HW:
1570 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1571 return -ENOBUFS;
1572 }
1573
1574 if (find_hw_breakpoint(addr, type) >= 0) {
1575 return -EEXIST;
1576 }
1577
1578 nb_hw_breakpoint++;
1579 break;
1580
1581 case GDB_WATCHPOINT_WRITE:
1582 case GDB_WATCHPOINT_READ:
1583 case GDB_WATCHPOINT_ACCESS:
1584 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1585 return -ENOBUFS;
1586 }
1587
1588 if (find_hw_breakpoint(addr, type) >= 0) {
1589 return -EEXIST;
1590 }
1591
1592 nb_hw_watchpoint++;
1593 break;
1594
1595 default:
1596 return -ENOSYS;
1597 }
1598
1599 return 0;
1600}
1601
1602int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1603 target_ulong len, int type)
1604{
1605 int n;
1606
1607 n = find_hw_breakpoint(addr, type);
1608 if (n < 0) {
1609 return -ENOENT;
1610 }
1611
1612 switch (type) {
1613 case GDB_BREAKPOINT_HW:
1614 nb_hw_breakpoint--;
1615 break;
1616
1617 case GDB_WATCHPOINT_WRITE:
1618 case GDB_WATCHPOINT_READ:
1619 case GDB_WATCHPOINT_ACCESS:
1620 nb_hw_watchpoint--;
1621 break;
1622
1623 default:
1624 return -ENOSYS;
1625 }
1626 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1627
1628 return 0;
1629}
1630
1631void kvm_arch_remove_all_hw_breakpoints(void)
1632{
1633 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1634}
1635
1636void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1637{
1638 int n;
1639
1640
1641 if (kvm_sw_breakpoints_active(cs)) {
1642 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1643 }
1644
1645 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1646 <= ARRAY_SIZE(hw_debug_points));
1647 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1648
1649 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1650 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1651 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1652 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1653 switch (hw_debug_points[n].type) {
1654 case GDB_BREAKPOINT_HW:
1655 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1656 break;
1657 case GDB_WATCHPOINT_WRITE:
1658 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1659 break;
1660 case GDB_WATCHPOINT_READ:
1661 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1662 break;
1663 case GDB_WATCHPOINT_ACCESS:
1664 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1665 KVMPPC_DEBUG_WATCH_READ;
1666 break;
1667 default:
1668 cpu_abort(cs, "Unsupported breakpoint type\n");
1669 }
1670 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1671 }
1672 }
1673}
1674
1675static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1676{
1677 CPUState *cs = CPU(cpu);
1678 CPUPPCState *env = &cpu->env;
1679 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1680 int handle = 0;
1681 int n;
1682 int flag = 0;
1683
1684 if (cs->singlestep_enabled) {
1685 handle = 1;
1686 } else if (arch_info->status) {
1687 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1688 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1689 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1690 if (n >= 0) {
1691 handle = 1;
1692 }
1693 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1694 KVMPPC_DEBUG_WATCH_WRITE)) {
1695 n = find_hw_watchpoint(arch_info->address, &flag);
1696 if (n >= 0) {
1697 handle = 1;
1698 cs->watchpoint_hit = &hw_watchpoint;
1699 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1700 hw_watchpoint.flags = flag;
1701 }
1702 }
1703 }
1704 } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1705 handle = 1;
1706 } else {
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728 cpu_synchronize_state(cs);
1729
1730
1731
1732 env->nip += 4;
1733 cs->exception_index = POWERPC_EXCP_PROGRAM;
1734 env->error_code = POWERPC_EXCP_INVAL;
1735 ppc_cpu_do_interrupt(cs);
1736 }
1737
1738 return handle;
1739}
1740
1741int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1742{
1743 PowerPCCPU *cpu = POWERPC_CPU(cs);
1744 CPUPPCState *env = &cpu->env;
