qemu/target/s390x/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU S390x KVM implementation
   3 *
   4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
   5 * Copyright IBM Corp. 2012
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * Contributions after 2012-10-29 are licensed under the terms of the
  18 * GNU GPL, version 2 or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU (Lesser) General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include <sys/ioctl.h>
  26
  27#include <linux/kvm.h>
  28#include <asm/ptrace.h>
  29
  30#include "qemu-common.h"
  31#include "cpu.h"
  32#include "qemu/error-report.h"
  33#include "qemu/timer.h"
  34#include "sysemu/sysemu.h"
  35#include "sysemu/hw_accel.h"
  36#include "hw/hw.h"
  37#include "sysemu/device_tree.h"
  38#include "qapi/qmp/qjson.h"
  39#include "exec/gdbstub.h"
  40#include "exec/address-spaces.h"
  41#include "trace.h"
  42#include "qapi-event.h"
  43#include "hw/s390x/s390-pci-inst.h"
  44#include "hw/s390x/s390-pci-bus.h"
  45#include "hw/s390x/ipl.h"
  46#include "hw/s390x/ebcdic.h"
  47#include "exec/memattrs.h"
  48#include "hw/s390x/s390-virtio-ccw.h"
  49
  50#ifndef DEBUG_KVM
  51#define DEBUG_KVM  0
  52#endif
  53
  54#define DPRINTF(fmt, ...) do {                \
  55    if (DEBUG_KVM) {                          \
  56        fprintf(stderr, fmt, ## __VA_ARGS__); \
  57    }                                         \
  58} while (0);
  59
  60#define kvm_vm_check_mem_attr(s, attr) \
  61    kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
  62
  63#define IPA0_DIAG                       0x8300
  64#define IPA0_SIGP                       0xae00
  65#define IPA0_B2                         0xb200
  66#define IPA0_B9                         0xb900
  67#define IPA0_EB                         0xeb00
  68#define IPA0_E3                         0xe300
  69
  70#define PRIV_B2_SCLP_CALL               0x20
  71#define PRIV_B2_CSCH                    0x30
  72#define PRIV_B2_HSCH                    0x31
  73#define PRIV_B2_MSCH                    0x32
  74#define PRIV_B2_SSCH                    0x33
  75#define PRIV_B2_STSCH                   0x34
  76#define PRIV_B2_TSCH                    0x35
  77#define PRIV_B2_TPI                     0x36
  78#define PRIV_B2_SAL                     0x37
  79#define PRIV_B2_RSCH                    0x38
  80#define PRIV_B2_STCRW                   0x39
  81#define PRIV_B2_STCPS                   0x3a
  82#define PRIV_B2_RCHP                    0x3b
  83#define PRIV_B2_SCHM                    0x3c
  84#define PRIV_B2_CHSC                    0x5f
  85#define PRIV_B2_SIGA                    0x74
  86#define PRIV_B2_XSCH                    0x76
  87
  88#define PRIV_EB_SQBS                    0x8a
  89#define PRIV_EB_PCISTB                  0xd0
  90#define PRIV_EB_SIC                     0xd1
  91
  92#define PRIV_B9_EQBS                    0x9c
  93#define PRIV_B9_CLP                     0xa0
  94#define PRIV_B9_PCISTG                  0xd0
  95#define PRIV_B9_PCILG                   0xd2
  96#define PRIV_B9_RPCIT                   0xd3
  97
  98#define PRIV_E3_MPCIFC                  0xd0
  99#define PRIV_E3_STPCIFC                 0xd4
 100
 101#define DIAG_TIMEREVENT                 0x288
 102#define DIAG_IPL                        0x308
 103#define DIAG_KVM_HYPERCALL              0x500
 104#define DIAG_KVM_BREAKPOINT             0x501
 105
 106#define ICPT_INSTRUCTION                0x04
 107#define ICPT_PROGRAM                    0x08
 108#define ICPT_EXT_INT                    0x14
 109#define ICPT_WAITPSW                    0x1c
 110#define ICPT_SOFT_INTERCEPT             0x24
 111#define ICPT_CPU_STOP                   0x28
 112#define ICPT_OPEREXC                    0x2c
 113#define ICPT_IO                         0x40
 114
 115#define NR_LOCAL_IRQS 32
 116/*
 117 * Needs to be big enough to contain max_cpus emergency signals
 118 * and in addition NR_LOCAL_IRQS interrupts
 119 */
 120#define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
 121                           (max_cpus + NR_LOCAL_IRQS))
 122
 123static CPUWatchpoint hw_watchpoint;
 124/*
 125 * We don't use a list because this structure is also used to transmit the
 126 * hardware breakpoints to the kernel.
 127 */
 128static struct kvm_hw_breakpoint *hw_breakpoints;
 129static int nb_hw_breakpoints;
 130
 131const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 132    KVM_CAP_LAST_INFO
 133};
 134
 135static QemuMutex qemu_sigp_mutex;
 136
 137static int cap_sync_regs;
 138static int cap_async_pf;
 139static int cap_mem_op;
 140static int cap_s390_irq;
 141static int cap_ri;
 142static int cap_gs;
 143
 144static int active_cmma;
 145
 146static void *legacy_s390_alloc(size_t size, uint64_t *align);
 147
 148static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
 149{
 150    struct kvm_device_attr attr = {
 151        .group = KVM_S390_VM_MEM_CTRL,
 152        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 153        .addr = (uint64_t) memory_limit,
 154    };
 155
 156    return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 157}
 158
 159int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
 160{
 161    int rc;
 162
 163    struct kvm_device_attr attr = {
 164        .group = KVM_S390_VM_MEM_CTRL,
 165        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 166        .addr = (uint64_t) &new_limit,
 167    };
 168
 169    if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
 170        return 0;
 171    }
 172
 173    rc = kvm_s390_query_mem_limit(s, hw_limit);
 174    if (rc) {
 175        return rc;
 176    } else if (*hw_limit < new_limit) {
 177        return -E2BIG;
 178    }
 179
 180    return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
 181}
 182
 183int kvm_s390_cmma_active(void)
 184{
 185    return active_cmma;
 186}
 187
 188static bool kvm_s390_cmma_available(void)
 189{
 190    static bool initialized, value;
 191
 192    if (!initialized) {
 193        initialized = true;
 194        value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
 195                kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
 196    }
 197    return value;
 198}
 199
 200void kvm_s390_cmma_reset(void)
 201{
 202    int rc;
 203    struct kvm_device_attr attr = {
 204        .group = KVM_S390_VM_MEM_CTRL,
 205        .attr = KVM_S390_VM_MEM_CLR_CMMA,
 206    };
 207
 208    if (!kvm_s390_cmma_active()) {
 209        return;
 210    }
 211
 212    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 213    trace_kvm_clear_cmma(rc);
 214}
 215
 216static void kvm_s390_enable_cmma(void)
 217{
 218    int rc;
 219    struct kvm_device_attr attr = {
 220        .group = KVM_S390_VM_MEM_CTRL,
 221        .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
 222    };
 223
 224    if (mem_path) {
 225        error_report("Warning: CMM will not be enabled because it is not "
 226                     "compatible to hugetlbfs.");
 227        return;
 228    }
 229    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 230    active_cmma = !rc;
 231    trace_kvm_enable_cmma(rc);
 232}
 233
 234static void kvm_s390_set_attr(uint64_t attr)
 235{
 236    struct kvm_device_attr attribute = {
 237        .group = KVM_S390_VM_CRYPTO,
 238        .attr  = attr,
 239    };
 240
 241    int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
 242
 243    if (ret) {
 244        error_report("Failed to set crypto device attribute %lu: %s",
 245                     attr, strerror(-ret));
 246    }
 247}
 248
 249static void kvm_s390_init_aes_kw(void)
 250{
 251    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
 252
 253    if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
 254                                 NULL)) {
 255            attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
 256    }
 257
 258    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 259            kvm_s390_set_attr(attr);
 260    }
 261}
 262
 263static void kvm_s390_init_dea_kw(void)
 264{
 265    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
 266
 267    if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
 268                                 NULL)) {
 269            attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
 270    }
 271
 272    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 273            kvm_s390_set_attr(attr);
 274    }
 275}
 276
 277void kvm_s390_crypto_reset(void)
 278{
 279    if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
 280        kvm_s390_init_aes_kw();
 281        kvm_s390_init_dea_kw();
 282    }
 283}
 284
 285int kvm_arch_init(MachineState *ms, KVMState *s)
 286{
 287    cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
 288    cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
 289    cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
 290    cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
 291
 292    if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
 293        || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
 294        phys_mem_set_alloc(legacy_s390_alloc);
 295    }
 296
 297    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
 298    kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
 299    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
 300    if (ri_allowed()) {
 301        if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
 302            cap_ri = 1;
 303        }
 304    }
 305    if (gs_allowed()) {
 306        if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
 307            cap_gs = 1;
 308        }
 309    }
 310
 311    /* Try to enable AIS facility */
 312    kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
 313
 314    qemu_mutex_init(&qemu_sigp_mutex);
 315
 316    return 0;
 317}
 318
 319int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 320{
 321    return 0;
 322}
 323
 324unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 325{
 326    return cpu->cpu_index;
 327}
 328
 329int kvm_arch_init_vcpu(CPUState *cs)
 330{
 331    S390CPU *cpu = S390_CPU(cs);
 332    kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
 333    cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
 334    return 0;
 335}
 336
 337void kvm_s390_reset_vcpu(S390CPU *cpu)
 338{
 339    CPUState *cs = CPU(cpu);
 340
 341    /* The initial reset call is needed here to reset in-kernel
 342     * vcpu data that we can't access directly from QEMU
 343     * (i.e. with older kernels which don't support sync_regs/ONE_REG).
