qemu/target/ppc/machine.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qemu-common.h"
   3#include "cpu.h"
   4#include "exec/exec-all.h"
   5#include "hw/hw.h"
   6#include "hw/boards.h"
   7#include "sysemu/kvm.h"
   8#include "helper_regs.h"
   9#include "mmu-hash64.h"
  10#include "migration/cpu.h"
  11#include "qapi/error.h"
  12#include "kvm_ppc.h"
  13
  14static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
  15{
  16    PowerPCCPU *cpu = opaque;
  17    CPUPPCState *env = &cpu->env;
  18    unsigned int i, j;
  19    target_ulong sdr1;
  20    uint32_t fpscr;
  21    target_ulong xer;
  22
  23    for (i = 0; i < 32; i++)
  24        qemu_get_betls(f, &env->gpr[i]);
  25#if !defined(TARGET_PPC64)
  26    for (i = 0; i < 32; i++)
  27        qemu_get_betls(f, &env->gprh[i]);
  28#endif
  29    qemu_get_betls(f, &env->lr);
  30    qemu_get_betls(f, &env->ctr);
  31    for (i = 0; i < 8; i++)
  32        qemu_get_be32s(f, &env->crf[i]);
  33    qemu_get_betls(f, &xer);
  34    cpu_write_xer(env, xer);
  35    qemu_get_betls(f, &env->reserve_addr);
  36    qemu_get_betls(f, &env->msr);
  37    for (i = 0; i < 4; i++)
  38        qemu_get_betls(f, &env->tgpr[i]);
  39    for (i = 0; i < 32; i++) {
  40        union {
  41            float64 d;
  42            uint64_t l;
  43        } u;
  44        u.l = qemu_get_be64(f);
  45        env->fpr[i] = u.d;
  46    }
  47    qemu_get_be32s(f, &fpscr);
  48    env->fpscr = fpscr;
  49    qemu_get_sbe32s(f, &env->access_type);
  50#if defined(TARGET_PPC64)
  51    qemu_get_betls(f, &env->spr[SPR_ASR]);
  52    qemu_get_sbe32s(f, &env->slb_nr);
  53#endif
  54    qemu_get_betls(f, &sdr1);
  55    for (i = 0; i < 32; i++)
  56        qemu_get_betls(f, &env->sr[i]);
  57    for (i = 0; i < 2; i++)
  58        for (j = 0; j < 8; j++)
  59            qemu_get_betls(f, &env->DBAT[i][j]);
  60    for (i = 0; i < 2; i++)
  61        for (j = 0; j < 8; j++)
  62            qemu_get_betls(f, &env->IBAT[i][j]);
  63    qemu_get_sbe32s(f, &env->nb_tlb);
  64    qemu_get_sbe32s(f, &env->tlb_per_way);
  65    qemu_get_sbe32s(f, &env->nb_ways);
  66    qemu_get_sbe32s(f, &env->last_way);
  67    qemu_get_sbe32s(f, &env->id_tlbs);
  68    qemu_get_sbe32s(f, &env->nb_pids);
  69    if (env->tlb.tlb6) {
  70        // XXX assumes 6xx
  71        for (i = 0; i < env->nb_tlb; i++) {
  72            qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
  73            qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
  74            qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
  75        }
  76    }
  77    for (i = 0; i < 4; i++)
  78        qemu_get_betls(f, &env->pb[i]);
  79    for (i = 0; i < 1024; i++)
  80        qemu_get_betls(f, &env->spr[i]);
  81    if (!cpu->vhyp) {
  82        ppc_store_sdr1(env, sdr1);
  83    }
  84    qemu_get_be32s(f, &env->vscr);
  85    qemu_get_be64s(f, &env->spe_acc);
  86    qemu_get_be32s(f, &env->spe_fscr);
  87    qemu_get_betls(f, &env->msr_mask);
  88    qemu_get_be32s(f, &env->flags);
  89    qemu_get_sbe32s(f, &env->error_code);
  90    qemu_get_be32s(f, &env->pending_interrupts);
  91    qemu_get_be32s(f, &env->irq_input_state);
  92    for (i = 0; i < POWERPC_EXCP_NB; i++)
  93        qemu_get_betls(f, &env->excp_vectors[i]);
  94    qemu_get_betls(f, &env->excp_prefix);
  95    qemu_get_betls(f, &env->ivor_mask);
  96    qemu_get_betls(f, &env->ivpr_mask);
  97    qemu_get_betls(f, &env->hreset_vector);
  98    qemu_get_betls(f, &env->nip);
  99    qemu_get_betls(f, &env->hflags);
 100    qemu_get_betls(f, &env->hflags_nmsr);
 101    qemu_get_sbe32(f); /* Discard unused mmu_idx */
 102    qemu_get_sbe32(f); /* Discard unused power_mode */
 103
 104    /* Recompute mmu indices */
 105    hreg_compute_mem_idx(env);
 106
 107    return 0;
 108}
 109
 110static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
 111{
 112    ppc_avr_t *v = pv;
 113
