qemu/target/ppc/mmu-hash64.c
<<
>>
Prefs
   1/*
   2 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *  Copyright (c) 2013 David Gibson, IBM Corporation
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU Lesser General Public
  18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20#include "qemu/osdep.h"
  21#include "qapi/error.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "exec/helper-proto.h"
  25#include "qemu/error-report.h"
  26#include "sysemu/hw_accel.h"
  27#include "kvm_ppc.h"
  28#include "mmu-hash64.h"
  29#include "exec/log.h"
  30#include "hw/hw.h"
  31#include "mmu-book3s-v3.h"
  32
  33//#define DEBUG_SLB
  34
  35#ifdef DEBUG_SLB
  36#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
  37#else
  38#  define LOG_SLB(...) do { } while (0)
  39#endif
  40
  41/*
  42 * SLB handling
  43 */
  44
  45static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
  46{
  47    CPUPPCState *env = &cpu->env;
  48    uint64_t esid_256M, esid_1T;
  49    int n;
  50
  51    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
  52
  53    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
  54    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
  55
  56    for (n = 0; n < env->slb_nr; n++) {
  57        ppc_slb_t *slb = &env->slb[n];
  58
  59        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
  60                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
  61        /* We check for 1T matches on all MMUs here - if the MMU
  62         * doesn't have 1T segment support, we will have prevented 1T
  63         * entries from being inserted in the slbmte code. */
  64        if (((slb->esid == esid_256M) &&
  65             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
  66            || ((slb->esid == esid_1T) &&
  67                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
  68            return slb;
  69        }
  70    }
  71
  72    return NULL;
  73}
  74
  75void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
  76{
  77    CPUPPCState *env = &cpu->env;
  78    int i;
  79    uint64_t slbe, slbv;
  80
  81    cpu_synchronize_state(CPU(cpu));
  82
  83    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
  84    for (i = 0; i < env->slb_nr; i++) {
  85        slbe = env->slb[i].esid;
  86        slbv = env->slb[i].vsid;
  87        if (slbe == 0 && slbv == 0) {
  88            continue;
  89        }
  90        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
  91                    i, slbe, slbv);
  92    }
  93}
  94
  95void helper_slbia(CPUPPCState *env)
  96{
  97    int n;
  98
  99    /* XXX: Warning: slbia never invalidates the first segment */
 100    for (n = 1; n < env->slb_nr; n++) {
 101        ppc_slb_t *slb = &env->slb[n];
 102
 103        if (slb->esid & SLB_ESID_V) {
 104            slb->esid &= ~SLB_ESID_V;
 105            /* XXX: given the fact that segment size is 256 MB or 1TB,
 106             *      and we still don't have a tlb_flush_mask(env, n, mask)
 107             *      in QEMU, we just invalidate all TLBs
 108             */
 109            env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
 110        }
 111    }
 112}
 113
 114static void __helper_slbie(CPUPPCState *env, target_ulong addr,
 115                           target_ulong global)
 116{
 117    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 118    ppc_slb_t *slb;
 119
 120    slb = slb_lookup(cpu, addr);
 121    if (!slb) {
 122        return;
 123    }
 124
 125    if (slb->esid & SLB_ESID_V) {
 126        slb->esid &= ~SLB_ESID_V;
 127
 128        /* XXX: given the fact that segment size is 256 MB or 1TB,
 129         *      and we still don't have a tlb_flush_mask(env, n, mask)
 130         *      in QEMU, we just invalidate all TLBs
 131         */
 132        env->tlb_need_flush |=
 133            (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
 134    }
 135}
 136
 137void helper_slbie(CPUPPCState *env, target_ulong addr)
 138{
 139    __helper_slbie(env, addr, false);
 140}
 141
 142void helper_slbieg(CPUPPCState *env, target_ulong addr)
 143{
 144    __helper_slbie(env, addr, true);
 145}
 146
 147int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
 148                  target_ulong esid, target_ulong vsid)
 149{
 150    CPUPPCState *env = &cpu->env;
 151    ppc_slb_t *slb = &env->slb[slot];
 152    const struct ppc_one_seg_page_size *sps = NULL;
 153    int i;
 154
 155    if (slot >= env->slb_nr) {
 156        return -1; /* Bad slot number */
 157    }
 158    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
 159        return -1; /* Reserved bits set */
 160    }
 161    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 162        return -1; /* Bad segment size */
 163    }
 164    if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
 165        return -1; /* 1T segment on MMU that doesn't support it */
 166    }
 167
 168    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 169        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
 170
 171        if (!sps1->page_shift) {
 172            break;
 173        }
 174
 175        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 176            sps = sps1;
 177            break;
 178        }
 179    }
 180
 181    if (!sps) {
 182        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