 344     * Before this ioctl cpu_synchronize_state() is called in common kvm
 345     * code (kvm-all) */
 346    if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
 347        error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
 348    }
 349}
 350
 351static int can_sync_regs(CPUState *cs, int regs)
 352{
 353    return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
 354}
 355
 356int kvm_arch_put_registers(CPUState *cs, int level)
 357{
 358    S390CPU *cpu = S390_CPU(cs);
 359    CPUS390XState *env = &cpu->env;
 360    struct kvm_sregs sregs;
 361    struct kvm_regs regs;
 362    struct kvm_fpu fpu = {};
 363    int r;
 364    int i;
 365
 366    /* always save the PSW  and the GPRS*/
 367    cs->kvm_run->psw_addr = env->psw.addr;
 368    cs->kvm_run->psw_mask = env->psw.mask;
 369
 370    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 371        for (i = 0; i < 16; i++) {
 372            cs->kvm_run->s.regs.gprs[i] = env->regs[i];
 373            cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
 374        }
 375    } else {
 376        for (i = 0; i < 16; i++) {
 377            regs.gprs[i] = env->regs[i];
 378        }
 379        r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 380        if (r < 0) {
 381            return r;
 382        }
 383    }
 384
 385    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 386        for (i = 0; i < 32; i++) {
 387            cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
 388            cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
 389        }
 390        cs->kvm_run->s.regs.fpc = env->fpc;
 391        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
 392    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 393        for (i = 0; i < 16; i++) {
 394            cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
 395        }
 396        cs->kvm_run->s.regs.fpc = env->fpc;
 397        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
 398    } else {
 399        /* Floating point */
 400        for (i = 0; i < 16; i++) {
 401            fpu.fprs[i] = get_freg(env, i)->ll;
 402        }
 403        fpu.fpc = env->fpc;
 404
 405        r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
 406        if (r < 0) {
 407            return r;
 408        }
 409    }
 410
 411    /* Do we need to save more than that? */
 412    if (level == KVM_PUT_RUNTIME_STATE) {
 413        return 0;
 414    }
 415
 416    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 417        cs->kvm_run->s.regs.cputm = env->cputm;
 418        cs->kvm_run->s.regs.ckc = env->ckc;
 419        cs->kvm_run->s.regs.todpr = env->todpr;
 420        cs->kvm_run->s.regs.gbea = env->gbea;
 421        cs->kvm_run->s.regs.pp = env->pp;
 422        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
 423    } else {
 424        /*
 425         * These ONE_REGS are not protected by a capability. As they are only
 426         * necessary for migration we just trace a possible error, but don't
 427         * return with an error return code.
 428         */
 429        kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 430        kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 431        kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 432        kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 433        kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 434    }
 435
 436    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 437        memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
 438        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
 439    }
 440
 441    /* pfault parameters */
 442    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 443        cs->kvm_run->s.regs.pft = env->pfault_token;
 444        cs->kvm_run->s.regs.pfs = env->pfault_select;
 445        cs->kvm_run->s.regs.pfc = env->pfault_compare;
 446        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
 447    } else if (cap_async_pf) {
 448        r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 449        if (r < 0) {
 450            return r;
 451        }
 452        r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 453        if (r < 0) {
 454            return r;
 455        }
 456        r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 457        if (r < 0) {
 458            return r;
 459        }
 460    }
 461
 462    /* access registers and control registers*/
 463    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 464        for (i = 0; i < 16; i++) {
 465            cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
 466            cs->kvm_run->s.regs.crs[i] = env->cregs[i];
 467        }
 468        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
 469        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
 470    } else {
 471        for (i = 0; i < 16; i++) {
 472            sregs.acrs[i] = env->aregs[i];
 473            sregs.crs[i] = env->cregs[i];
 474        }
 475        r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 476        if (r < 0) {
 477            return r;
 478        }
 479    }
 480
 481    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 482        memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
 483        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
 484    }
 485
 486    /* Finally the prefix */
 487    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 488        cs->kvm_run->s.regs.prefix = env->psa;
 489        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
 490    } else {
 491        /* prefix is only supported via sync regs */
 492    }
 493    return 0;
 494}
 495
 496int kvm_arch_get_registers(CPUState *cs)
 497{
 498    S390CPU *cpu = S390_CPU(cs);
 499    CPUS390XState *env = &cpu->env;
 500    struct kvm_sregs sregs;
 501    struct kvm_regs regs;
 502    struct kvm_fpu fpu;
 503    int i, r;
 504
 505    /* get the PSW */
 506    env->psw.addr = cs->kvm_run->psw_addr;
 507    env->psw.mask = cs->kvm_run->psw_mask;
 508
 509    /* the GPRS */
 510    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 511        for (i = 0; i < 16; i++) {
 512            env->regs[i] = cs->kvm_run->s.regs.gprs[i];
 513        }
 514    } else {
 515        r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 516        if (r < 0) {
 517            return r;
 518        }
 519         for (i = 0; i < 16; i++) {
 520            env->regs[i] = regs.gprs[i];
 521        }
 522    }
 523
 524    /* The ACRS and CRS */
 525    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 526        for (i = 0; i < 16; i++) {
 527            env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
 528            env->cregs[i] = cs->kvm_run->s.regs.crs[i];
 529        }
 530    } else {
 531        r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 532        if (r < 0) {
 533            return r;
 534        }
 535         for (i = 0; i < 16; i++) {
 536            env->aregs[i] = sregs.acrs[i];
 537            env->cregs[i] = sregs.crs[i];
 538        }
 539    }
 540
 541    /* Floating point and vector registers */
 542    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 543        for (i = 0; i < 32; i++) {
 544            env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
 545            env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
 546        }
 547        env->fpc = cs->kvm_run->s.regs.fpc;
 548    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 549        for (i = 0; i < 16; i++) {
 550            get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
 551        }
 552        env->fpc = cs->kvm_run->s.regs.fpc;
 553    } else {
 554        r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
 555        if (r < 0) {
 556            return r;
 557        }
 558        for (i = 0; i < 16; i++) {
 559            get_freg(env, i)->ll = fpu.fprs[i];
 560        }
 561        env->fpc = fpu.fpc;
 562    }
 563
 564    /* The prefix */
 565    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 566        env->psa = cs->kvm_run->s.regs.prefix;
 567    }
 568
 569    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 570        env->cputm = cs->kvm_run->s.regs.cputm;
 571        env->ckc = cs->kvm_run->s.regs.ckc;
 572        env->todpr = cs->kvm_run->s.regs.todpr;
 573        env->gbea = cs->kvm_run->s.regs.gbea;
 574        env->pp = cs->kvm_run->s.regs.pp;
 575    } else {
 576        /*
 577         * These ONE_REGS are not protected by a capability. As they are only
 578         * necessary for migration we just trace a possible error, but don't
 579         * return with an error return code.
 580         */
 581        kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 582        kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 583        kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 584        kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 585        kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 586    }
 587
 588    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 589        memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
 590    }
 591
 592    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 593        memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
 594    }
 595
 596    /* pfault parameters */
 597    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 598        env->pfault_token = cs->kvm_run->s.regs.pft;
 599        env->pfault_select = cs->kvm_run->s.regs.pfs;
 600        env->pfault_compare = cs->kvm_run->s.regs.pfc;
 601    } else if (cap_async_pf) {
 602        r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 603        if (r < 0) {
 604            return r;
 605        }
 606        r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 607        if (r < 0) {
 608            return r;
 609        }
 610        r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 611        if (r < 0) {
 612            return r;
 613        }
 614    }
 615
 616    return 0;
 617}
 618
 619int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
 620{
 621    int r;
 622    struct kvm_device_attr attr = {
 623        .group = KVM_S390_VM_TOD,
 624        .attr = KVM_S390_VM_TOD_LOW,
 625        .addr = (uint64_t)tod_low,
 626    };
 627
 628    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 629    if (r) {
 630        return r;
 631    }
 632
 633    attr.attr = KVM_S390_VM_TOD_HIGH;
 634    attr.addr = (uint64_t)tod_high;
 635    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 636}
 637
 638int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
 639{
 640    int r;
 641
 642    struct kvm_device_attr attr = {
 643        .group = KVM_S390_VM_TOD,
 644        .attr = KVM_S390_VM_TOD_LOW,
 645        .addr = (uint64_t)tod_low,
 646    };
 647
 648    r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 649    if (r) {
 650        return r;
 651    }
 652
 653    attr.attr = KVM_S390_VM_TOD_HIGH;
 654    attr.addr = (uint64_t)tod_high;
 655    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 656}
 657
 658/**
 659 * kvm_s390_mem_op:
 660 * @addr:      the logical start address in guest memory
 661 * @ar:        the access register number
 662 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 663 * @len:       length that should be transferred
 664 * @is_write:  true = write, false = read
 665 * Returns:    0 on success, non-zero if an exception or error occurred
 666 *
 667 * Use KVM ioctl to read/write from/to guest memory. An access exception
 668 * is injected into the vCPU in case of translation errors.
 669 */
 670int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
 671                    int len, bool is_write)
 672{
 673    struct kvm_s390_mem_op mem_op = {
 674        .gaddr = addr,
 675        .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
 676        .size = len,
 677        .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
 678                       : KVM_S390_MEMOP_LOGICAL_READ,
 679        .buf = (uint64_t)hostbuf,
 680        .ar = ar,
 681    };
 682    int ret;
 683
 684    if (!cap_mem_op) {
 685        return -ENOSYS;
 686    }
 687    if (!hostbuf) {
 688        mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 689    }
 690
 691    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 692    if (ret < 0) {
 693        error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
 694    }
 695    return ret;
 696}
 697
 698/*
 699 * Legacy layout for s390:
 700 * Older S390 KVM requires the topmost vma of the RAM to be
 701 * smaller than an system defined value, which is at least 256GB.