 114    v->u64[0] = qemu_get_be64(f);
 115    v->u64[1] = qemu_get_be64(f);
 116
 117    return 0;
 118}
 119
 120static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
 121                   QJSON *vmdesc)
 122{
 123    ppc_avr_t *v = pv;
 124
 125    qemu_put_be64(f, v->u64[0]);
 126    qemu_put_be64(f, v->u64[1]);
 127    return 0;
 128}
 129
 130static const VMStateInfo vmstate_info_avr = {
 131    .name = "avr",
 132    .get  = get_avr,
 133    .put  = put_avr,
 134};
 135
 136#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
 137    VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
 138
 139#define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
 140    VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
 141
 142static bool cpu_pre_2_8_migration(void *opaque, int version_id)
 143{
 144    PowerPCCPU *cpu = opaque;
 145
 146    return cpu->pre_2_8_migration;
 147}
 148
 149static void cpu_pre_save(void *opaque)
 150{
 151    PowerPCCPU *cpu = opaque;
 152    CPUPPCState *env = &cpu->env;
 153    int i;
 154    uint64_t insns_compat_mask =
 155        PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
 156        | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
 157        | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
 158        | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
 159        | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
 160        | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
 161        | PPC_64B | PPC_64BX | PPC_ALTIVEC
 162        | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
 163    uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
 164        | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
 165        | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
 166        | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
 167        | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
 168        | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
 169
 170    env->spr[SPR_LR] = env->lr;
 171    env->spr[SPR_CTR] = env->ctr;
 172    env->spr[SPR_XER] = cpu_read_xer(env);
 173#if defined(TARGET_PPC64)
 174    env->spr[SPR_CFAR] = env->cfar;
 175#endif
 176    env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
 177
 178    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
 179        env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
 180        env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
 181        env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
 182        env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
 183    }
 184    for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
 185        env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
 186        env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
 187        env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
 188        env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
 189    }
 190
 191    /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
 192    if (cpu->pre_2_8_migration) {
 193        cpu->mig_msr_mask = env->msr_mask;
 194        cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
 195        cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
 196        cpu->mig_nb_BATs = env->nb_BATs;
 197    }
 198}
 199
 200/*
 201 * Determine if a given PVR is a "close enough" match to the CPU
 202 * object.  For TCG and KVM PR it would probably be sufficient to
 203 * require an exact PVR match.  However for KVM HV the user is
 204 * restricted to a PVR exactly matching the host CPU.  The correct way
 205 * to handle this is to put the guest into an architected
 206 * compatibility mode.  However, to allow a more forgiving transition
 207 * and migration from before this was widely done, we allow migration
 208 * between sufficiently similar PVRs, as determined by the CPU class's
 209 * pvr_match() hook.