1745 int ret;
1746
1747 qemu_mutex_lock_iothread();
1748
1749 switch (run->exit_reason) {
1750 case KVM_EXIT_DCR:
1751 if (run->dcr.is_write) {
1752 DPRINTF("handle dcr write\n");
1753 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1754 } else {
1755 DPRINTF("handle dcr read\n");
1756 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1757 }
1758 break;
1759 case KVM_EXIT_HLT:
1760 DPRINTF("handle halt\n");
1761 ret = kvmppc_handle_halt(cpu);
1762 break;
1763#if defined(TARGET_PPC64)
1764 case KVM_EXIT_PAPR_HCALL:
1765 DPRINTF("handle PAPR hypercall\n");
1766 run->papr_hcall.ret = spapr_hypercall(cpu,
1767 run->papr_hcall.nr,
1768 run->papr_hcall.args);
1769 ret = 0;
1770 break;
1771#endif
1772 case KVM_EXIT_EPR:
1773 DPRINTF("handle epr\n");
1774 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1775 ret = 0;
1776 break;
1777 case KVM_EXIT_WATCHDOG:
1778 DPRINTF("handle watchdog expiry\n");
1779 watchdog_perform_action();
1780 ret = 0;
1781 break;
1782
1783 case KVM_EXIT_DEBUG:
1784 DPRINTF("handle debug exception\n");
1785 if (kvm_handle_debug(cpu, run)) {
1786 ret = EXCP_DEBUG;
1787 break;
1788 }
1789
1790 ret = 0;
1791 break;
1792
1793 default:
1794 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1795 ret = -1;
1796 break;
1797 }
1798
1799 qemu_mutex_unlock_iothread();
1800 return ret;
1801}
1802
1803int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1804{
1805 CPUState *cs = CPU(cpu);
1806 uint32_t bits = tsr_bits;
1807 struct kvm_one_reg reg = {
1808 .id = KVM_REG_PPC_OR_TSR,
1809 .addr = (uintptr_t) &bits,
1810 };
1811
1812 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
1813}
1814
1815int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1816{
1817
1818 CPUState *cs = CPU(cpu);
1819 uint32_t bits = tsr_bits;
1820 struct kvm_one_reg reg = {
1821 .id = KVM_REG_PPC_CLEAR_TSR,
1822 .addr = (uintptr_t) &bits,
1823 };
1824
1825 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
1826}
1827
1828int kvmppc_set_tcr(PowerPCCPU *cpu)
1829{
1830 CPUState *cs = CPU(cpu);
1831 CPUPPCState *env = &cpu->env;
1832 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1833
1834 struct kvm_one_reg reg = {
1835 .id = KVM_REG_PPC_TCR,
1836 .addr = (uintptr_t) &tcr,
1837 };
1838
1839 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
1840}
1841
1842int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1843{
1844 CPUState *cs = CPU(cpu);
1845 int ret;
1846
1847 if (!kvm_enabled()) {
1848 return -1;
1849 }
1850
1851 if (!cap_ppc_watchdog) {
1852 printf("warning: KVM does not support watchdog");
1853 return -1;
1854 }
1855
1856 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1857 if (ret < 0) {
1858 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1859 __func__, strerror(-ret));
1860 return ret;
1861 }
1862
1863 return ret;
1864}
1865
1866static int read_cpuinfo(const char *field, char *value, int len)
1867{
1868 FILE *f;
1869 int ret = -1;
1870 int field_len = strlen(field);
1871 char line[512];
1872
1873 f = fopen("/proc/cpuinfo", "r");
1874 if (!f) {
1875 return -1;
1876 }
1877
1878 do {
1879 if (!fgets(line, sizeof(line), f)) {
1880 break;
1881 }
1882 if (!strncmp(line, field, field_len)) {
1883 pstrcpy(value, len, line);
1884 ret = 0;
1885 break;
1886 }
1887 } while(*line);
1888
1889 fclose(f);
1890
1891 return ret;
1892}
1893
1894uint32_t kvmppc_get_tbfreq(void)
1895{
1896 char line[512];
1897 char *ns;
1898 uint32_t retval = NANOSECONDS_PER_SECOND;
1899
1900 if (read_cpuinfo("timebase", line, sizeof(line))) {
1901 return retval;
1902 }
1903
1904 if (!(ns = strchr(line, ':'))) {
1905 return retval;
1906 }
1907
1908 ns++;
1909
1910 return atoi(ns);
1911}
1912
1913bool kvmppc_get_host_serial(char **value)
1914{
1915 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1916 NULL);
1917}
1918
1919bool kvmppc_get_host_model(char **value)
1920{
1921 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1922}