 702 * Larger systems have larger values. We put the guest between
 703 * the end of data segment (system break) and this value. We
 704 * use 32GB as a base to have enough room for the system break
 705 * to grow. We also have to use MAP parameters that avoid
 706 * read-only mapping of guest pages.
 707 */
 708static void *legacy_s390_alloc(size_t size, uint64_t *align)
 709{
 710    void *mem;
 711
 712    mem = mmap((void *) 0x800000000ULL, size,
 713               PROT_EXEC|PROT_READ|PROT_WRITE,
 714               MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
 715    return mem == MAP_FAILED ? NULL : mem;
 716}
 717
 718static uint8_t const *sw_bp_inst;
 719static uint8_t sw_bp_ilen;
 720
 721static void determine_sw_breakpoint_instr(void)
 722{
 723        /* DIAG 501 is used for sw breakpoints with old kernels */
 724        static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
 725        /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
 726        static const uint8_t instr_0x0000[] = {0x00, 0x00};
 727
 728        if (sw_bp_inst) {
 729            return;
 730        }
 731        if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
 732            sw_bp_inst = diag_501;
 733            sw_bp_ilen = sizeof(diag_501);
 734            DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
 735        } else {
 736            sw_bp_inst = instr_0x0000;
 737            sw_bp_ilen = sizeof(instr_0x0000);
 738            DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
 739        }
 740}
 741
 742int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 743{
 744    determine_sw_breakpoint_instr();
 745
 746    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 747                            sw_bp_ilen, 0) ||
 748        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
 749        return -EINVAL;
 750    }
 751    return 0;
 752}
 753
 754int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 755{
 756    uint8_t t[MAX_ILEN];
 757
 758    if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
 759        return -EINVAL;
 760    } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
 761        return -EINVAL;
 762    } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 763                                   sw_bp_ilen, 1)) {
 764        return -EINVAL;
 765    }
 766
 767    return 0;
 768}
 769
 770static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
 771                                                    int len, int type)
 772{
 773    int n;
 774
 775    for (n = 0; n < nb_hw_breakpoints; n++) {
 776        if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
 777            (hw_breakpoints[n].len == len || len == -1)) {
 778            return &hw_breakpoints[n];
 779        }
 780    }
 781
 782    return NULL;
 783}
 784
 785static int insert_hw_breakpoint(target_ulong addr, int len, int type)
 786{
 787    int size;
 788
 789    if (find_hw_breakpoint(addr, len, type)) {
 790        return -EEXIST;
 791    }
 792
 793    size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
 794
 795    if (!hw_breakpoints) {
 796        nb_hw_breakpoints = 0;
 797        hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
 798    } else {
 799        hw_breakpoints =
 800            (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
 801    }
 802
 803    if (!hw_breakpoints) {
 804        nb_hw_breakpoints = 0;
 805        return -ENOMEM;
 806    }
 807
 808    hw_breakpoints[nb_hw_breakpoints].addr = addr;
 809    hw_breakpoints[nb_hw_breakpoints].len = len;
 810    hw_breakpoints[nb_hw_breakpoints].type = type;
 811
 812    nb_hw_breakpoints++;
 813
 814    return 0;
 815}
 816
 817int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 818                                  target_ulong len, int type)
 819{
 820    switch (type) {
 821    case GDB_BREAKPOINT_HW:
 822        type = KVM_HW_BP;
 823        break;
 824    case GDB_WATCHPOINT_WRITE:
 825        if (len < 1) {
 826            return -EINVAL;
 827        }
 828        type = KVM_HW_WP_WRITE;
 829        break;
 830    default:
 831        return -ENOSYS;
 832    }
 833    return insert_hw_breakpoint(addr, len, type);
 834}
 835
 836int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 837                                  target_ulong len, int type)
 838{
 839    int size;
 840    struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
 841
 842    if (bp == NULL) {
 843        return -ENOENT;
 844    }
 845
 846    nb_hw_breakpoints--;
 847    if (nb_hw_breakpoints > 0) {
 848        /*
 849         * In order to trim the array, move the last element to the position to
 850         * be removed - if necessary.
 851         */
 852        if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
 853            *bp = hw_breakpoints[nb_hw_breakpoints];
 854        }
 855        size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
 856        hw_breakpoints =
 857             (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
 858    } else {
 859        g_free(hw_breakpoints);
 860        hw_breakpoints = NULL;
 861    }
 862
 863    return 0;
 864}
 865
 866void kvm_arch_remove_all_hw_breakpoints(void)
 867{
 868    nb_hw_breakpoints = 0;
 869    g_free(hw_breakpoints);
 870    hw_breakpoints = NULL;
 871}
 872
 873void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
 874{
 875    int i;
 876
 877    if (nb_hw_breakpoints > 0) {
 878        dbg->arch.nr_hw_bp = nb_hw_breakpoints;
 879        dbg->arch.hw_bp = hw_breakpoints;
 880
 881        for (i = 0; i < nb_hw_breakpoints; ++i) {
 882            hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
 883                                                       hw_breakpoints[i].addr);
 884        }
 885        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 886    } else {
 887        dbg->arch.nr_hw_bp = 0;
 888        dbg->arch.hw_bp = NULL;
 889    }
 890}
 891
 892void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
 893{
 894}
 895
 896MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 897{
 898    return MEMTXATTRS_UNSPECIFIED;
 899}
 900
 901int kvm_arch_process_async_events(CPUState *cs)
 902{
 903    return cs->halted;
 904}
 905
 906static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
 907                                     struct kvm_s390_interrupt *interrupt)
 908{
 909    int r = 0;
 910
 911    interrupt->type = irq->type;
 912    switch (irq->type) {
 913    case KVM_S390_INT_VIRTIO:
 914        interrupt->parm = irq->u.ext.ext_params;
 915        /* fall through */
 916    case KVM_S390_INT_PFAULT_INIT:
 917    case KVM_S390_INT_PFAULT_DONE:
 918        interrupt->parm64 = irq->u.ext.ext_params2;
 919        break;
 920    case KVM_S390_PROGRAM_INT:
 921        interrupt->parm = irq->u.pgm.code;
 922        break;
 923    case KVM_S390_SIGP_SET_PREFIX:
 924        interrupt->parm = irq->u.prefix.address;
 925        break;
 926    case KVM_S390_INT_SERVICE:
 927        interrupt->parm = irq->u.ext.ext_params;
 928        break;
 929    case KVM_S390_MCHK:
 930        interrupt->parm = irq->u.mchk.cr14;
 931        interrupt->parm64 = irq->u.mchk.mcic;
 932        break;
 933    case KVM_S390_INT_EXTERNAL_CALL:
 934        interrupt->parm = irq->u.extcall.code;
 935        break;
 936    case KVM_S390_INT_EMERGENCY:
 937        interrupt->parm = irq->u.emerg.code;
 938        break;
 939    case KVM_S390_SIGP_STOP:
 940    case KVM_S390_RESTART:
 941        break; /* These types have no parameters */
 942    case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
 943        interrupt->parm = irq->u.io.subchannel_id << 16;
 944        interrupt->parm |= irq->u.io.subchannel_nr;
 945        interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
 946        interrupt->parm64 |= irq->u.io.io_int_word;
 947        break;
 948    default:
 949        r = -EINVAL;
 950        break;
 951    }
 952    return r;
 953}
 954
 955static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
 956{
 957    struct kvm_s390_interrupt kvmint = {};
 958    int r;
 959
 960    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
 961    if (r < 0) {
 962        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
 963        exit(1);
 964    }
 965
 966    r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
 967    if (r < 0) {
 968        fprintf(stderr, "KVM failed to inject interrupt\n");
 969        exit(1);
 970    }
 971}
 972
 973void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
 974{
 975    CPUState *cs = CPU(cpu);
 976    int r;
 977
 978    if (cap_s390_irq) {
 979        r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
 980        if (!r) {
 981            return;
 982        }
 983        error_report("KVM failed to inject interrupt %llx", irq->type);
 984        exit(1);
 985    }
 986
 987    inject_vcpu_irq_legacy(cs, irq);
 988}
 989
 990static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
 991{
 992    struct kvm_s390_interrupt kvmint = {};
 993    int r;
 994
 995    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
 996    if (r < 0) {
 997        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
 998        exit(1);
 999    }
1000
1001    r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1002    if (r < 0) {
1003        fprintf(stderr, "KVM failed to inject interrupt\n");
1004        exit(1);
1005    }
1006}
1007
1008void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1009{
1010    static bool use_flic = true;
1011    int r;
1012
1013    if (use_flic) {
1014        r = kvm_s390_inject_flic(irq);
1015        if (r == -ENOSYS) {
1016            use_flic = false;
1017        }
1018        if (!r) {
1019            return;
1020        }
1021    }
1022    __kvm_s390_floating_interrupt(irq);
1023}
1024
1025void kvm_s390_service_interrupt(uint32_t parm)
1026{
1027    struct kvm_s390_irq irq = {
1028        .type = KVM_S390_INT_SERVICE,
1029        .u.ext.ext_params = parm,
1030    };
1031
1032    kvm_s390_floating_interrupt(&irq);
1033}
1034
1035void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1036{
1037    struct kvm_s390_irq irq = {
1038        .type = KVM_S390_PROGRAM_INT,
1039        .u.pgm.code = code,
1040    };
1041
1042    kvm_s390_vcpu_interrupt(cpu, &irq);
1043}
1044
1045void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1046{
1047    struct kvm_s390_irq irq = {
1048        .type = KVM_S390_PROGRAM_INT,
1049        .u.pgm.code = code,
1050        .u.pgm.trans_exc_code = te_code,
1051        .u.pgm.exc_access_id = te_code & 3,