 183                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
 184                     slot, esid, vsid);
 185        return -1;
 186    }
 187
 188    slb->esid = esid;
 189    slb->vsid = vsid;
 190    slb->sps = sps;
 191
 192    LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
 193            " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
 194            slb->esid, slb->vsid);
 195
 196    return 0;
 197}
 198
 199static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
 200                             target_ulong *rt)
 201{
 202    CPUPPCState *env = &cpu->env;
 203    int slot = rb & 0xfff;
 204    ppc_slb_t *slb = &env->slb[slot];
 205
 206    if (slot >= env->slb_nr) {
 207        return -1;
 208    }
 209
 210    *rt = slb->esid;
 211    return 0;
 212}
 213
 214static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 215                             target_ulong *rt)
 216{
 217    CPUPPCState *env = &cpu->env;
 218    int slot = rb & 0xfff;
 219    ppc_slb_t *slb = &env->slb[slot];
 220
 221    if (slot >= env->slb_nr) {
 222        return -1;
 223    }
 224
 225    *rt = slb->vsid;
 226    return 0;
 227}
 228
 229static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 230                             target_ulong *rt)
 231{
 232    CPUPPCState *env = &cpu->env;
 233    ppc_slb_t *slb;
 234
 235    if (!msr_is_64bit(env, env->msr)) {
 236        rb &= 0xffffffff;
 237    }
 238    slb = slb_lookup(cpu, rb);
 239    if (slb == NULL) {
 240        *rt = (target_ulong)-1ul;
 241    } else {
 242        *rt = slb->vsid;
 243    }
 244    return 0;
 245}
 246
 247void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 248{
 249    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 250
 251    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
 252        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 253                               POWERPC_EXCP_INVAL, GETPC());
 254    }
 255}
 256
 257target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 258{
 259    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 260    target_ulong rt = 0;
 261
 262    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
 263        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 264                               POWERPC_EXCP_INVAL, GETPC());
 265    }
 266    return rt;
 267}
 268
 269target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
 270{
 271    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 272    target_ulong rt = 0;
 273
 274    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
 275        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 276                               POWERPC_EXCP_INVAL, GETPC());
 277    }
 278    return rt;
 279}
 280
 281target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 282{
 283    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 284    target_ulong rt = 0;
 285
 286    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
 287        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 288                               POWERPC_EXCP_INVAL, GETPC());
 289    }
 290    return rt;
 291}
 292
 293/* Check No-Execute or Guarded Storage */
 294static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
 295                                              ppc_hash_pte64_t pte)
 296{
 297    /* Exec permissions CANNOT take away read or write permissions */
 298    return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
 299            PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 300}
 301
 302/* Check Basic Storage Protection */
 303static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
 304                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
 305{
 306    CPUPPCState *env = &cpu->env;
 307    unsigned pp, key;
 308    /* Some pp bit combinations have undefined behaviour, so default
 309     * to no access in those cases */
 310    int prot = 0;
 311
 312    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 313             : (slb->vsid & SLB_VSID_KS));
 314    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 315
 316    if (key == 0) {
 317        switch (pp) {
 318        case 0x0:
 319        case 0x1:
 320        case 0x2:
 321            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 322            break;
 323
 324        case 0x3:
 325        case 0x6:
 326            prot = PAGE_READ | PAGE_EXEC;
 327            break;
 328        }
 329    } else {
 330        switch (pp) {
 331        case 0x0:
 332        case 0x6:
 333            break;
 334
 335        case 0x1:
 336        case 0x3:
 337            prot = PAGE_READ | PAGE_EXEC;
 338            break;
 339
 340        case 0x2:
 341            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 342            break;
 343        }
 344    }
 345
 346    return prot;
 347}
 348
 349/* Check the instruction access permissions specified in the IAMR */
 350static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
 351{
 352    CPUPPCState *env = &cpu->env;
 353    int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
 354
 355    /*
 356     * An instruction fetch is permitted if the IAMR bit is 0.
 357     * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
 358     * can only take away EXEC permissions not READ or WRITE permissions.