 210 */
 211static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
 212{
 213    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 214
 215    if (pvr == pcc->pvr) {
 216        return true;
 217    }
 218    return pcc->pvr_match(pcc, pvr);
 219}
 220
 221static int cpu_post_load(void *opaque, int version_id)
 222{
 223    PowerPCCPU *cpu = opaque;
 224    CPUPPCState *env = &cpu->env;
 225    int i;
 226    target_ulong msr;
 227
 228    /*
 229     * If we're operating in compat mode, we should be ok as long as
 230     * the destination supports the same compatiblity mode.
 231     *
 232     * Otherwise, however, we require that the destination has exactly
 233     * the same CPU model as the source.
 234     */
 235
 236#if defined(TARGET_PPC64)
 237    if (cpu->compat_pvr) {
 238        Error *local_err = NULL;
 239
 240        ppc_set_compat(cpu, cpu->compat_pvr, &local_err);
 241        if (local_err) {
 242            error_report_err(local_err);
 243            return -1;
 244        }
 245    } else
 246#endif
 247    {
 248        if (!pvr_match(cpu, env->spr[SPR_PVR])) {
 249            return -1;
 250        }
 251    }
 252
 253    /*
 254     * If we're running with KVM HV, there is a chance that the guest
 255     * is running with KVM HV and its kernel does not have the
 256     * capability of dealing with a different PVR other than this
 257     * exact host PVR in KVM_SET_SREGS. If that happens, the
 258     * guest freezes after migration.
 259     *
 260     * The function kvmppc_pvr_workaround_required does this verification
 261     * by first checking if the kernel has the cap, returning true immediately
 262     * if that is the case. Otherwise, it checks if we're running in KVM PR.
 263     * If the guest kernel does not have the cap and we're not running KVM-PR
 264     * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
 265     * receive the PVR it expects as a workaround.
 266     *
 267     */
 268#if defined(CONFIG_KVM)
 269    if (kvmppc_pvr_workaround_required(cpu)) {
 270        env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
 271    }
 272#endif
 273
 274    env->lr = env->spr[SPR_LR];
 275    env->ctr = env->spr[SPR_CTR];
 276    cpu_write_xer(env, env->spr[SPR_XER]);
 277#if defined(TARGET_PPC64)
 278    env->cfar = env->spr[SPR_CFAR];
 279#endif
 280    env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
 281
 282    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
 283        env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
 284        env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
 285        env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
 286        env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
 287    }
 288    for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
 289        env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
 290        env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
 291        env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
 292        env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
 293    }
 294
 295    if (!cpu->vhyp) {
 296        ppc_store_sdr1(env, env->spr[SPR_SDR1]);
 297    }
 298
 299    /* Invalidate all msr bits except MSR_TGPR/MSR_HVB before restoring */
 300    msr = env->msr;
 301    env->msr ^= ~((1ULL << MSR_TGPR) | MSR_HVB);
 302    ppc_store_msr(env, msr);
 303
 304    hreg_compute_mem_idx(env);
 305
 306    return 0;
 307}
 308
 309static bool fpu_needed(void *opaque)
 310{
 311    PowerPCCPU *cpu = opaque;
 312
 313    return (cpu->env.insns_flags & PPC_FLOAT);
 314}
 315
 316static const VMStateDescription vmstate_fpu = {
 317    .name = "cpu/fpu",
 318    .version_id = 1,
 319    .minimum_version_id = 1,
 320    .needed = fpu_needed,
 321    .fields = (VMStateField[]) {
 322        VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
 323        VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
 324        VMSTATE_END_OF_LIST()
 325    },
 326};
 327
 328static bool altivec_needed(void *opaque)