1052    };
1053
1054    kvm_s390_vcpu_interrupt(cpu, &irq);
1055}
1056
1057static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1058                                 uint16_t ipbh0)
1059{
1060    CPUS390XState *env = &cpu->env;
1061    uint64_t sccb;
1062    uint32_t code;
1063    int r = 0;
1064
1065    cpu_synchronize_state(CPU(cpu));
1066    sccb = env->regs[ipbh0 & 0xf];
1067    code = env->regs[(ipbh0 & 0xf0) >> 4];
1068
1069    r = sclp_service_call(env, sccb, code);
1070    if (r < 0) {
1071        kvm_s390_program_interrupt(cpu, -r);
1072    } else {
1073        setcc(cpu, r);
1074    }
1075
1076    return 0;
1077}
1078
1079static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1080{
1081    CPUS390XState *env = &cpu->env;
1082    int rc = 0;
1083    uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1084
1085    cpu_synchronize_state(CPU(cpu));
1086
1087    switch (ipa1) {
1088    case PRIV_B2_XSCH:
1089        ioinst_handle_xsch(cpu, env->regs[1]);
1090        break;
1091    case PRIV_B2_CSCH:
1092        ioinst_handle_csch(cpu, env->regs[1]);
1093        break;
1094    case PRIV_B2_HSCH:
1095        ioinst_handle_hsch(cpu, env->regs[1]);
1096        break;
1097    case PRIV_B2_MSCH:
1098        ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1099        break;
1100    case PRIV_B2_SSCH:
1101        ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1102        break;
1103    case PRIV_B2_STCRW:
1104        ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1105        break;
1106    case PRIV_B2_STSCH:
1107        ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1108        break;
1109    case PRIV_B2_TSCH:
1110        /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1111        fprintf(stderr, "Spurious tsch intercept\n");
1112        break;
1113    case PRIV_B2_CHSC:
1114        ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1115        break;
1116    case PRIV_B2_TPI:
1117        /* This should have been handled by kvm already. */
1118        fprintf(stderr, "Spurious tpi intercept\n");
1119        break;
1120    case PRIV_B2_SCHM:
1121        ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1122                           run->s390_sieic.ipb);
1123        break;
1124    case PRIV_B2_RSCH:
1125        ioinst_handle_rsch(cpu, env->regs[1]);
1126        break;
1127    case PRIV_B2_RCHP:
1128        ioinst_handle_rchp(cpu, env->regs[1]);
1129        break;
1130    case PRIV_B2_STCPS:
1131        /* We do not provide this instruction, it is suppressed. */
1132        break;
1133    case PRIV_B2_SAL:
1134        ioinst_handle_sal(cpu, env->regs[1]);
1135        break;
1136    case PRIV_B2_SIGA:
1137        /* Not provided, set CC = 3 for subchannel not operational */
1138        setcc(cpu, 3);
1139        break;
1140    case PRIV_B2_SCLP_CALL:
1141        rc = kvm_sclp_service_call(cpu, run, ipbh0);
1142        break;
1143    default:
1144        rc = -1;
1145        DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1146        break;
1147    }
1148
1149    return rc;
1150}
1151
1152static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1153                                  uint8_t *ar)
1154{
1155    CPUS390XState *env = &cpu->env;
1156    uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1157    uint32_t base2 = run->s390_sieic.ipb >> 28;
1158    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1159                     ((run->s390_sieic.ipb & 0xff00) << 4);
1160
1161    if (disp2 & 0x80000) {
1162        disp2 += 0xfff00000;
1163    }
1164    if (ar) {
1165        *ar = base2;
1166    }
1167
1168    return (base2 ? env->regs[base2] : 0) +
1169           (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1170}
1171
1172static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1173                                  uint8_t *ar)
1174{
1175    CPUS390XState *env = &cpu->env;
1176    uint32_t base2 = run->s390_sieic.ipb >> 28;
1177    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1178                     ((run->s390_sieic.ipb & 0xff00) << 4);
1179
1180    if (disp2 & 0x80000) {
1181        disp2 += 0xfff00000;
1182    }
1183    if (ar) {
1184        *ar = base2;
1185    }
1186
1187    return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1188}
1189
1190static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1191{
1192    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1193
1194    return clp_service_call(cpu, r2);
1195}
1196
1197static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1198{
1199    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1200    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1201
1202    return pcilg_service_call(cpu, r1, r2);
1203}
1204
1205static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1206{
1207    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1208    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1209
1210    return pcistg_service_call(cpu, r1, r2);
1211}
1212
1213static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1214{
1215    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1216    uint64_t fiba;
1217    uint8_t ar;
1218
1219    cpu_synchronize_state(CPU(cpu));
1220    fiba = get_base_disp_rxy(cpu, run, &ar);
1221
1222    return stpcifc_service_call(cpu, r1, fiba, ar);
1223}
1224
1225static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1226{
1227    CPUS390XState *env = &cpu->env;
1228    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1229    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1230    uint8_t isc;
1231    uint16_t mode;
1232    int r;
1233
1234    cpu_synchronize_state(CPU(cpu));
1235    mode = env->regs[r1] & 0xffff;
1236    isc = (env->regs[r3] >> 27) & 0x7;
1237    r = css_do_sic(env, isc, mode);
1238    if (r) {
1239        kvm_s390_program_interrupt(cpu, -r);
1240    }
1241
1242    return 0;
1243}
1244
1245static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1246{
1247    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1248    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1249
1250    return rpcit_service_call(cpu, r1, r2);
1251}
1252
1253static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1254{
1255    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1256    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1257    uint64_t gaddr;
1258    uint8_t ar;
1259
1260    cpu_synchronize_state(CPU(cpu));
1261    gaddr = get_base_disp_rsy(cpu, run, &ar);
1262
1263    return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1264}
1265
1266static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1267{
1268    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1269    uint64_t fiba;
1270    uint8_t ar;
1271
1272    cpu_synchronize_state(CPU(cpu));
1273    fiba = get_base_disp_rxy(cpu, run, &ar);
1274
1275    return mpcifc_service_call(cpu, r1, fiba, ar);
1276}
1277
1278static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1279{
1280    int r = 0;
1281
1282    switch (ipa1) {
1283    case PRIV_B9_CLP:
1284        r = kvm_clp_service_call(cpu, run);
1285        break;
1286    case PRIV_B9_PCISTG:
1287        r = kvm_pcistg_service_call(cpu, run);
1288        break;
1289    case PRIV_B9_PCILG:
1290        r = kvm_pcilg_service_call(cpu, run);
1291        break;
1292    case PRIV_B9_RPCIT:
1293        r = kvm_rpcit_service_call(cpu, run);
1294        break;
1295    case PRIV_B9_EQBS:
1296        /* just inject exception */
1297        r = -1;
1298        break;
1299    default:
1300        r = -1;
1301        DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1302        break;
1303    }
1304
1305    return r;
1306}
1307
1308static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1309{
1310    int r = 0;
1311
1312    switch (ipbl) {
1313    case PRIV_EB_PCISTB:
1314        r = kvm_pcistb_service_call(cpu, run);
1315        break;
1316    case PRIV_EB_SIC:
1317        r = kvm_sic_service_call(cpu, run);
1318        break;
1319    case PRIV_EB_SQBS:
1320        /* just inject exception */
1321        r = -1;
1322        break;
1323    default:
1324        r = -1;
1325        DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1326        break;
1327    }
1328
1329    return r;
1330}
1331
1332static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1333{
1334    int r = 0;
1335
1336    switch (ipbl) {
1337    case PRIV_E3_MPCIFC:
1338        r = kvm_mpcifc_service_call(cpu, run);
1339        break;
1340    case PRIV_E3_STPCIFC:
1341        r = kvm_stpcifc_service_call(cpu, run);
1342        break;
1343    default:
1344        r = -1;
1345        DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1346        break;
1347    }
1348
1349    return r;
1350}
1351
1352static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1353{
1354    CPUS390XState *env = &cpu->env;
1355    int ret;
1356
1357    cpu_synchronize_state(CPU(cpu));
1358    ret = s390_virtio_hypercall(env);
1359    if (ret == -EINVAL) {
1360        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1361        return 0;
1362    }
1363
1364    return ret;
1365}
1366
1367static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1368{
1369    uint64_t r1, r3;
1370    int rc;
1371
1372    cpu_synchronize_state(CPU(cpu));
1373    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1374    r3 = run->s390_sieic.ipa & 0x000f;
1375    rc = handle_diag_288(&cpu->env, r1, r3);
1376    if (rc) {
1377        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1378    }
1379}
1380
1381static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1382{
1383    uint64_t r1, r3;
1384
1385    cpu_synchronize_state(CPU(cpu));
1386    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1387    r3 = run->s390_sieic.ipa & 0x000f;
1388    handle_diag_308(&cpu->env, r1, r3);
1389}
1390
1391static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1392{
1393    CPUS390XState *env = &cpu->env;
1394    unsigned long pc;
1395
1396    cpu_synchronize_state(CPU(cpu));
1397
1398    pc = env->psw.addr - sw_bp_ilen;
1399    if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1400        env->psw.addr = pc;
1401        return EXCP_DEBUG;
1402    }
1403
1404    return -ENOENT;
1405}
1406
1407#define DIAG_KVM_CODE_MASK 0x000000000000ffff
1408
1409static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1410{
1411    int r = 0;
1412    uint16_t func_code;
1413
1414    /*
1415     * For any diagnose call we support, bits 48-63 of the resulting
1416     * address specify the function code; the remainder is ignored.