 359     * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
 360     * EXEC permissions are allowed.
 361     */
 362    return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
 363                               PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 364}
 365
 366static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
 367{
 368    CPUPPCState *env = &cpu->env;
 369    int key, amrbits;
 370    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 371
 372    /* Only recent MMUs implement Virtual Page Class Key Protection */
 373    if (!(env->mmu_model & POWERPC_MMU_AMR)) {
 374        return prot;
 375    }
 376
 377    key = HPTE64_R_KEY(pte.pte1);
 378    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
 379
 380    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 381    /*         env->spr[SPR_AMR]); */
 382
 383    /*
 384     * A store is permitted if the AMR bit is 0. Remove write
 385     * protection if it is set.
 386     */
 387    if (amrbits & 0x2) {
 388        prot &= ~PAGE_WRITE;
 389    }
 390    /*
 391     * A load is permitted if the AMR bit is 0. Remove read
 392     * protection if it is set.
 393     */
 394    if (amrbits & 0x1) {
 395        prot &= ~PAGE_READ;
 396    }
 397
 398    switch (env->mmu_model) {
 399    /*
 400     * MMU version 2.07 and later support IAMR
 401     * Check if the IAMR allows the instruction access - it will return
 402     * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
 403     * if it does (and prot will be unchanged indicating execution support).
 404     */
 405    case POWERPC_MMU_2_07:
 406    case POWERPC_MMU_3_00:
 407        prot &= ppc_hash64_iamr_prot(cpu, key);
 408        break;
 409    default:
 410        break;
 411    }
 412
 413    return prot;
 414}
 415
 416const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
 417                                             hwaddr ptex, int n)
 418{
 419    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
 420    hwaddr base = ppc_hash64_hpt_base(cpu);
 421    hwaddr plen = n * HASH_PTE_SIZE_64;
 422    const ppc_hash_pte64_t *hptes;
 423
 424    if (cpu->vhyp) {
 425        PPCVirtualHypervisorClass *vhc =
 426            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 427        return vhc->map_hptes(cpu->vhyp, ptex, n);
 428    }
 429
 430    if (!base) {
 431        return NULL;
 432    }
 433
 434    hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false);
 435    if (plen < (n * HASH_PTE_SIZE_64)) {
 436        hw_error("%s: Unable to map all requested HPTEs\n", __func__);
 437    }
 438    return hptes;
 439}
 440
 441void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
 442                            hwaddr ptex, int n)
 443{
 444    if (cpu->vhyp) {
 445        PPCVirtualHypervisorClass *vhc =
 446            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 447        vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
 448        return;
 449    }
 450
 451    address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
 452                        false, n * HASH_PTE_SIZE_64);
 453}
 454
 455static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
 456    uint64_t pte0, uint64_t pte1)
 457{
 458    int i;
 459
 460    if (!(pte0 & HPTE64_V_LARGE)) {
 461        if (sps->page_shift != 12) {
 462            /* 4kiB page in a non 4kiB segment */
 463            return 0;
 464        }
 465        /* Normal 4kiB page */
 466        return 12;
 467    }
 468
 469    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 470        const struct ppc_one_page_size *ps = &sps->enc[i];
 471        uint64_t mask;
 472
 473        if (!ps->page_shift) {
 474            break;
 475        }
 476
 477        if (ps->page_shift == 12) {
 478            /* L bit is set so this can't be a 4kiB page */
 479            continue;
 480        }
 481
 482        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
 483
 484        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
 485            return ps->page_shift;
 486        }
 487    }
 488
 489    return 0; /* Bad page size encoding */
 490}
 491
 492static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
 493                                     const struct ppc_one_seg_page_size *sps,
 494                                     target_ulong ptem,
 495                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 496{
 497    int i;
 498    const ppc_hash_pte64_t *pteg;
 499    target_ulong pte0, pte1;
 500    target_ulong ptex;
 501
 502    ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
 503    pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 504    if (!pteg) {
 505        return -1;
 506    }
 507    for (i = 0; i < HPTES_PER_GROUP; i++) {
 508        pte0 = ppc_hash64_hpte0(cpu, pteg, i);
 509        pte1 = ppc_hash64_hpte1(cpu, pteg, i);
 510
 511        /* This compares V, B, H (secondary) and the AVPN */
 512        if (HPTE64_V_COMPARE(pte0, ptem)) {
 513            *pshift = hpte_page_shift(sps, pte0, pte1);
 514            /*
 515             * If there is no match, ignore the PTE, it could simply
 516             * be for a different segment size encoding and the
 517             * architecture specifies we should not match. Linux will
 518             * potentially leave behind PTEs for the wrong base page
 519             * size when demoting segments.