 329{
 330    PowerPCCPU *cpu = opaque;
 331
 332    return (cpu->env.insns_flags & PPC_ALTIVEC);
 333}
 334
 335static const VMStateDescription vmstate_altivec = {
 336    .name = "cpu/altivec",
 337    .version_id = 1,
 338    .minimum_version_id = 1,
 339    .needed = altivec_needed,
 340    .fields = (VMStateField[]) {
 341        VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
 342        VMSTATE_UINT32(env.vscr, PowerPCCPU),
 343        VMSTATE_END_OF_LIST()
 344    },
 345};
 346
 347static bool vsx_needed(void *opaque)
 348{
 349    PowerPCCPU *cpu = opaque;
 350
 351    return (cpu->env.insns_flags2 & PPC2_VSX);
 352}
 353
 354static const VMStateDescription vmstate_vsx = {
 355    .name = "cpu/vsx",
 356    .version_id = 1,
 357    .minimum_version_id = 1,
 358    .needed = vsx_needed,
 359    .fields = (VMStateField[]) {
 360        VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
 361        VMSTATE_END_OF_LIST()
 362    },
 363};
 364
 365#ifdef TARGET_PPC64
 366/* Transactional memory state */
 367static bool tm_needed(void *opaque)
 368{
 369    PowerPCCPU *cpu = opaque;
 370    CPUPPCState *env = &cpu->env;
 371    return msr_ts;
 372}
 373
 374static const VMStateDescription vmstate_tm = {
 375    .name = "cpu/tm",
 376    .version_id = 1,
 377    .minimum_version_id = 1,
 378    .minimum_version_id_old = 1,
 379    .needed = tm_needed,
 380    .fields      = (VMStateField []) {
 381        VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
 382        VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
 383        VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
 384        VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
 385        VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
 386        VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
 387        VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
 388        VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
 389        VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
 390        VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
 391        VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
 392        VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
 393        VMSTATE_END_OF_LIST()
 394    },
 395};
 396#endif
 397
 398static bool sr_needed(void *opaque)
 399{
 400#ifdef TARGET_PPC64
 401    PowerPCCPU *cpu = opaque;
 402
 403    return !(cpu->env.mmu_model & POWERPC_MMU_64);
 404#else
 405    return true;
 406#endif
 407}
 408
 409static const VMStateDescription vmstate_sr = {
 410    .name = "cpu/sr",
 411    .version_id = 1,
 412    .minimum_version_id = 1,
 413    .needed = sr_needed,
 414    .fields = (VMStateField[]) {
 415        VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
 416        VMSTATE_END_OF_LIST()
 417    },
 418};
 419
 420#ifdef TARGET_PPC64
 421static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
 422{
 423    ppc_slb_t *v = pv;
 424
 425    v->esid = qemu_get_be64(f);
 426    v->vsid = qemu_get_be64(f);
 427
 428    return 0;
 429}
 430
 431static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
 432                    QJSON *vmdesc)
 433{
 434    ppc_slb_t *v = pv;
 435
 436    qemu_put_be64(f, v->esid);
 437    qemu_put_be64(f, v->vsid);
 438    return 0;
 439}
 440
 441static const VMStateInfo vmstate_info_slbe = {
 442    .name = "slbe",
 443    .get  = get_slbe,
 444    .put  = put_slbe,
 445};
 446
 447#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
 448    VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
 449
 450#define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
 451    VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
 452
 453static bool slb_needed(void *opaque)
 454{
 455    PowerPCCPU *cpu = opaque;
 456
 457    /* We don't support any of the old segment table based 64-bit CPUs */
 458    return (cpu->env.mmu_model & POWERPC_MMU_64);
 459}
 460
 461static int slb_post_load(void *opaque, int version_id)
 462{
 463    PowerPCCPU *cpu = opaque;