1417     */
1418    func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1419    switch (func_code) {
1420    case DIAG_TIMEREVENT:
1421        kvm_handle_diag_288(cpu, run);
1422        break;
1423    case DIAG_IPL:
1424        kvm_handle_diag_308(cpu, run);
1425        break;
1426    case DIAG_KVM_HYPERCALL:
1427        r = handle_hypercall(cpu, run);
1428        break;
1429    case DIAG_KVM_BREAKPOINT:
1430        r = handle_sw_breakpoint(cpu, run);
1431        break;
1432    default:
1433        DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1434        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1435        break;
1436    }
1437
1438    return r;
1439}
1440
1441typedef struct SigpInfo {
1442    uint64_t param;
1443    int cc;
1444    uint64_t *status_reg;
1445} SigpInfo;
1446
1447static void set_sigp_status(SigpInfo *si, uint64_t status)
1448{
1449    *si->status_reg &= 0xffffffff00000000ULL;
1450    *si->status_reg |= status;
1451    si->cc = SIGP_CC_STATUS_STORED;
1452}
1453
1454static void sigp_start(CPUState *cs, run_on_cpu_data arg)
1455{
1456    S390CPU *cpu = S390_CPU(cs);
1457    SigpInfo *si = arg.host_ptr;
1458
1459    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1460        si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1461        return;
1462    }
1463
1464    s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1465    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1466}
1467
1468static void sigp_stop(CPUState *cs, run_on_cpu_data arg)
1469{
1470    S390CPU *cpu = S390_CPU(cs);
1471    SigpInfo *si = arg.host_ptr;
1472    struct kvm_s390_irq irq = {
1473        .type = KVM_S390_SIGP_STOP,
1474    };
1475
1476    if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) {
1477        si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1478        return;
1479    }
1480
1481    /* disabled wait - sleeping in user space */
1482    if (cs->halted) {
1483        s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1484    } else {
1485        /* execute the stop function */
1486        cpu->env.sigp_order = SIGP_STOP;
1487        kvm_s390_vcpu_interrupt(cpu, &irq);
1488    }
1489    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1490}
1491
1492#define ADTL_GS_OFFSET   1024 /* offset of GS data in adtl save area */
1493#define ADTL_GS_MIN_SIZE 2048 /* minimal size of adtl save area for GS */
1494static int do_store_adtl_status(S390CPU *cpu, hwaddr addr, hwaddr len)
1495{
1496    hwaddr save = len;
1497    void *mem;
1498
1499    mem = cpu_physical_memory_map(addr, &save, 1);
1500    if (!mem) {
1501        return -EFAULT;
1502    }
1503    if (save != len) {
1504        cpu_physical_memory_unmap(mem, len, 1, 0);
1505        return -EFAULT;
1506    }
1507
1508    if (s390_has_feat(S390_FEAT_VECTOR)) {
1509        memcpy(mem, &cpu->env.vregs, 512);
1510    }
1511    if (s390_has_feat(S390_FEAT_GUARDED_STORAGE) && len >= ADTL_GS_MIN_SIZE) {
1512        memcpy(mem + ADTL_GS_OFFSET, &cpu->env.gscb, 32);
1513    }
1514
1515    cpu_physical_memory_unmap(mem, len, 1, len);
1516
1517    return 0;
1518}
1519
1520#define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1521#define SAVE_AREA_SIZE 512
1522static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1523{
1524    static const uint8_t ar_id = 1;
1525    uint64_t ckc = cpu->env.ckc >> 8;
1526    void *mem;
1527    int i;
1528    hwaddr len = SAVE_AREA_SIZE;
1529
1530    mem = cpu_physical_memory_map(addr, &len, 1);
1531    if (!mem) {
1532        return -EFAULT;
1533    }
1534    if (len != SAVE_AREA_SIZE) {
1535        cpu_physical_memory_unmap(mem, len, 1, 0);
1536        return -EFAULT;
1537    }
1538
1539    if (store_arch) {
1540        cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1541    }
1542    for (i = 0; i < 16; ++i) {
1543        *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll;
1544    }
1545    memcpy(mem + 128, &cpu->env.regs, 128);
1546    memcpy(mem + 256, &cpu->env.psw, 16);
1547    memcpy(mem + 280, &cpu->env.psa, 4);
1548    memcpy(mem + 284, &cpu->env.fpc, 4);
1549    memcpy(mem + 292, &cpu->env.todpr, 4);
1550    memcpy(mem + 296, &cpu->env.cputm, 8);
1551    memcpy(mem + 304, &ckc, 8);
1552    memcpy(mem + 320, &cpu->env.aregs, 64);
1553    memcpy(mem + 384, &cpu->env.cregs, 128);
1554
1555    cpu_physical_memory_unmap(mem, len, 1, len);
1556
1557    return 0;
1558}
1559
1560static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg)
1561{
1562    S390CPU *cpu = S390_CPU(cs);
1563    SigpInfo *si = arg.host_ptr;
1564    struct kvm_s390_irq irq = {
1565        .type = KVM_S390_SIGP_STOP,
1566    };
1567
1568    /* disabled wait - sleeping in user space */
1569    if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) {
1570        s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1571    }
1572
1573    switch (s390_cpu_get_state(cpu)) {
1574    case CPU_STATE_OPERATING:
1575        cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1576        kvm_s390_vcpu_interrupt(cpu, &irq);
1577        /* store will be performed when handling the stop intercept */
1578        break;
1579    case CPU_STATE_STOPPED:
1580        /* already stopped, just store the status */
1581        cpu_synchronize_state(cs);
1582        kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1583        break;
1584    }
1585    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1586}
1587
1588static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg)
1589{
1590    S390CPU *cpu = S390_CPU(cs);
1591    SigpInfo *si = arg.host_ptr;
1592    uint32_t address = si->param & 0x7ffffe00u;
1593
1594    /* cpu has to be stopped */
1595    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1596        set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1597        return;
1598    }
1599
1600    cpu_synchronize_state(cs);
1601
1602    if (kvm_s390_store_status(cpu, address, false)) {
1603        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1604        return;
1605    }
1606    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1607}
1608
1609#define ADTL_SAVE_LC_MASK  0xfUL
1610static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg)
1611{
1612    S390CPU *cpu = S390_CPU(cs);
1613    SigpInfo *si = arg.host_ptr;
1614    uint8_t lc = si->param & ADTL_SAVE_LC_MASK;
1615    hwaddr addr = si->param & ~ADTL_SAVE_LC_MASK;
1616    hwaddr len = 1UL << (lc ? lc : 10);
1617
1618    if (!s390_has_feat(S390_FEAT_VECTOR) &&
1619        !s390_has_feat(S390_FEAT_GUARDED_STORAGE)) {
1620        set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1621        return;
1622    }
1623
1624    /* cpu has to be stopped */
1625    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1626        set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1627        return;
1628    }
1629
1630    /* address must be aligned to length */
1631    if (addr & (len - 1)) {
1632        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1633        return;
1634    }
1635
1636    /* no GS: only lc == 0 is valid */
1637    if (!s390_has_feat(S390_FEAT_GUARDED_STORAGE) &&
1638        lc != 0) {
1639        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1640        return;
1641    }
1642
1643    /* GS: 0, 10, 11, 12 are valid */
1644    if (s390_has_feat(S390_FEAT_GUARDED_STORAGE) &&
1645        lc != 0 &&
1646        lc != 10 &&
1647        lc != 11 &&
1648        lc != 12) {
1649        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1650        return;
1651    }
1652
1653    cpu_synchronize_state(cs);
1654
1655    if (do_store_adtl_status(cpu, addr, len)) {
1656        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1657        return;
1658    }
1659    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1660}
1661
1662static void sigp_restart(CPUState *cs, run_on_cpu_data arg)
1663{
1664    S390CPU *cpu = S390_CPU(cs);
1665    SigpInfo *si = arg.host_ptr;
1666    struct kvm_s390_irq irq = {
1667        .type = KVM_S390_RESTART,
1668    };
1669
1670    switch (s390_cpu_get_state(cpu)) {
1671    case CPU_STATE_STOPPED:
1672        /* the restart irq has to be delivered prior to any other pending irq */
1673        cpu_synchronize_state(cs);
1674        do_restart_interrupt(&cpu->env);
1675        s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1676        break;
1677    case CPU_STATE_OPERATING:
1678        kvm_s390_vcpu_interrupt(cpu, &irq);
1679        break;
1680    }
1681    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1682}
1683
1684int kvm_s390_cpu_restart(S390CPU *cpu)
1685{
1686    SigpInfo si = {};
1687
1688    run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1689    DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1690    return 0;
1691}
1692
1693static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1694{
1695    S390CPU *cpu = S390_CPU(cs);
1696    S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1697    SigpInfo *si = arg.host_ptr;
1698
1699    cpu_synchronize_state(cs);
1700    scc->initial_cpu_reset(cs);
1701    cpu_synchronize_post_reset(cs);
1702    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1703}
1704
1705static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1706{
1707    S390CPU *cpu = S390_CPU(cs);
1708    S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1709    SigpInfo *si = arg.host_ptr;
1710
1711    cpu_synchronize_state(cs);
1712    scc->cpu_reset(cs);
1713    cpu_synchronize_post_reset(cs);
1714    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1715}
1716
1717static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg)
1718{
1719    S390CPU *cpu = S390_CPU(cs);
1720    SigpInfo *si = arg.host_ptr;
1721    uint32_t addr = si->param & 0x7fffe000u;
1722
1723    cpu_synchronize_state(cs);
1724
1725    if (!address_space_access_valid(&address_space_memory, addr,
1726                                    sizeof(struct LowCore), false)) {
1727        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1728        return;
1729    }
1730
1731    /* cpu has to be stopped */
1732    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1733        set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1734        return;
1735    }
1736
1737    cpu->env.psa = addr;
1738    cpu_synchronize_post_init(cs);
1739    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1740}
1741