 520             */
 521            if (*pshift == 0) {
 522                continue;
 523            }
 524            /* We don't do anything with pshift yet as qemu TLB only deals
 525             * with 4K pages anyway
 526             */
 527            pte->pte0 = pte0;
 528            pte->pte1 = pte1;
 529            ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 530            return ptex + i;
 531        }
 532    }
 533    ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 534    /*
 535     * We didn't find a valid entry.
 536     */
 537    return -1;
 538}
 539
 540static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
 541                                     ppc_slb_t *slb, target_ulong eaddr,
 542                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 543{
 544    CPUPPCState *env = &cpu->env;
 545    hwaddr hash, ptex;
 546    uint64_t vsid, epnmask, epn, ptem;
 547    const struct ppc_one_seg_page_size *sps = slb->sps;
 548
 549    /* The SLB store path should prevent any bad page size encodings
 550     * getting in there, so: */
 551    assert(sps);
 552
 553    /* If ISL is set in LPCR we need to clamp the page size to 4K */
 554    if (env->spr[SPR_LPCR] & LPCR_ISL) {
 555        /* We assume that when using TCG, 4k is first entry of SPS */
 556        sps = &env->sps.sps[0];
 557        assert(sps->page_shift == 12);
 558    }
 559
 560    epnmask = ~((1ULL << sps->page_shift) - 1);
 561
 562    if (slb->vsid & SLB_VSID_B) {
 563        /* 1TB segment */
 564        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 565        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 566        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
 567    } else {
 568        /* 256M segment */
 569        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 570        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 571        hash = vsid ^ (epn >> sps->page_shift);
 572    }
 573    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 574    ptem |= HPTE64_V_VALID;
 575
 576    /* Page address translation */
 577    qemu_log_mask(CPU_LOG_MMU,
 578            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 579            " hash " TARGET_FMT_plx "\n",
 580            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
 581
 582    /* Primary PTEG lookup */
 583    qemu_log_mask(CPU_LOG_MMU,
 584            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 585            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 586            " hash=" TARGET_FMT_plx "\n",
 587            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
 588            vsid, ptem,  hash);
 589    ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
 590
 591    if (ptex == -1) {
 592        /* Secondary PTEG lookup */
 593        ptem |= HPTE64_V_SECONDARY;
 594        qemu_log_mask(CPU_LOG_MMU,
 595                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 596                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 597                " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
 598                ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
 599
 600        ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
 601    }
 602
 603    return ptex;
 604}
 605
 606unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
 607                                          uint64_t pte0, uint64_t pte1)
 608{
 609    CPUPPCState *env = &cpu->env;
 610    int i;
 611
 612    if (!(pte0 & HPTE64_V_LARGE)) {
 613        return 12;
 614    }
 615
 616    /*
 617     * The encodings in env->sps need to be carefully chosen so that
 618     * this gives an unambiguous result.
 619     */
 620    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 621        const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 622        unsigned shift;
 623
 624        if (!sps->page_shift) {
 625            break;
 626        }
 627
 628        shift = hpte_page_shift(sps, pte0, pte1);
 629        if (shift) {
 630            return shift;
 631        }
 632    }
 633
 634    return 0;
 635}
 636
 637static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
 638                               uint64_t error_code)
 639{
 640    bool vpm;
 641
 642    if (msr_ir) {
 643        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 644    } else {
 645        switch (env->mmu_model) {
 646        case POWERPC_MMU_3_00:
 647            /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
 648            vpm = true;
 649            break;
 650        default:
 651            vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 652            break;
 653        }
 654    }
 655    if (vpm && !msr_hv) {
 656        cs->exception_index = POWERPC_EXCP_HISI;
 657    } else {
 658        cs->exception_index = POWERPC_EXCP_ISI;
 659    }
 660    env->error_code = error_code;
 661}
 662
 663static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
 664                               uint64_t dsisr)
 665{
 666    bool vpm;
 667
 668    if (msr_dr) {
 669        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 670    } else {
 671        switch (env->mmu_model) {
 672        case POWERPC_MMU_3_00:
 673            /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
 674            vpm = true;
 675            break;
 676        default:
 677            vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 678            break;
 679        }
 680    }
 681    if (vpm && !msr_hv) {
 682        cs->exception_index = POWERPC_EXCP_HDSI;
 683        env->spr[SPR_HDAR] = dar;
 684        env->spr[SPR_HDSISR] = dsisr;
 685    } else {
 686        cs->exception_index = POWERPC_EXCP_DSI;
 687        env->spr[SPR_DAR] = dar;
 688        env->spr[SPR_DSISR] = dsisr;
 689   }
 690    env->error_code = 0;
 691}
 692
 693
 694int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
 695                                int rwx, int mmu_idx)
 696{
 697    CPUState *cs = CPU(cpu);
 698    CPUPPCState *env = &cpu->env;
 699    ppc_slb_t *slb;
 700    unsigned apshift;
 701    hwaddr ptex;
 702    ppc_hash_pte64_t pte;
 703    int exec_prot, pp_prot, amr_prot, prot;
 704    uint64_t new_pte1;
 705    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 706    hwaddr raddr;
 707
 708    assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 709
 710    /* Note on LPCR usage: 970 uses HID4, but our special variant
 711     * of store_spr copies relevant fields into env->spr[SPR_LPCR].