1923
1924
1925static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1926{
1927 struct dirent *dirp;
1928 DIR *dp;
1929
1930 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
1931 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1932 return -1;
1933 }
1934
1935 buf[0] = '\0';
1936 while ((dirp = readdir(dp)) != NULL) {
1937 FILE *f;
1938 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1939 dirp->d_name);
1940 f = fopen(buf, "r");
1941 if (f) {
1942 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1943 fclose(f);
1944 break;
1945 }
1946 buf[0] = '\0';
1947 }
1948 closedir(dp);
1949 if (buf[0] == '\0') {
1950 printf("Unknown host!\n");
1951 return -1;
1952 }
1953
1954 return 0;
1955}
1956
1957static uint64_t kvmppc_read_int_dt(const char *filename)
1958{
1959 union {
1960 uint32_t v32;
1961 uint64_t v64;
1962 } u;
1963 FILE *f;
1964 int len;
1965
1966 f = fopen(filename, "rb");
1967 if (!f) {
1968 return -1;
1969 }
1970
1971 len = fread(&u, 1, sizeof(u), f);
1972 fclose(f);
1973 switch (len) {
1974 case 4:
1975
1976 return be32_to_cpu(u.v32);
1977 case 8:
1978 return be64_to_cpu(u.v64);
1979 }
1980
1981 return 0;
1982}
1983
1984
1985
1986
1987
1988static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1989{
1990 char buf[PATH_MAX], *tmp;
1991 uint64_t val;
1992
1993 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1994 return -1;
1995 }
1996
1997 tmp = g_strdup_printf("%s/%s", buf, propname);
1998 val = kvmppc_read_int_dt(tmp);
1999 g_free(tmp);
2000
2001 return val;
2002}
2003
2004uint64_t kvmppc_get_clockfreq(void)
2005{
2006 return kvmppc_read_int_cpu_dt("clock-frequency");
2007}
2008
2009uint32_t kvmppc_get_vmx(void)
2010{
2011 return kvmppc_read_int_cpu_dt("ibm,vmx");
2012}
2013
2014uint32_t kvmppc_get_dfp(void)
2015{
2016 return kvmppc_read_int_cpu_dt("ibm,dfp");
2017}
2018
2019static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
2020 {
2021 PowerPCCPU *cpu = ppc_env_get_cpu(env);
2022 CPUState *cs = CPU(cpu);
2023
2024 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
2025 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
2026 return 0;
2027 }
2028
2029 return 1;
2030}
2031
2032int kvmppc_get_hasidle(CPUPPCState *env)
2033{
2034 struct kvm_ppc_pvinfo pvinfo;
2035
2036 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
2037 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
2038 return 1;
2039 }
2040
2041 return 0;
2042}
2043
2044int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2045{
2046 uint32_t *hc = (uint32_t*)buf;
2047 struct kvm_ppc_pvinfo pvinfo;
2048
2049 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2050 memcpy(buf, pvinfo.hcall, buf_len);
2051 return 0;
2052 }
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063 hc[0] = cpu_to_be32(0x08000048);
2064 hc[1] = cpu_to_be32(0x3860ffff);
2065 hc[2] = cpu_to_be32(0x48000008);
2066 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2067
2068 return 1;
2069}
2070
2071static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2072{
2073 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2074}
2075
2076void kvmppc_enable_logical_ci_hcalls(void)
2077{
2078
2079
2080
2081
2082
2083
2084 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2085 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2086}
2087
2088void kvmppc_enable_set_mode_hcall(void)
2089{
2090 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2091}
2092
2093void kvmppc_enable_clear_ref_mod_hcalls(void)
2094{
2095 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2096 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2097}
2098
2099void kvmppc_set_papr(PowerPCCPU *cpu)
2100{
2101 CPUState *cs = CPU(cpu);
2102 int ret;
2103
2104 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2105 if (ret) {
2106 error_report("This vCPU type or KVM version does not support PAPR");
2107 exit(1);
2108 }
2109
2110
2111
2112 cap_papr = 1;
2113}
2114
