qemu/target/ppc/mem_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC memory access emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/exec-all.h"
  22#include "qemu/host-utils.h"
  23#include "exec/helper-proto.h"
  24
  25#include "helper_regs.h"
  26#include "exec/cpu_ldst.h"
  27#include "internal.h"
  28
  29//#define DEBUG_OP
  30
  31static inline bool needs_byteswap(const CPUPPCState *env)
  32{
  33#if defined(TARGET_WORDS_BIGENDIAN)
  34  return msr_le;
  35#else
  36  return !msr_le;
  37#endif
  38}
  39
  40/*****************************************************************************/
  41/* Memory load and stores */
  42
  43static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
  44                                    target_long arg)
  45{
  46#if defined(TARGET_PPC64)
  47    if (!msr_is_64bit(env, env->msr)) {
  48        return (uint32_t)(addr + arg);
  49    } else
  50#endif
  51    {
  52        return addr + arg;
  53    }
  54}
  55
  56void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
  57{
  58    for (; reg < 32; reg++) {
  59        if (needs_byteswap(env)) {
  60            env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
  61        } else {
  62            env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
  63        }
  64        addr = addr_add(env, addr, 4);
  65    }
  66}
  67
  68void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
  69{
  70    for (; reg < 32; reg++) {
  71        if (needs_byteswap(env)) {
  72            cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
  73                                                   GETPC());
  74        } else {
  75            cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
  76        }
  77        addr = addr_add(env, addr, 4);
  78    }
  79}
  80
  81static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
  82                   uint32_t reg, uintptr_t raddr)
  83{
  84    int sh;
  85
  86    for (; nb > 3; nb -= 4) {
  87        env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
  88        reg = (reg + 1) % 32;
  89        addr = addr_add(env, addr, 4);
  90    }
  91    if (unlikely(nb > 0)) {
  92        env->gpr[reg] = 0;
  93        for (sh = 24; nb > 0; nb--, sh -= 8) {
  94            env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
  95            addr = addr_add(env, addr, 1);
  96        }
  97    }
  98}
  99
 100void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
 101{
 102    do_lsw(env, addr, nb, reg, GETPC());
 103}
 104
 105/* PPC32 specification says we must generate an exception if
 106 * rA is in the range of registers to be loaded.
 107 * In an other hand, IBM says this is valid, but rA won't be loaded.
 108 * For now, I'll follow the spec...
 109 */
 110void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
 111                 uint32_t ra, uint32_t rb)
 112{
 113    if (likely(xer_bc != 0)) {
 114        int num_used_regs = (xer_bc + 3) / 4;
 115        if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
 116                     lsw_reg_in_range(reg, num_used_regs, rb))) {
 117            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 118                                   POWERPC_EXCP_INVAL |
 119                                   POWERPC_EXCP_INVAL_LSWX, GETPC());
 120        } else {
 121            do_lsw(env, addr, xer_bc, reg, GETPC());
 122        }
 123    }
 124}
 125
 126void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
 127                 uint32_t reg)
 128{
 129    int sh;
 130
 131    for (; nb > 3; nb -= 4) {
 132        cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
 133        reg = (reg + 1) % 32;
 134        addr = addr_add(env, addr, 4);
 135    }
 136    if (unlikely(nb > 0)) {
 137        for (sh = 24; nb > 0; nb--, sh -= 8) {
 138            cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
 139            addr = addr_add(env, addr, 1);
 140        }
 141    }
 142}
 143
 144void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
 145{
 146    target_ulong mask, dcbz_size = env->dcache_line_size;
 147    uint32_t i;
 148    void *haddr;
 149
 150#if defined(TARGET_PPC64)
 151    /* Check for dcbz vs dcbzl on 970 */
 152    if (env->excp_model == POWERPC_EXCP_970 &&
 153        !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
 154        dcbz_size = 32;
 155    }
 156#endif
 157
 158    /* Align address */
 159    mask = ~(dcbz_size - 1);
 160    addr &= mask;
 161
 162    /* Check reservation */
 163    if ((env->reserve_addr & mask) == (addr & mask))  {
 164        env->reserve_addr = (target_ulong)-1ULL;
 165    }
 166
 167    /* Try fast path translate */
 168    haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, env->dmmu_idx);
 169    if (haddr) {
 170        memset(haddr, 0, dcbz_size);
 171    } else {
 172        /* Slow path */
 173        for (i = 0; i < dcbz_size; i += 8) {
 174            cpu_stq_data_ra(env, addr + i, 0, GETPC());
 175        }
 176    }
 177}
 178
 179void helper_icbi(CPUPPCState *env, target_ulong addr)
 180{
 181    addr &= ~(env->dcache_line_size - 1);
 182    /* Invalidate one cache line :
 183     * PowerPC specification says this is to be treated like a load
 184     * (not a fetch) by the MMU. To be sure it will be so,
 185     * do the load "by hand".