1742static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1743                                  uint64_t param, uint64_t *status_reg)
1744{
1745    SigpInfo si = {
1746        .param = param,
1747        .status_reg = status_reg,
1748    };
1749
1750    /* cpu available? */
1751    if (dst_cpu == NULL) {
1752        return SIGP_CC_NOT_OPERATIONAL;
1753    }
1754
1755    /* only resets can break pending orders */
1756    if (dst_cpu->env.sigp_order != 0 &&
1757        order != SIGP_CPU_RESET &&
1758        order != SIGP_INITIAL_CPU_RESET) {
1759        return SIGP_CC_BUSY;
1760    }
1761
1762    switch (order) {
1763    case SIGP_START:
1764        run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si));
1765        break;
1766    case SIGP_STOP:
1767        run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si));
1768        break;
1769    case SIGP_RESTART:
1770        run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1771        break;
1772    case SIGP_STOP_STORE_STATUS:
1773        run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si));
1774        break;
1775    case SIGP_STORE_STATUS_ADDR:
1776        run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si));
1777        break;
1778    case SIGP_STORE_ADTL_STATUS:
1779        run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si));
1780        break;
1781    case SIGP_SET_PREFIX:
1782        run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si));
1783        break;
1784    case SIGP_INITIAL_CPU_RESET:
1785        run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1786        break;
1787    case SIGP_CPU_RESET:
1788        run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1789        break;
1790    default:
1791        DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1792        set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1793    }
1794
1795    return si.cc;
1796}
1797
1798static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1799                                 uint64_t *status_reg)
1800{
1801    CPUState *cur_cs;
1802    S390CPU *cur_cpu;
1803    bool all_stopped = true;
1804
1805    CPU_FOREACH(cur_cs) {
1806        cur_cpu = S390_CPU(cur_cs);
1807
1808        if (cur_cpu == cpu) {
1809            continue;
1810        }
1811        if (s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1812            all_stopped = false;
1813        }
1814    }
1815
1816    *status_reg &= 0xffffffff00000000ULL;
1817
1818    /* Reject set arch order, with czam we're always in z/Arch mode. */
1819    *status_reg |= (all_stopped ? SIGP_STAT_INVALID_PARAMETER :
1820                    SIGP_STAT_INCORRECT_STATE);
1821    return SIGP_CC_STATUS_STORED;
1822}
1823
1824static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1825{
1826    CPUS390XState *env = &cpu->env;
1827    const uint8_t r1 = ipa1 >> 4;
1828    const uint8_t r3 = ipa1 & 0x0f;
1829    int ret;
1830    uint8_t order;
1831    uint64_t *status_reg;
1832    uint64_t param;
1833    S390CPU *dst_cpu = NULL;
1834
1835    cpu_synchronize_state(CPU(cpu));
1836
1837    /* get order code */
1838    order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1839        & SIGP_ORDER_MASK;
1840    status_reg = &env->regs[r1];
1841    param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1842
1843    if (qemu_mutex_trylock(&qemu_sigp_mutex)) {
1844        ret = SIGP_CC_BUSY;
1845        goto out;
1846    }
1847
1848    switch (order) {
1849    case SIGP_SET_ARCH:
1850        ret = sigp_set_architecture(cpu, param, status_reg);
1851        break;
1852    default:
1853        /* all other sigp orders target a single vcpu */
1854        dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1855        ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1856    }
1857    qemu_mutex_unlock(&qemu_sigp_mutex);
1858
1859out:
1860    trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1861                            dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1862
1863    if (ret >= 0) {
1864        setcc(cpu, ret);
1865        return 0;
1866    }
1867
1868    return ret;
1869}
1870
1871static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1872{
1873    unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1874    uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1875    int r = -1;
1876
1877    DPRINTF("handle_instruction 0x%x 0x%x\n",
1878            run->s390_sieic.ipa, run->s390_sieic.ipb);
1879    switch (ipa0) {
1880    case IPA0_B2:
1881        r = handle_b2(cpu, run, ipa1);
1882        break;
1883    case IPA0_B9:
1884        r = handle_b9(cpu, run, ipa1);
1885        break;
1886    case IPA0_EB:
1887        r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1888        break;
1889    case IPA0_E3:
1890        r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1891        break;
1892    case IPA0_DIAG:
1893        r = handle_diag(cpu, run, run->s390_sieic.ipb);
1894        break;
1895    case IPA0_SIGP:
1896        r = handle_sigp(cpu, run, ipa1);
1897        break;
1898    }
1899
1900    if (r < 0) {
1901        r = 0;
1902        kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1903    }
1904
1905    return r;
1906}
1907
1908static bool is_special_wait_psw(CPUState *cs)
1909{
1910    /* signal quiesce */
1911    return cs->kvm_run->psw_addr == 0xfffUL;
1912}
1913
1914static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1915{
1916    CPUState *cs = CPU(cpu);
1917
1918    error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1919                 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1920                 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1921    s390_cpu_halt(cpu);
1922    qemu_system_guest_panicked(NULL);
1923}
1924
1925/* try to detect pgm check loops */
1926static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1927{
1928    CPUState *cs = CPU(cpu);
1929    PSW oldpsw, newpsw;
1930
1931    cpu_synchronize_state(cs);
1932    newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1933                           offsetof(LowCore, program_new_psw));
1934    newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1935                           offsetof(LowCore, program_new_psw) + 8);
1936    oldpsw.mask  = run->psw_mask;
1937    oldpsw.addr  = run->psw_addr;
1938    /*
1939     * Avoid endless loops of operation exceptions, if the pgm new
1940     * PSW will cause a new operation exception.
1941     * The heuristic checks if the pgm new psw is within 6 bytes before
1942     * the faulting psw address (with same DAT, AS settings) and the
1943     * new psw is not a wait psw and the fault was not triggered by
1944     * problem state. In that case go into crashed state.
1945     */
1946
1947    if (oldpsw.addr - newpsw.addr <= 6 &&
1948        !(newpsw.mask & PSW_MASK_WAIT) &&
1949        !(oldpsw.mask & PSW_MASK_PSTATE) &&
1950        (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1951        (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1952        unmanageable_intercept(cpu, "operation exception loop",
1953                               offsetof(LowCore, program_new_psw));
1954        return EXCP_HALTED;
1955    }
1956    return 0;
1957}
1958
1959static int handle_intercept(S390CPU *cpu)
1960{
1961    CPUState *cs = CPU(cpu);
1962    struct kvm_run *run = cs->kvm_run;
1963    int icpt_code = run->s390_sieic.icptcode;
1964    int r = 0;
1965
1966    DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1967            (long)cs->kvm_run->psw_addr);
1968    switch (icpt_code) {
1969        case ICPT_INSTRUCTION:
1970            r = handle_instruction(cpu, run);
1971            break;
1972        case ICPT_PROGRAM:
1973            unmanageable_intercept(cpu, "program interrupt",
1974                                   offsetof(LowCore, program_new_psw));
1975            r = EXCP_HALTED;
1976            break;
1977        case ICPT_EXT_INT:
1978            unmanageable_intercept(cpu, "external interrupt",
1979                                   offsetof(LowCore, external_new_psw));
1980            r = EXCP_HALTED;
1981            break;
1982        case ICPT_WAITPSW:
1983            /* disabled wait, since enabled wait is handled in kernel */
1984            cpu_synchronize_state(cs);
1985            if (s390_cpu_halt(cpu) == 0) {
1986                if (is_special_wait_psw(cs)) {
1987                    qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1988                } else {
1989                    qemu_system_guest_panicked(NULL);
1990                }
1991            }
1992            r = EXCP_HALTED;
1993            break;
1994        case ICPT_CPU_STOP:
1995            if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1996                qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1997            }
1998            if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1999                kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
2000                                      true);
2001            }
2002            cpu->env.sigp_order = 0;
2003            r = EXCP_HALTED;
2004            break;
2005        case ICPT_OPEREXC:
2006            /* check for break points */
2007            r = handle_sw_breakpoint(cpu, run);
2008            if (r == -ENOENT) {
2009                /* Then check for potential pgm check loops */
2010                r = handle_oper_loop(cpu, run);
2011                if (r == 0) {
2012                    kvm_s390_program_interrupt(cpu, PGM_OPERATION);
2013                }
2014            }
2015            break;
2016        case ICPT_SOFT_INTERCEPT:
2017            fprintf(stderr, "KVM unimplemented icpt SOFT\n");
2018            exit(1);
2019            break;
2020        case ICPT_IO:
2021            fprintf(stderr, "KVM unimplemented icpt IO\n");
2022            exit(1);
2023            break;
2024        default:
2025            fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
2026            exit(1);
2027            break;
2028    }
2029
2030    return r;
2031}
2032
2033static int handle_tsch(S390CPU *cpu)
2034{
2035    CPUState *cs = CPU(cpu);
2036    struct kvm_run *run = cs->kvm_run;
2037    int ret;
2038
2039    cpu_synchronize_state(cs);
2040
2041    ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
2042    if (ret < 0) {
2043        /*
2044         * Failure.
2045         * If an I/O interrupt had been dequeued, we have to reinject it.