2115int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2116{
2117 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2118}
2119
2120void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2121{
2122 CPUState *cs = CPU(cpu);
2123 int ret;
2124
2125 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2126 if (ret && mpic_proxy) {
2127 error_report("This KVM version does not support EPR");
2128 exit(1);
2129 }
2130}
2131
2132int kvmppc_smt_threads(void)
2133{
2134 return cap_ppc_smt ? cap_ppc_smt : 1;
2135}
2136
2137#ifdef TARGET_PPC64
2138off_t kvmppc_alloc_rma(void **rma)
2139{
2140 off_t size;
2141 int fd;
2142 struct kvm_allocate_rma ret;
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152 if (cap_ppc_rma < 2) {
2153 return 0;
2154 }
2155
2156 fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
2157 if (fd < 0) {
2158 fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
2159 strerror(errno));
2160 return -1;
2161 }
2162
2163 size = MIN(ret.rma_size, 256ul << 20);
2164
2165 *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2166 if (*rma == MAP_FAILED) {
2167 fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
2168 return -1;
2169 };
2170
2171 return size;
2172}
2173
2174uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2175{
2176 struct kvm_ppc_smmu_info info;
2177 long rampagesize, best_page_shift;
2178 int i;
2179
2180 if (cap_ppc_rma >= 2) {
2181 return current_size;
2182 }
2183
2184
2185
2186 kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
2187 rampagesize = qemu_getrampagesize();
2188 best_page_shift = 0;
2189
2190 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2191 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2192
2193 if (!sps->page_shift) {
2194 continue;
2195 }
2196
2197 if ((sps->page_shift > best_page_shift)
2198 && ((1UL << sps->page_shift) <= rampagesize)) {
2199 best_page_shift = sps->page_shift;
2200 }
2201 }
2202
2203 return MIN(current_size,
2204 1ULL << (best_page_shift + hash_shift - 7));
2205}
2206#endif
2207
2208bool kvmppc_spapr_use_multitce(void)
2209{
2210 return cap_spapr_multitce;
2211}
2212
2213int kvmppc_spapr_enable_inkernel_multitce(void)
2214{
2215 int ret;
2216
2217 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2218 H_PUT_TCE_INDIRECT, 1);
2219 if (!ret) {
2220 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2221 H_STUFF_TCE, 1);
2222 }
2223
2224 return ret;
2225}
2226
2227void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2228 uint64_t bus_offset, uint32_t nb_table,
2229 int *pfd, bool need_vfio)
2230{
2231 long len;
2232 int fd;
2233 void *table;
2234
2235
2236
2237
2238 *pfd = -1;
2239 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2240 return NULL;
2241 }
2242
2243 if (cap_spapr_tce_64) {
2244 struct kvm_create_spapr_tce_64 args = {
2245 .liobn = liobn,
2246 .page_shift = page_shift,
2247 .offset = bus_offset >> page_shift,
2248 .size = nb_table,
2249 .flags = 0
2250 };
2251 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2252 if (fd < 0) {
2253 fprintf(stderr,
2254 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2255 liobn);
2256 return NULL;
2257 }
2258 } else if (cap_spapr_tce) {
2259 uint64_t window_size = (uint64_t) nb_table << page_shift;
2260 struct kvm_create_spapr_tce args = {
2261 .liobn = liobn,
2262 .window_size = window_size,
2263 };
2264 if ((window_size != args.window_size) || bus_offset) {
2265 return NULL;
2266 }
2267 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2268 if (fd < 0) {
2269 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2270 liobn);
2271 return NULL;
2272 }
2273 } else {
2274 return NULL;
2275 }
2276
2277 len = nb_table * sizeof(uint64_t);
2278
2279
2280 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2281 if (table == MAP_FAILED) {
2282 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2283 liobn);
2284 close(fd);
2285 return NULL;
2286 }
2287
2288 *pfd = fd;
2289 return table;