 186     */
 187    cpu_ldl_data_ra(env, addr, GETPC());
 188}
 189
 190/* XXX: to be tested */
 191target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
 192                          uint32_t ra, uint32_t rb)
 193{
 194    int i, c, d;
 195
 196    d = 24;
 197    for (i = 0; i < xer_bc; i++) {
 198        c = cpu_ldub_data_ra(env, addr, GETPC());
 199        addr = addr_add(env, addr, 1);
 200        /* ra (if not 0) and rb are never modified */
 201        if (likely(reg != rb && (ra == 0 || reg != ra))) {
 202            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
 203        }
 204        if (unlikely(c == xer_cmp)) {
 205            break;
 206        }
 207        if (likely(d != 0)) {
 208            d -= 8;
 209        } else {
 210            d = 24;
 211            reg++;
 212            reg = reg & 0x1F;
 213        }
 214    }
 215    return i;
 216}
 217
 218/*****************************************************************************/
 219/* Altivec extension helpers */
 220#if defined(HOST_WORDS_BIGENDIAN)
 221#define HI_IDX 0
 222#define LO_IDX 1
 223#else
 224#define HI_IDX 1
 225#define LO_IDX 0
 226#endif
 227
 228/* We use msr_le to determine index ordering in a vector.  However,
 229   byteswapping is not simply controlled by msr_le.  We also need to take
 230   into account endianness of the target.  This is done for the little-endian
 231   PPC64 user-mode target. */
 232
 233#define LVE(name, access, swap, element)                        \
 234    void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
 235                       target_ulong addr)                       \
 236    {                                                           \
 237        size_t n_elems = ARRAY_SIZE(r->element);                \
 238        int adjust = HI_IDX*(n_elems - 1);                      \
 239        int sh = sizeof(r->element[0]) >> 1;                    \
 240        int index = (addr & 0xf) >> sh;                         \
 241        if (msr_le) {                                           \
 242            index = n_elems - index - 1;                        \
 243        }                                                       \
 244                                                                \
 245        if (needs_byteswap(env)) {                              \
 246            r->element[LO_IDX ? index : (adjust - index)] =     \
 247                swap(access(env, addr, GETPC()));               \
 248        } else {                                                \
 249            r->element[LO_IDX ? index : (adjust - index)] =     \
 250                access(env, addr, GETPC());                     \
 251        }                                                       \
 252    }
 253#define I(x) (x)
 254LVE(lvebx, cpu_ldub_data_ra, I, u8)
 255LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
 256LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
 257#undef I
 258#undef LVE
 259
 260#define STVE(name, access, swap, element)                               \
 261    void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
 262                       target_ulong addr)                               \
 263    {                                                                   \
 264        size_t n_elems = ARRAY_SIZE(r->element);                        \
 265        int adjust = HI_IDX * (n_elems - 1);                            \
 266        int sh = sizeof(r->element[0]) >> 1;                            \
 267        int index = (addr & 0xf) >> sh;                                 \
 268        if (msr_le) {                                                   \
 269            index = n_elems - index - 1;                                \
 270        }                                                               \
 271                                                                        \
 272        if (needs_byteswap(env)) {                                      \
 273            access(env, addr, swap(r->element[LO_IDX ? index :          \
 274                                              (adjust - index)]),       \
 275                        GETPC());                                       \
 276        } else {                                                        \
 277            access(env, addr, r->element[LO_IDX ? index :               \
 278                                         (adjust - index)], GETPC());   \
 279        }                                                               \
 280    }
 281#define I(x) (x)
 282STVE(stvebx, cpu_stb_data_ra, I, u8)
 283STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
 284STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
 285#undef I
 286#undef LVE
 287
 288#ifdef TARGET_PPC64
 289#define GET_NB(rb) ((rb >> 56) & 0xFF)
 290