2046         */
2047        if (run->s390_tsch.dequeued) {
2048            kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
2049                                  run->s390_tsch.subchannel_nr,
2050                                  run->s390_tsch.io_int_parm,
2051                                  run->s390_tsch.io_int_word);
2052        }
2053        ret = 0;
2054    }
2055    return ret;
2056}
2057
2058static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
2059{
2060    struct sysib_322 sysib;
2061    int del;
2062
2063    if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
2064        return;
2065    }
2066    /* Shift the stack of Extended Names to prepare for our own data */
2067    memmove(&sysib.ext_names[1], &sysib.ext_names[0],
2068            sizeof(sysib.ext_names[0]) * (sysib.count - 1));
2069    /* First virt level, that doesn't provide Ext Names delimits stack. It is
2070     * assumed it's not capable of managing Extended Names for lower levels.
2071     */
2072    for (del = 1; del < sysib.count; del++) {
2073        if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
2074            break;
2075        }
2076    }
2077    if (del < sysib.count) {
2078        memset(sysib.ext_names[del], 0,
2079               sizeof(sysib.ext_names[0]) * (sysib.count - del));
2080    }
2081    /* Insert short machine name in EBCDIC, padded with blanks */
2082    if (qemu_name) {
2083        memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
2084        ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
2085                                                    strlen(qemu_name)));
2086    }
2087    sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
2088    memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
2089    /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
2090     * considered by s390 as not capable of providing any Extended Name.
2091     * Therefore if no name was specified on qemu invocation, we go with the
2092     * same "KVMguest" default, which KVM has filled into short name field.
2093     */
2094    if (qemu_name) {
2095        strncpy((char *)sysib.ext_names[0], qemu_name,
2096                sizeof(sysib.ext_names[0]));
2097    } else {
2098        strcpy((char *)sysib.ext_names[0], "KVMguest");
2099    }
2100    /* Insert UUID */
2101    memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
2102
2103    s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
2104}
2105
2106static int handle_stsi(S390CPU *cpu)
2107{
2108    CPUState *cs = CPU(cpu);
2109    struct kvm_run *run = cs->kvm_run;
2110
2111    switch (run->s390_stsi.fc) {
2112    case 3:
2113        if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2114            return 0;
2115        }
2116        /* Only sysib 3.2.2 needs post-handling for now. */
2117        insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2118        return 0;
2119    default:
2120        return 0;
2121    }
2122}
2123
2124static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2125{
2126    CPUState *cs = CPU(cpu);
2127    struct kvm_run *run = cs->kvm_run;
2128
2129    int ret = 0;
2130    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2131
2132    switch (arch_info->type) {
2133    case KVM_HW_WP_WRITE:
2134        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2135            cs->watchpoint_hit = &hw_watchpoint;
2136            hw_watchpoint.vaddr = arch_info->addr;
2137            hw_watchpoint.flags = BP_MEM_WRITE;
2138            ret = EXCP_DEBUG;
2139        }
2140        break;
2141    case KVM_HW_BP:
2142        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2143            ret = EXCP_DEBUG;
2144        }
2145        break;
2146    case KVM_SINGLESTEP:
2147        if (cs->singlestep_enabled) {
2148            ret = EXCP_DEBUG;
2149        }
2150        break;
2151    default:
2152        ret = -ENOSYS;
2153    }
2154
2155    return ret;
2156}
2157
2158int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2159{
2160    S390CPU *cpu = S390_CPU(cs);
2161    int ret = 0;
2162
2163    qemu_mutex_lock_iothread();
2164
2165    switch (run->exit_reason) {
2166        case KVM_EXIT_S390_SIEIC:
2167            ret = handle_intercept(cpu);
2168            break;
2169        case KVM_EXIT_S390_RESET:
2170            s390_reipl_request();
2171            break;
2172        case KVM_EXIT_S390_TSCH:
2173            ret = handle_tsch(cpu);
2174            break;
2175        case KVM_EXIT_S390_STSI:
2176            ret = handle_stsi(cpu);
2177            break;
2178        case KVM_EXIT_DEBUG:
2179            ret = kvm_arch_handle_debug_exit(cpu);
2180            break;
2181        default:
2182            fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2183            break;
2184    }
2185    qemu_mutex_unlock_iothread();
2186
2187    if (ret == 0) {
2188        ret = EXCP_INTERRUPT;
2189    }
2190    return ret;
2191}
2192
2193bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2194{
2195    return true;
2196}
2197
2198void kvm_s390_io_interrupt(uint16_t subchannel_id,
2199                           uint16_t subchannel_nr, uint32_t io_int_parm,
2200                           uint32_t io_int_word)
2201{
2202    struct kvm_s390_irq irq = {
2203        .u.io.subchannel_id = subchannel_id,
2204        .u.io.subchannel_nr = subchannel_nr,
2205        .u.io.io_int_parm = io_int_parm,
2206        .u.io.io_int_word = io_int_word,
2207    };
2208
2209    if (io_int_word & IO_INT_WORD_AI) {
2210        irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2211    } else {
2212        irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2213                                      (subchannel_id & 0x0006),
2214                                      subchannel_nr);
2215    }
2216    kvm_s390_floating_interrupt(&irq);
2217}
2218
2219static uint64_t build_channel_report_mcic(void)
2220{
2221    uint64_t mcic;
2222
2223    /* subclass: indicate channel report pending */
2224    mcic = MCIC_SC_CP |
2225    /* subclass modifiers: none */
2226    /* storage errors: none */
2227    /* validity bits: no damage */
2228        MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2229        MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2230        MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2231    if (s390_has_feat(S390_FEAT_VECTOR)) {
2232        mcic |= MCIC_VB_VR;
2233    }
2234    if (s390_has_feat(S390_FEAT_GUARDED_STORAGE)) {
2235        mcic |= MCIC_VB_GS;
2236    }
2237    return mcic;
2238}
2239
2240void kvm_s390_crw_mchk(void)
2241{
2242    struct kvm_s390_irq irq = {
2243        .type = KVM_S390_MCHK,
2244        .u.mchk.cr14 = 1 << 28,
2245        .u.mchk.mcic = build_channel_report_mcic(),
2246    };
2247    kvm_s390_floating_interrupt(&irq);
2248}
2249
2250void kvm_s390_enable_css_support(S390CPU *cpu)
2251{
2252    int r;
2253
2254    /* Activate host kernel channel subsystem support. */
2255    r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2256    assert(r == 0);
2257}
2258
2259void kvm_arch_init_irq_routing(KVMState *s)
2260{
2261    /*
2262     * Note that while irqchip capabilities generally imply that cpustates
2263     * are handled in-kernel, it is not true for s390 (yet); therefore, we
2264     * have to override the common code kvm_halt_in_kernel_allowed setting.
2265     */
2266    if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2267        kvm_gsi_routing_allowed = true;
2268        kvm_halt_in_kernel_allowed = false;
2269    }
2270}
2271
2272int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2273                                    int vq, bool assign)
2274{
2275    struct kvm_ioeventfd kick = {
2276        .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2277        KVM_IOEVENTFD_FLAG_DATAMATCH,
2278        .fd = event_notifier_get_fd(notifier),
2279        .datamatch = vq,
2280        .addr = sch,
2281        .len = 8,
2282    };
2283    if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2284        return -ENOSYS;
2285    }
2286    if (!assign) {
2287        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2288    }
2289    return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2290}
2291
2292int kvm_s390_get_memslot_count(KVMState *s)
2293{
2294    return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2295}
2296
2297int kvm_s390_get_ri(void)
2298{
2299    return cap_ri;
2300}
2301
2302int kvm_s390_get_gs(void)
2303{
2304    return cap_gs;
2305}
2306
2307int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2308{
2309    struct kvm_mp_state mp_state = {};
2310    int ret;
2311
2312    /* the kvm part might not have been initialized yet */
2313    if (CPU(cpu)->kvm_state == NULL) {
2314        return 0;
2315    }
2316
2317    switch (cpu_state) {
2318    case CPU_STATE_STOPPED:
2319        mp_state.mp_state = KVM_MP_STATE_STOPPED;
2320        break;
2321    case CPU_STATE_CHECK_STOP:
2322        mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2323        break;
2324    case CPU_STATE_OPERATING:
2325        mp_state.mp_state = KVM_MP_STATE_OPERATING;
2326        break;
2327    case CPU_STATE_LOAD:
2328        mp_state.mp_state = KVM_MP_STATE_LOAD;
2329        break;
2330    default:
2331        error_report("Requested CPU state is not a valid S390 CPU state: %u",
2332                     cpu_state);
2333        exit(1);
2334    }
2335
2336    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2337    if (ret) {
2338        trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2339                                       strerror(-ret));
2340    }
2341
2342    return ret;
2343}
2344
2345void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2346{
2347    struct kvm_s390_irq_state irq_state;
2348    CPUState *cs = CPU(cpu);
2349    int32_t bytes;
2350
2351    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2352        return;
2353    }
2354
2355    irq_state.buf = (uint64_t) cpu->irqstate;
2356    irq_state.len = VCPU_IRQ_BUF_SIZE;
2357
2358    bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2359    if (bytes < 0) {
2360        cpu->irqstate_saved_size = 0;
2361        error_report("Migration of interrupt state failed");
2362        return;
2363    }
2364
2365    cpu->irqstate_saved_size = bytes;
2366}
2367
2368int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2369{
2370    CPUState *cs = CPU(cpu);
2371    struct kvm_s390_irq_state irq_state;
2372    int r;
2373
2374    if (cpu->irqstate_saved_size == 0) {
2375        return 0;
2376    }
2377
2378    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2379        return -ENOSYS;
2380    }
2381
2382    irq_state.buf = (uint64_t) cpu->irqstate;
2383    irq_state.len = cpu->irqstate_saved_size;
2384
2385    r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2386    if (r) {
2387        error_report("Setting interrupt state failed %d", r);
2388    }
2389    return r;
2390}
2391
2392int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2393                             uint64_t address, uint32_t data, PCIDevice *dev)
2394{
2395    S390PCIBusDevice *pbdev;
2396    uint32_t idx = data >> ZPCI_MSI_VEC_BITS;
2397    uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2398
2399    pbdev = s390_pci_find_dev_by_idx(s390_get_phb(), idx);
2400    if (!pbdev) {
2401        DPRINTF("add_msi_route no dev\n");
2402        return -ENODEV;
2403    }
2404
2405    pbdev->routes.adapter.ind_offset = vec;
2406
2407    route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2408    route->flags = 0;
2409    route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2410    route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2411    route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2412    route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2413    route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2414    return 0;
2415}
2416
2417int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2418                                int vector, PCIDevice *dev)
2419{
2420    return 0;
2421}
2422
2423int kvm_arch_release_virq_post(int virq)
2424{
2425    return 0;
2426}
2427
2428int kvm_arch_msi_data_to_gsi(uint32_t data)
2429{
2430    abort();
2431}
2432
2433static int query_cpu_subfunc(S390FeatBitmap features)
2434{
2435    struct kvm_s390_vm_cpu_subfunc prop;
2436    struct kvm_device_attr attr = {
2437        .group = KVM_S390_VM_CPU_MODEL,
2438        .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2439        .addr = (uint64_t) &prop,
2440    };
2441    int rc;
2442
2443    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2444    if (rc) {
2445        return  rc;
2446    }
2447
2448    /*
2449     * We're going to add all subfunctions now, if the corresponding feature
2450     * is available that unlocks the query functions.