2290}
2291
2292int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2293{
2294 long len;
2295
2296 if (fd < 0) {
2297 return -1;
2298 }
2299
2300 len = nb_table * sizeof(uint64_t);
2301 if ((munmap(table, len) < 0) ||
2302 (close(fd) < 0)) {
2303 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2304 strerror(errno));
2305
2306 }
2307
2308 return 0;
2309}
2310
2311int kvmppc_reset_htab(int shift_hint)
2312{
2313 uint32_t shift = shift_hint;
2314
2315 if (!kvm_enabled()) {
2316
2317 return 0;
2318 }
2319 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2320 int ret;
2321 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2322 if (ret == -ENOTTY) {
2323
2324
2325
2326
2327 return 0;
2328 } else if (ret < 0) {
2329 return ret;
2330 }
2331 return shift;
2332 }
2333
2334
2335
2336
2337 if (kvmppc_is_pr(kvm_state)) {
2338
2339 return 0;
2340 } else {
2341
2342 return 24;
2343 }
2344}
2345
2346static inline uint32_t mfpvr(void)
2347{
2348 uint32_t pvr;
2349
2350 asm ("mfpvr %0"
2351 : "=r"(pvr));
2352 return pvr;
2353}
2354
2355static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2356{
2357 if (on) {
2358 *word |= flags;
2359 } else {
2360 *word &= ~flags;
2361 }
2362}
2363
2364static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2365{
2366 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2367 uint32_t vmx = kvmppc_get_vmx();
2368 uint32_t dfp = kvmppc_get_dfp();
2369 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2370 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2371
2372
2373 pcc->pvr = mfpvr();
2374
2375 if (vmx != -1) {
2376
2377 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
2378 alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
2379 }
2380 if (dfp != -1) {
2381
2382 alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
2383 }
2384
2385 if (dcache_size != -1) {
2386 pcc->l1_dcache_size = dcache_size;
2387 }
2388
2389 if (icache_size != -1) {
2390 pcc->l1_icache_size = icache_size;
2391 }
2392
2393#if defined(TARGET_PPC64)
2394 pcc->radix_page_info = kvm_get_radix_page_info();
2395
2396 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2397
2398
2399
2400
2401
2402
2403 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2404 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2405 }
2406#endif
2407}
2408
2409bool kvmppc_has_cap_epr(void)
2410{
2411 return cap_epr;
2412}
2413
2414bool kvmppc_has_cap_htab_fd(void)
2415{
2416 return cap_htab_fd;
2417}
2418
2419bool kvmppc_has_cap_fixup_hcalls(void)
2420{
2421 return cap_fixup_hcalls;
2422}
2423
2424bool kvmppc_has_cap_htm(void)
2425{
2426 return cap_htm;
2427}
2428
2429bool kvmppc_has_cap_mmu_radix(void)
2430{
2431 return cap_mmu_radix;
2432}
2433
2434bool kvmppc_has_cap_mmu_hash_v3(void)
2435{
2436 return cap_mmu_hash_v3;
2437}
2438
2439PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2440{
2441 uint32_t host_pvr = mfpvr();
2442 PowerPCCPUClass *pvr_pcc;
2443
2444 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2445 if (pvr_pcc == NULL) {
2446 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2447 }
2448
2449 return pvr_pcc;
2450}
2451
2452static int kvm_ppc_register_host_cpu_type(void)
2453{
2454 TypeInfo type_info = {
2455 .name = TYPE_HOST_POWERPC_CPU,
2456 .class_init = kvmppc_host_cpu_class_init,
2457 };
2458 PowerPCCPUClass *pvr_pcc;
2459 ObjectClass *oc;
2460 DeviceClass *dc;
2461 int i;
2462
2463 pvr_pcc = kvm_ppc_get_host_cpu_class();
2464 if (pvr_pcc == NULL) {
2465 return -1;
2466 }
2467 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2468 type_register(&type_info);
2469
2470 oc = object_class_by_name(type_info.name);
2471 g_assert(oc);
2472
2473#if defined(TARGET_PPC64)
2474 type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, "host");
2475 type_info.parent = TYPE_SPAPR_CPU_CORE,
2476 type_info.instance_size = sizeof(sPAPRCPUCore);
2477 type_info.instance_init = NULL;
2478 type_info.class_init = spapr_cpu_core_class_init;