 712     * Similarily we filter unimplemented bits when storing into
 713     * LPCR depending on the MMU version. This code can thus just
 714     * use the LPCR "as-is".
 715     */
 716
 717    /* 1. Handle real mode accesses */
 718    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 719        /* Translation is supposedly "off"  */
 720        /* In real mode the top 4 effective address bits are (mostly) ignored */
 721        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 722
 723        /* In HV mode, add HRMOR if top EA bit is clear */
 724        if (msr_hv || !env->has_hv_mode) {
 725            if (!(eaddr >> 63)) {
 726                raddr |= env->spr[SPR_HRMOR];
 727            }
 728        } else {
 729            /* Otherwise, check VPM for RMA vs VRMA */
 730            if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 731                slb = &env->vrma_slb;
 732                if (slb->sps) {
 733                    goto skip_slb_search;
 734                }
 735                /* Not much else to do here */
 736                cs->exception_index = POWERPC_EXCP_MCHECK;
 737                env->error_code = 0;
 738                return 1;
 739            } else if (raddr < env->rmls) {
 740                /* RMA. Check bounds in RMLS */
 741                raddr |= env->spr[SPR_RMOR];
 742            } else {
 743                /* The access failed, generate the approriate interrupt */
 744                if (rwx == 2) {
 745                    ppc_hash64_set_isi(cs, env, SRR1_PROTFAULT);
 746                } else {
 747                    int dsisr = DSISR_PROTFAULT;
 748                    if (rwx == 1) {
 749                        dsisr |= DSISR_ISSTORE;
 750                    }
 751                    ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 752                }
 753                return 1;
 754            }
 755        }
 756        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 757                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 758                     TARGET_PAGE_SIZE);
 759        return 0;
 760    }
 761
 762    /* 2. Translation is on, so look up the SLB */
 763    slb = slb_lookup(cpu, eaddr);
 764    if (!slb) {
 765        /* No entry found, check if in-memory segment tables are in use */
 766        if ((env->mmu_model & POWERPC_MMU_V3) && ppc64_use_proc_tbl(cpu)) {
 767            /* TODO - Unsupported */
 768            error_report("Segment Table Support Unimplemented");
 769            exit(1);
 770        }
 771        /* Segment still not found, generate the appropriate interrupt */
 772        if (rwx == 2) {
 773            cs->exception_index = POWERPC_EXCP_ISEG;
 774            env->error_code = 0;
 775        } else {
 776            cs->exception_index = POWERPC_EXCP_DSEG;
 777            env->error_code = 0;
 778            env->spr[SPR_DAR] = eaddr;
 779        }
 780        return 1;
 781    }
 782
 783skip_slb_search:
 784
 785    /* 3. Check for segment level no-execute violation */
 786    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 787        ppc_hash64_set_isi(cs, env, SRR1_NOEXEC_GUARD);
 788        return 1;
 789    }
 790
 791    /* 4. Locate the PTE in the hash table */
 792    ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
 793    if (ptex == -1) {
 794        if (rwx == 2) {
 795            ppc_hash64_set_isi(cs, env, SRR1_NOPTE);
 796        } else {
 797            int dsisr = DSISR_NOPTE;
 798            if (rwx == 1) {
 799                dsisr |= DSISR_ISSTORE;
 800            }
 801            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 802        }
 803        return 1;
 804    }
 805    qemu_log_mask(CPU_LOG_MMU,
 806                  "found PTE at index %08" HWADDR_PRIx "\n", ptex);
 807
 808    /* 5. Check access permissions */
 809
 810    exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
 811    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
 812    amr_prot = ppc_hash64_amr_prot(cpu, pte);
 813    prot = exec_prot & pp_prot & amr_prot;
 814
 815    if ((need_prot[rwx] & ~prot) != 0) {
 816        /* Access right violation */
 817        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
 818        if (rwx == 2) {
 819            int srr1 = 0;
 820            if (PAGE_EXEC & ~exec_prot) {
 821                srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
 822            } else if (PAGE_EXEC & ~pp_prot) {
 823                srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
 824            }
 825            if (PAGE_EXEC & ~amr_prot) {