 464    CPUPPCState *env = &cpu->env;
 465    int i;
 466
 467    /* We've pulled in the raw esid and vsid values from the migration
 468     * stream, but we need to recompute the page size pointers */
 469    for (i = 0; i < env->slb_nr; i++) {
 470        if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
 471            /* Migration source had bad values in its SLB */
 472            return -1;
 473        }
 474    }
 475
 476    return 0;
 477}
 478
 479static const VMStateDescription vmstate_slb = {
 480    .name = "cpu/slb",
 481    .version_id = 1,
 482    .minimum_version_id = 1,
 483    .needed = slb_needed,
 484    .post_load = slb_post_load,
 485    .fields = (VMStateField[]) {
 486        VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
 487        VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
 488        VMSTATE_END_OF_LIST()
 489    }
 490};
 491#endif /* TARGET_PPC64 */
 492
 493static const VMStateDescription vmstate_tlb6xx_entry = {
 494    .name = "cpu/tlb6xx_entry",
 495    .version_id = 1,
 496    .minimum_version_id = 1,
 497    .fields = (VMStateField[]) {
 498        VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
 499        VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
 500        VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
 501        VMSTATE_END_OF_LIST()
 502    },
 503};
 504
 505static bool tlb6xx_needed(void *opaque)
 506{
 507    PowerPCCPU *cpu = opaque;
 508    CPUPPCState *env = &cpu->env;
 509
 510    return env->nb_tlb && (env->tlb_type == TLB_6XX);
 511}
 512
 513static const VMStateDescription vmstate_tlb6xx = {
 514    .name = "cpu/tlb6xx",
 515    .version_id = 1,
 516    .minimum_version_id = 1,
 517    .needed = tlb6xx_needed,
 518    .fields = (VMStateField[]) {
 519        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 520        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
 521                                            env.nb_tlb,
 522                                            vmstate_tlb6xx_entry,
 523                                            ppc6xx_tlb_t),
 524        VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
 525        VMSTATE_END_OF_LIST()
 526    }
 527};
 528
 529static const VMStateDescription vmstate_tlbemb_entry = {
 530    .name = "cpu/tlbemb_entry",
 531    .version_id = 1,
 532    .minimum_version_id = 1,
 533    .fields = (VMStateField[]) {
 534        VMSTATE_UINT64(RPN, ppcemb_tlb_t),
 535        VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
 536        VMSTATE_UINTTL(PID, ppcemb_tlb_t),
 537        VMSTATE_UINTTL(size, ppcemb_tlb_t),
 538        VMSTATE_UINT32(prot, ppcemb_tlb_t),
 539        VMSTATE_UINT32(attr, ppcemb_tlb_t),
 540        VMSTATE_END_OF_LIST()
 541    },
 542};
 543
 544static bool tlbemb_needed(void *opaque)
 545{
 546    PowerPCCPU *cpu = opaque;
 547    CPUPPCState *env = &cpu->env;
 548
 549    return env->nb_tlb && (env->tlb_type == TLB_EMB);
 550}
 551
 552static bool pbr403_needed(void *opaque)
 553{
 554    PowerPCCPU *cpu = opaque;
 555    uint32_t pvr = cpu->env.spr[SPR_PVR];
 556
 557    return (pvr & 0xffff0000) == 0x00200000;
 558}
 559
 560static const VMStateDescription vmstate_pbr403 = {
 561    .name = "cpu/pbr403",
 562    .version_id = 1,
 563    .minimum_version_id = 1,
 564    .needed = pbr403_needed,
 565    .fields = (VMStateField[]) {
 566        VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
 567        VMSTATE_END_OF_LIST()
 568    },
 569};
 570
 571static const VMStateDescription vmstate_tlbemb = {
 572    .name = "cpu/tlb6xx",
 573    .version_id = 1,
 574    .minimum_version_id = 1,
 575    .needed = tlbemb_needed,
 576    .fields = (VMStateField[]) {
 577        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 578        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
 579                                            env.nb_tlb,
 580                                            vmstate_tlbemb_entry,
 581                                            ppcemb_tlb_t),