2479 type_info.class_data = (void *) "host";
2480 type_register(&type_info);
2481 g_free((void *)type_info.name);
2482#endif
2483
2484
2485
2486
2487
2488
2489 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2490 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2491 if (strcmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2492 char *suffix;
2493
2494 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2495 suffix = strstr(ppc_cpu_aliases[i].model, "-"TYPE_POWERPC_CPU);
2496 if (suffix) {
2497 *suffix = 0;
2498 }
2499 ppc_cpu_aliases[i].oc = oc;
2500 break;
2501 }
2502 }
2503
2504 return 0;
2505}
2506
2507int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2508{
2509 struct kvm_rtas_token_args args = {
2510 .token = token,
2511 };
2512
2513 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2514 return -ENOENT;
2515 }
2516
2517 strncpy(args.name, function, sizeof(args.name));
2518
2519 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2520}
2521
2522int kvmppc_get_htab_fd(bool write)
2523{
2524 struct kvm_get_htab_fd s = {
2525 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2526 .start_index = 0,
2527 };
2528
2529 if (!cap_htab_fd) {
2530 fprintf(stderr, "KVM version doesn't support saving the hash table\n");
2531 return -1;
2532 }
2533
2534 return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2535}
2536
2537int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2538{
2539 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2540 uint8_t buf[bufsize];
2541 ssize_t rc;
2542
2543 do {
2544 rc = read(fd, buf, bufsize);
2545 if (rc < 0) {
2546 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2547 strerror(errno));
2548 return rc;
2549 } else if (rc) {
2550 uint8_t *buffer = buf;
2551 ssize_t n = rc;
2552 while (n) {
2553 struct kvm_get_htab_header *head =
2554 (struct kvm_get_htab_header *) buffer;
2555 size_t chunksize = sizeof(*head) +
2556 HASH_PTE_SIZE_64 * head->n_valid;
2557
2558 qemu_put_be32(f, head->index);
2559 qemu_put_be16(f, head->n_valid);
2560 qemu_put_be16(f, head->n_invalid);
2561 qemu_put_buffer(f, (void *)(head + 1),
2562 HASH_PTE_SIZE_64 * head->n_valid);
2563
2564 buffer += chunksize;
2565 n -= chunksize;
2566 }
2567 }
2568 } while ((rc != 0)
2569 && ((max_ns < 0)
2570 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2571
2572 return (rc == 0) ? 1 : 0;
2573}
2574
2575int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2576 uint16_t n_valid, uint16_t n_invalid)
2577{
2578 struct kvm_get_htab_header *buf;
2579 size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
2580 ssize_t rc;
2581
2582 buf = alloca(chunksize);
2583 buf->index = index;
2584 buf->n_valid = n_valid;
2585 buf->n_invalid = n_invalid;
2586
2587 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
2588
2589 rc = write(fd, buf, chunksize);
2590 if (rc < 0) {
2591 fprintf(stderr, "Error writing KVM hash table: %s\n",
2592 strerror(errno));
2593 return rc;
2594 }
2595 if (rc != chunksize) {
2596
2597 fprintf(stderr, "Short write, restoring KVM hash table\n");
2598 return -1;
2599 }
2600 return 0;
2601}
2602
2603bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2604{
2605 return true;
2606}
2607
2608void kvm_arch_init_irq_routing(KVMState *s)
2609{
2610}
2611
2612void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2613{
2614 struct kvm_get_htab_fd ghf = {
2615 .flags = 0,
2616 .start_index = ptex,
2617 };
2618 int fd, rc;
2619 int i;
2620
2621 fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
2622 if (fd < 0) {
2623 hw_error("kvmppc_read_hptes: Unable to open HPT fd");
2624 }
2625
2626 i = 0;
2627 while (i < n) {
2628 struct kvm_get_htab_header *hdr;
2629 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2630 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2631
2632 rc = read(fd, buf, sizeof(buf));
2633 if (rc < 0) {
2634 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2635 }