 826                srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
 827            }
 828            ppc_hash64_set_isi(cs, env, srr1);
 829        } else {
 830            int dsisr = 0;
 831            if (need_prot[rwx] & ~pp_prot) {
 832                dsisr |= DSISR_PROTFAULT;
 833            }
 834            if (rwx == 1) {
 835                dsisr |= DSISR_ISSTORE;
 836            }
 837            if (need_prot[rwx] & ~amr_prot) {
 838                dsisr |= DSISR_AMR;
 839            }
 840            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
 841        }
 842        return 1;
 843    }
 844
 845    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
 846
 847    /* 6. Update PTE referenced and changed bits if necessary */
 848
 849    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
 850    if (rwx == 1) {
 851        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
 852    } else {
 853        /* Treat the page as read-only for now, so that a later write
 854         * will pass through this function again to set the C bit */
 855        prot &= ~PAGE_WRITE;
 856    }
 857
 858    if (new_pte1 != pte.pte1) {
 859        ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
 860    }
 861
 862    /* 7. Determine the real address from the PTE */
 863
 864    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
 865
 866    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 867                 prot, mmu_idx, 1ULL << apshift);
 868
 869    return 0;
 870}
 871
 872hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
 873{
 874    CPUPPCState *env = &cpu->env;
 875    ppc_slb_t *slb;
 876    hwaddr ptex, raddr;
 877    ppc_hash_pte64_t pte;
 878    unsigned apshift;
 879
 880    /* Handle real mode */
 881    if (msr_dr == 0) {
 882        /* In real mode the top 4 effective address bits are ignored */
 883        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
 884
 885        /* In HV mode, add HRMOR if top EA bit is clear */
 886        if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
 887            return raddr | env->spr[SPR_HRMOR];
 888        }
 889
 890        /* Otherwise, check VPM for RMA vs VRMA */
 891        if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 892            slb = &env->vrma_slb;
 893            if (!slb->sps) {
 894                return -1;
 895            }
 896        } else if (raddr < env->rmls) {
 897            /* RMA. Check bounds in RMLS */
 898            return raddr | env->spr[SPR_RMOR];
 899        } else {
 900            return -1;
 901        }
 902    } else {
 903        slb = slb_lookup(cpu, addr);
 904        if (!slb) {
 905            return -1;
 906        }
 907    }
 908
 909    ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
 910    if (ptex == -1) {
 911        return -1;
 912    }
 913
 914    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
 915        & TARGET_PAGE_MASK;
 916}
 917
 918void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
 919                           uint64_t pte0, uint64_t pte1)
 920{
 921    hwaddr base = ppc_hash64_hpt_base(cpu);
 922    hwaddr offset = ptex * HASH_PTE_SIZE_64;
 923
 924    if (cpu->vhyp) {
 925        PPCVirtualHypervisorClass *vhc =
 926            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 927        vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
 928        return;
 929    }
 930
 931    stq_phys(CPU(cpu)->as, base + offset, pte0);
 932    stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
 933}
 934
 935void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
 936                               target_ulong pte0, target_ulong pte1)
 937{
 938    /*
 939     * XXX: given the fact that there are too many segments to
 940     * invalidate, and we still don't have a tlb_flush_mask(env, n,
 941     * mask) in QEMU, we just invalidate all TLBs
 942     */
 943    cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
 944}
 945
 946void ppc_hash64_update_rmls(CPUPPCState *env)
 947{
 948    uint64_t lpcr = env->spr[SPR_LPCR];
 949
 950    /*
 951     * This is the full 4 bits encoding of POWER8. Previous
 952     * CPUs only support a subset of these but the filtering
 953     * is done when writing LPCR
 954     */
 955    switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
 956    case 0x8: /* 32MB */
 957        env->rmls = 0x2000000ull;
 958        break;
 959    case 0x3: /* 64MB */
 960        env->rmls = 0x4000000ull;
 961        break;
 962    case 0x7: /* 128MB */
 963        env->rmls = 0x8000000ull;
 964        break;
 965    case 0x4: /* 256MB */