 582        /* 403 protection registers */
 583        VMSTATE_END_OF_LIST()
 584    },
 585    .subsections = (const VMStateDescription*[]) {
 586        &vmstate_pbr403,
 587        NULL
 588    }
 589};
 590
 591static const VMStateDescription vmstate_tlbmas_entry = {
 592    .name = "cpu/tlbmas_entry",
 593    .version_id = 1,
 594    .minimum_version_id = 1,
 595    .fields = (VMStateField[]) {
 596        VMSTATE_UINT32(mas8, ppcmas_tlb_t),
 597        VMSTATE_UINT32(mas1, ppcmas_tlb_t),
 598        VMSTATE_UINT64(mas2, ppcmas_tlb_t),
 599        VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
 600        VMSTATE_END_OF_LIST()
 601    },
 602};
 603
 604static bool tlbmas_needed(void *opaque)
 605{
 606    PowerPCCPU *cpu = opaque;
 607    CPUPPCState *env = &cpu->env;
 608
 609    return env->nb_tlb && (env->tlb_type == TLB_MAS);
 610}
 611
 612static const VMStateDescription vmstate_tlbmas = {
 613    .name = "cpu/tlbmas",
 614    .version_id = 1,
 615    .minimum_version_id = 1,
 616    .needed = tlbmas_needed,
 617    .fields = (VMStateField[]) {
 618        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
 619        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
 620                                            env.nb_tlb,
 621                                            vmstate_tlbmas_entry,
 622                                            ppcmas_tlb_t),
 623        VMSTATE_END_OF_LIST()
 624    }
 625};
 626
 627static bool compat_needed(void *opaque)
 628{
 629    PowerPCCPU *cpu = opaque;
 630
 631    assert(!(cpu->compat_pvr && !cpu->vhyp));
 632    return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
 633}
 634
 635static const VMStateDescription vmstate_compat = {
 636    .name = "cpu/compat",
 637    .version_id = 1,
 638    .minimum_version_id = 1,
 639    .needed = compat_needed,
 640    .fields = (VMStateField[]) {
 641        VMSTATE_UINT32(compat_pvr, PowerPCCPU),
 642        VMSTATE_END_OF_LIST()
 643    }
 644};
 645
 646const VMStateDescription vmstate_ppc_cpu = {
 647    .name = "cpu",
 648    .version_id = 5,
 649    .minimum_version_id = 5,
 650    .minimum_version_id_old = 4,
 651    .load_state_old = cpu_load_old,
 652    .pre_save = cpu_pre_save,
 653    .post_load = cpu_post_load,
 654    .fields = (VMStateField[]) {
 655        VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
 656
 657        /* User mode architected state */
 658        VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
 659#if !defined(TARGET_PPC64)
 660        VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
 661#endif
 662        VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
 663        VMSTATE_UINTTL(env.nip, PowerPCCPU),
 664
 665        /* SPRs */
 666        VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
 667        VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
 668
 669        /* Reservation */
 670        VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
 671
 672        /* Supervisor mode architected state */
 673        VMSTATE_UINTTL(env.msr, PowerPCCPU),
 674
 675        /* Internal state */
 676        VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
 677        /* FIXME: access_type? */
 678
 679        /* Sanity checking */
 680        VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
 681        VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
 682        VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
 683                            cpu_pre_2_8_migration),
 684        VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
 685        VMSTATE_END_OF_LIST()
 686    },
 687    .subsections = (const VMStateDescription*[]) {
 688        &vmstate_fpu,
 689        &vmstate_altivec,
 690        &vmstate_vsx,
 691        &vmstate_sr,
 692#ifdef TARGET_PPC64
 693        &vmstate_tm,
 694        &vmstate_slb,
 695#endif /* TARGET_PPC64 */
 696        &vmstate_tlb6xx,
 697        &vmstate_tlbemb,
 698        &vmstate_tlbmas,
 699        &vmstate_compat,
 700        NULL
 701    }
 702};
 703