 291#define VSX_LXVL(name, lj)                                              \
 292void helper_##name(CPUPPCState *env, target_ulong addr,                 \
 293                   target_ulong xt_num, target_ulong rb)                \
 294{                                                                       \
 295    int i;                                                              \
 296    ppc_vsr_t xt;                                                       \
 297    uint64_t nb = GET_NB(rb);                                           \
 298                                                                        \
 299    xt.s128 = int128_zero();                                            \
 300    if (nb) {                                                           \
 301        nb = (nb >= 16) ? 16 : nb;                                      \
 302        if (msr_le && !lj) {                                            \
 303            for (i = 16; i > 16 - nb; i--) {                            \
 304                xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());  \
 305                addr = addr_add(env, addr, 1);                          \
 306            }                                                           \
 307        } else {                                                        \
 308            for (i = 0; i < nb; i++) {                                  \
 309                xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());      \
 310                addr = addr_add(env, addr, 1);                          \
 311            }                                                           \
 312        }                                                               \
 313    }                                                                   \
 314    putVSR(xt_num, &xt, env);                                           \
 315}
 316
 317VSX_LXVL(lxvl, 0)
 318VSX_LXVL(lxvll, 1)
 319#undef VSX_LXVL
 320
 321#define VSX_STXVL(name, lj)                                       \
 322void helper_##name(CPUPPCState *env, target_ulong addr,           \
 323                   target_ulong xt_num, target_ulong rb)          \
 324{                                                                 \
 325    int i;                                                        \
 326    ppc_vsr_t xt;                                                 \
 327    target_ulong nb = GET_NB(rb);                                 \
 328                                                                  \
 329    if (!nb) {                                                    \
 330        return;                                                   \
 331    }                                                             \
 332    getVSR(xt_num, &xt, env);                                     \
 333    nb = (nb >= 16) ? 16 : nb;                                    \
 334    if (msr_le && !lj) {                                          \
 335        for (i = 16; i > 16 - nb; i--) {                          \
 336            cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC());  \
 337            addr = addr_add(env, addr, 1);                        \
 338        }                                                         \
 339    } else {                                                      \
 340        for (i = 0; i < nb; i++) {                                \
 341            cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC());      \
 342            addr = addr_add(env, addr, 1);                        \
 343        }                                                         \
 344    }                                                             \
 345}
 346
 347VSX_STXVL(stxvl, 0)
 348VSX_STXVL(stxvll, 1)
 349#undef VSX_STXVL
 350#undef GET_NB
 351#endif /* TARGET_PPC64 */
 352
 353#undef HI_IDX
 354#undef LO_IDX
 355
 356void helper_tbegin(CPUPPCState *env)
 357{
 358    /* As a degenerate implementation, always fail tbegin.  The reason
 359     * given is "Nesting overflow".  The "persistent" bit is set,
 360     * providing a hint to the error handler to not retry.  The TFIAR
 361     * captures the address of the failure, which is this tbegin
 362     * instruction.  Instruction execution will continue with the
 363     * next instruction in memory, which is precisely what we want.
 364     */
 365
 366    env->spr[SPR_TEXASR] =
 367        (1ULL << TEXASR_FAILURE_PERSISTENT) |
 368        (1ULL << TEXASR_NESTING_OVERFLOW) |
 369        (msr_hv << TEXASR_PRIVILEGE_HV) |
 370        (msr_pr << TEXASR_PRIVILEGE_PR) |
 371        (1ULL << TEXASR_FAILURE_SUMMARY) |
 372        (1ULL << TEXASR_TFIAR_EXACT);
 373    env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
 374    env->spr[SPR_TFHAR] = env->nip + 4;
 375    env->crf[0] = 0xB; /* 0b1010 = transaction failure */
 376}
 377