2636
2637 hdr = (struct kvm_get_htab_header *)buf;
2638 while ((i < n) && ((char *)hdr < (buf + rc))) {
2639 int invalid = hdr->n_invalid;
2640
2641 if (hdr->index != (ptex + i)) {
2642 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2643 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2644 }
2645
2646 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * hdr->n_valid);
2647 i += hdr->n_valid;
2648
2649 if ((n - i) < invalid) {
2650 invalid = n - i;
2651 }
2652 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2653 i += hdr->n_invalid;
2654
2655 hdr = (struct kvm_get_htab_header *)
2656 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2657 }
2658 }
2659
2660 close(fd);
2661}
2662
2663void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2664{
2665 int fd, rc;
2666 struct kvm_get_htab_fd ghf;
2667 struct {
2668 struct kvm_get_htab_header hdr;
2669 uint64_t pte0;
2670 uint64_t pte1;
2671 } buf;
2672
2673 ghf.flags = 0;
2674 ghf.start_index = 0;
2675 fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
2676 if (fd < 0) {
2677 hw_error("kvmppc_write_hpte: Unable to open HPT fd");
2678 }
2679
2680 buf.hdr.n_valid = 1;
2681 buf.hdr.n_invalid = 0;
2682 buf.hdr.index = ptex;
2683 buf.pte0 = cpu_to_be64(pte0);
2684 buf.pte1 = cpu_to_be64(pte1);
2685
2686 rc = write(fd, &buf, sizeof(buf));
2687 if (rc != sizeof(buf)) {
2688 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2689 }
2690 close(fd);
2691}
2692
2693int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2694 uint64_t address, uint32_t data, PCIDevice *dev)
2695{
2696 return 0;
2697}
2698
2699int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2700 int vector, PCIDevice *dev)
2701{
2702 return 0;
2703}
2704
2705int kvm_arch_release_virq_post(int virq)
2706{
2707 return 0;
2708}
2709
2710int kvm_arch_msi_data_to_gsi(uint32_t data)
2711{
2712 return data & 0xffff;
2713}
2714
2715int kvmppc_enable_hwrng(void)
2716{
2717 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2718 return -1;
2719 }
2720
2721 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2722}
2723
2724void kvmppc_check_papr_resize_hpt(Error **errp)
2725{
2726 if (!kvm_enabled()) {
2727 return;
2728 }
2729
2730 if (cap_resize_hpt) {
2731 return;
2732 }
2733
2734
2735 if (kvmppc_is_pr(kvm_state)) {
2736 return;
2737 }
2738
2739 error_setg(errp,
2740 "Hash page table resizing not available with this KVM version");
2741}
2742
2743int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2744{
2745 CPUState *cs = CPU(cpu);
2746 struct kvm_ppc_resize_hpt rhpt = {
2747 .flags = flags,
2748 .shift = shift,
2749 };
2750
2751 if (!cap_resize_hpt) {
2752 return -ENOSYS;
2753 }
2754
2755 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2756}
2757
2758int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2759{
2760 CPUState *cs = CPU(cpu);
2761 struct kvm_ppc_resize_hpt rhpt = {
2762 .flags = flags,
2763 .shift = shift,
2764 };
2765
2766 if (!cap_resize_hpt) {
2767 return -ENOSYS;
2768 }
2769
2770 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2771}
2772
2773static void kvmppc_pivot_hpt_cpu(CPUState *cs, run_on_cpu_data arg)
2774{
2775 target_ulong sdr1 = arg.target_ptr;
2776 PowerPCCPU *cpu = POWERPC_CPU(cs);
2777 CPUPPCState *env = &cpu->env;
2778
2779
2780 cpu_synchronize_state(cs);
2781 env->spr[SPR_SDR1] = sdr1;
2782 if (kvmppc_put_books_sregs(cpu) < 0) {
2783 error_report("Unable to update SDR1 in KVM");
2784 exit(1);
2785 }
2786}
2787
2788void kvmppc_update_sdr1(target_ulong sdr1)
2789{
2790 CPUState *cs;
2791
2792 CPU_FOREACH(cs) {
2793 run_on_cpu(cs, kvmppc_pivot_hpt_cpu, RUN_ON_CPU_TARGET_PTR(sdr1));
2794 }
2795}
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2813{
2814 CPUState *cs = CPU(cpu);
2815
2816 if (!kvm_enabled()) {
2817 return false;
2818 }
2819
2820 if (cap_ppc_pvr_compat) {
2821 return false;
2822 }
2823
2824 return !kvmppc_is_pr(cs->kvm_state);
2825}
2826