2451     */
2452    s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2453    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2454        s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2455    }
2456    if (test_bit(S390_FEAT_MSA, features)) {
2457        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2458        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2459        s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2460        s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2461        s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2462    }
2463    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2464        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2465    }
2466    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2467        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2468        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2469        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2470        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2471    }
2472    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2473        s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2474    }
2475    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2476        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2477    }
2478    return 0;
2479}
2480
2481static int configure_cpu_subfunc(const S390FeatBitmap features)
2482{
2483    struct kvm_s390_vm_cpu_subfunc prop = {};
2484    struct kvm_device_attr attr = {
2485        .group = KVM_S390_VM_CPU_MODEL,
2486        .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2487        .addr = (uint64_t) &prop,
2488    };
2489
2490    if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2491                           KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2492        /* hardware support might be missing, IBC will handle most of this */
2493        return 0;
2494    }
2495
2496    s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2497    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2498        s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2499    }
2500    if (test_bit(S390_FEAT_MSA, features)) {
2501        s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2502        s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2503        s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2504        s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2505        s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2506    }
2507    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2508        s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2509    }
2510    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2511        s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2512        s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2513        s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2514        s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2515    }
2516    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2517        s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2518    }
2519    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2520        s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2521    }
2522    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2523}
2524
2525static int kvm_to_feat[][2] = {
2526    { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2527    { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2528    { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2529    { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2530    { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2531    { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2532    { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2533    { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2534    { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2535    { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2536    { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2537    { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2538    { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2539    { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2540};
2541
2542static int query_cpu_feat(S390FeatBitmap features)
2543{
2544    struct kvm_s390_vm_cpu_feat prop;
2545    struct kvm_device_attr attr = {
2546        .group = KVM_S390_VM_CPU_MODEL,
2547        .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2548        .addr = (uint64_t) &prop,
2549    };
2550    int rc;
2551    int i;
2552
2553    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2554    if (rc) {
2555        return  rc;
2556    }
2557
2558    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2559        if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2560            set_bit(kvm_to_feat[i][1], features);
2561        }
2562    }
2563    return 0;
2564}
2565
2566static int configure_cpu_feat(const S390FeatBitmap features)
2567{
2568    struct kvm_s390_vm_cpu_feat prop = {};
2569    struct kvm_device_attr attr = {
2570        .group = KVM_S390_VM_CPU_MODEL,
2571        .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2572        .addr = (uint64_t) &prop,
2573    };
2574    int i;
2575
2576    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2577        if (test_bit(kvm_to_feat[i][1], features)) {
2578            set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2579        }
2580    }
2581    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2582}
2583
2584bool kvm_s390_cpu_models_supported(void)
2585{
2586    if (!cpu_model_allowed()) {
2587        /* compatibility machines interfere with the cpu model */
2588        return false;
2589    }
2590    return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2591                             KVM_S390_VM_CPU_MACHINE) &&
2592           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2593                             KVM_S390_VM_CPU_PROCESSOR) &&
2594           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2595                             KVM_S390_VM_CPU_MACHINE_FEAT) &&
2596           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2597                             KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2598           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2599                             KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2600}
2601
2602void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2603{
2604    struct kvm_s390_vm_cpu_machine prop = {};
2605    struct kvm_device_attr attr = {
2606        .group = KVM_S390_VM_CPU_MODEL,
2607        .attr = KVM_S390_VM_CPU_MACHINE,
2608        .addr = (uint64_t) &prop,
2609    };
2610    uint16_t unblocked_ibc = 0, cpu_type = 0;
2611    int rc;
2612
2613    memset(model, 0, sizeof(*model));
2614
2615    if (!kvm_s390_cpu_models_supported()) {
2616        error_setg(errp, "KVM doesn't support CPU models");
2617        return;
2618    }
2619
2620    /* query the basic cpu model properties */
2621    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2622    if (rc) {
2623        error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2624        return;
2625    }
2626
2627    cpu_type = cpuid_type(prop.cpuid);
2628    if (has_ibc(prop.ibc)) {
2629        model->lowest_ibc = lowest_ibc(prop.ibc);
2630        unblocked_ibc = unblocked_ibc(prop.ibc);
2631    }
2632    model->cpu_id = cpuid_id(prop.cpuid);
2633    model->cpu_id_format = cpuid_format(prop.cpuid);
2634    model->cpu_ver = 0xff;
2635
2636    /* get supported cpu features indicated via STFL(E) */
2637    s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2638                             (uint8_t *) prop.fac_mask);
2639    /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2640    if (test_bit(S390_FEAT_STFLE, model->features)) {
2641        set_bit(S390_FEAT_DAT_ENH_2, model->features);
2642    }
2643    /* get supported cpu features indicated e.g. via SCLP */
2644    rc = query_cpu_feat(model->features);
2645    if (rc) {
2646        error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2647        return;
2648    }
2649    /* get supported cpu subfunctions indicated via query / test bit */
2650    rc = query_cpu_subfunc(model->features);
2651    if (rc) {
2652        error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2653        return;
2654    }
2655
2656    /* with cpu model support, CMM is only indicated if really available */
2657    if (kvm_s390_cmma_available()) {
2658        set_bit(S390_FEAT_CMM, model->features);
2659    } else {
2660        /* no cmm -> no cmm nt */
2661        clear_bit(S390_FEAT_CMM_NT, model->features);
2662    }
2663
2664    /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2665    set_bit(S390_FEAT_ZPCI, model->features);
2666    set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2667
2668    if (s390_known_cpu_type(cpu_type)) {
2669        /* we want the exact model, even if some features are missing */
2670        model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2671                                       ibc_ec_ga(unblocked_ibc), NULL);
2672    } else {
2673        /* model unknown, e.g. too new - search using features */
2674        model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2675                                       ibc_ec_ga(unblocked_ibc),
2676                                       model->features);
2677    }
2678    if (!model->def) {
2679        error_setg(errp, "KVM: host CPU model could not be identified");
2680        return;
2681    }
2682    /* strip of features that are not part of the maximum model */
2683    bitmap_and(model->features, model->features, model->def->full_feat,
2684               S390_FEAT_MAX);
2685}
2686
2687void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2688{
2689    struct kvm_s390_vm_cpu_processor prop  = {
2690        .fac_list = { 0 },
2691    };
2692    struct kvm_device_attr attr = {
2693        .group = KVM_S390_VM_CPU_MODEL,
2694        .attr = KVM_S390_VM_CPU_PROCESSOR,
2695        .addr = (uint64_t) &prop,
2696    };
2697    int rc;
2698
2699    if (!model) {
2700        /* compatibility handling if cpu models are disabled */
2701        if (kvm_s390_cmma_available()) {
2702            kvm_s390_enable_cmma();
2703        }
2704        return;
2705    }
2706    if (!kvm_s390_cpu_models_supported()) {
2707        error_setg(errp, "KVM doesn't support CPU models");
2708        return;
2709    }
2710    prop.cpuid = s390_cpuid_from_cpu_model(model);
2711    prop.ibc = s390_ibc_from_cpu_model(model);
2712    /* configure cpu features indicated via STFL(e) */
2713    s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2714                         (uint8_t *) prop.fac_list);
2715    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2716    if (rc) {
2717        error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2718        return;
2719    }
2720    /* configure cpu features indicated e.g. via SCLP */
2721    rc = configure_cpu_feat(model->features);
2722    if (rc) {
2723        error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2724        return;
2725    }
2726    /* configure cpu subfunctions indicated via query / test bit */
2727    rc = configure_cpu_subfunc(model->features);
2728    if (rc) {
2729        error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2730        return;
2731    }
2732    /* enable CMM via CMMA */
2733    if (test_bit(S390_FEAT_CMM, model->features)) {
2734        kvm_s390_enable_cmma();
2735    }
2736}
2737