 966        env->rmls = 0x10000000ull;
 967        break;
 968    case 0x2: /* 1GB */
 969        env->rmls = 0x40000000ull;
 970        break;
 971    case 0x1: /* 16GB */
 972        env->rmls = 0x400000000ull;
 973        break;
 974    default:
 975        /* What to do here ??? */
 976        env->rmls = 0;
 977    }
 978}
 979
 980void ppc_hash64_update_vrma(CPUPPCState *env)
 981{
 982    const struct ppc_one_seg_page_size *sps = NULL;
 983    target_ulong esid, vsid, lpcr;
 984    ppc_slb_t *slb = &env->vrma_slb;
 985    uint32_t vrmasd;
 986    int i;
 987
 988    /* First clear it */
 989    slb->esid = slb->vsid = 0;
 990    slb->sps = NULL;
 991
 992    /* Is VRMA enabled ? */
 993    lpcr = env->spr[SPR_LPCR];
 994    if (!(lpcr & LPCR_VPM0)) {
 995        return;
 996    }
 997
 998    /* Make one up. Mostly ignore the ESID which will not be
 999     * needed for translation
1000     */
1001    vsid = SLB_VSID_VRMA;
1002    vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1003    vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1004    esid = SLB_ESID_V;
1005
1006   for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1007        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
1008
1009        if (!sps1->page_shift) {
1010            break;
1011        }
1012
1013        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1014            sps = sps1;
1015            break;
1016        }
1017    }
1018
1019    if (!sps) {
1020        error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1021                     " vsid 0x"TARGET_FMT_lx, esid, vsid);
1022        return;
1023    }
1024
1025    slb->vsid = vsid;
1026    slb->esid = esid;
1027    slb->sps = sps;
1028}
1029
1030void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1031{
1032    uint64_t lpcr = 0;
1033
1034    /* Filter out bits */
1035    switch (POWERPC_MMU_VER(env->mmu_model)) {
1036    case POWERPC_MMU_VER_64B: /* 970 */
1037        if (val & 0x40) {
1038            lpcr |= LPCR_LPES0;
1039        }
1040        if (val & 0x8000000000000000ull) {
1041            lpcr |= LPCR_LPES1;
1042        }
1043        if (val & 0x20) {
1044            lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1045        }
1046        if (val & 0x4000000000000000ull) {
1047            lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1048        }
1049        if (val & 0x2000000000000000ull) {
1050            lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1051        }
1052        env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1053
1054        /* XXX We could also write LPID from HID4 here
1055         * but since we don't tag any translation on it
1056         * it doesn't actually matter
1057         */
1058        /* XXX For proper emulation of 970 we also need
1059         * to dig HRMOR out of HID5
1060         */
1061        break;
1062    case POWERPC_MMU_VER_2_03: /* P5p */
1063        lpcr = val & (LPCR_RMLS | LPCR_ILE |
1064                      LPCR_LPES0 | LPCR_LPES1 |
1065                      LPCR_RMI | LPCR_HDICE);
1066        break;
1067    case POWERPC_MMU_VER_2_06: /* P7 */
1068        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1069                      LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1070                      LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1071                      LPCR_MER | LPCR_TC |
1072                      LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1073        break;
1074    case POWERPC_MMU_VER_2_07: /* P8 */
1075        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1076                      LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1077                      LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1078                      LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1079                      LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1080        break;
1081    case POWERPC_MMU_VER_3_00: /* P9 */
1082        lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1083                      (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1084                      LPCR_UPRT | LPCR_EVIRT | LPCR_ONL |
1085                      (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1086                      LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1087                      LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1088        break;
1089    default:
1090        ;
1091    }
1092    env->spr[SPR_LPCR] = lpcr;
1093    ppc_hash64_update_rmls(env);
1094    ppc_hash64_update_vrma(env);
1095}
1096