qemu/fpu/softfloat-specialize.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82#if defined(TARGET_XTENSA)
  83/* Define for architectures which deviate from IEEE in not supporting
  84 * signaling NaNs (so all NaNs are treated as quiet).
  85 */
  86#define NO_SIGNALING_NANS 1
  87#endif
  88
  89/*----------------------------------------------------------------------------
  90| The pattern for a default generated half-precision NaN.
  91*----------------------------------------------------------------------------*/
  92float16 float16_default_nan(float_status *status)
  93{
  94#if defined(TARGET_ARM)
  95    return const_float16(0x7E00);
  96#else
  97    if (status->snan_bit_is_one) {
  98        return const_float16(0x7DFF);
  99    } else {
 100#if defined(TARGET_MIPS)
 101        return const_float16(0x7E00);
 102#else
 103        return const_float16(0xFE00);
 104#endif
 105    }
 106#endif
 107}
 108
 109/*----------------------------------------------------------------------------
 110| The pattern for a default generated single-precision NaN.
 111*----------------------------------------------------------------------------*/
 112float32 float32_default_nan(float_status *status)
 113{
 114#if defined(TARGET_SPARC) || defined(TARGET_M68K)
 115    return const_float32(0x7FFFFFFF);
 116#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
 117      defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
 118    return const_float32(0x7FC00000);
 119#elif defined(TARGET_HPPA)
 120    return const_float32(0x7FA00000);
 121#else
 122    if (status->snan_bit_is_one) {
 123        return const_float32(0x7FBFFFFF);
 124    } else {
 125#if defined(TARGET_MIPS)
 126        return const_float32(0x7FC00000);
 127#else
 128        return const_float32(0xFFC00000);
 129#endif
 130    }
 131#endif
 132}
 133
 134/*----------------------------------------------------------------------------
 135| The pattern for a default generated double-precision NaN.
 136*----------------------------------------------------------------------------*/
 137float64 float64_default_nan(float_status *status)
 138{
 139#if defined(TARGET_SPARC) || defined(TARGET_M68K)
 140    return const_float64(LIT64(0x7FFFFFFFFFFFFFFF));
 141#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
 142      defined(TARGET_S390X)
 143    return const_float64(LIT64(0x7FF8000000000000));
 144#elif defined(TARGET_HPPA)
 145    return const_float64(LIT64(0x7FF4000000000000));
 146#else
 147    if (status->snan_bit_is_one) {
 148        return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
 149    } else {
 150#if defined(TARGET_MIPS)
 151        return const_float64(LIT64(0x7FF8000000000000));
 152#else
 153        return const_float64(LIT64(0xFFF8000000000000));
 154#endif
 155    }
 156#endif
 157}
 158
 159/*----------------------------------------------------------------------------
 160| The pattern for a default generated extended double-precision NaN.
 161*----------------------------------------------------------------------------*/
 162floatx80 floatx80_default_nan(float_status *status)
 163{
 164    floatx80 r;
 165#if defined(TARGET_M68K)
 166    r.low = LIT64(0xFFFFFFFFFFFFFFFF);
 167    r.high = 0x7FFF;
 168#else
 169    if (status->snan_bit_is_one) {
 170        r.low = LIT64(0xBFFFFFFFFFFFFFFF);
 171        r.high = 0x7FFF;
 172    } else {
 173        r.low = LIT64(0xC000000000000000);
 174        r.high = 0xFFFF;
 175    }
 176#endif
 177    return r;
 178}
 179
 180/*----------------------------------------------------------------------------
 181| The pattern for a default generated quadruple-precision NaN.
 182*----------------------------------------------------------------------------*/
 183float128 float128_default_nan(float_status *status)
 184{
 185    float128 r;
 186
 187    if (status->snan_bit_is_one) {
 188        r.low = LIT64(0xFFFFFFFFFFFFFFFF);
 189        r.high = LIT64(0x7FFF7FFFFFFFFFFF);
 190    } else {
 191        r.low = LIT64(0x0000000000000000);
 192#if defined(TARGET_S390X) || defined(TARGET_PPC)
 193        r.high = LIT64(0x7FFF800000000000);
 194#else
 195        r.high = LIT64(0xFFFF800000000000);
 196#endif
 197    }
 198    return r;
 199}
 200
 201/*----------------------------------------------------------------------------
 202| Raises the exceptions specified by `flags'.  Floating-point traps can be
 203| defined here if desired.  It is currently not possible for such a trap
 204| to substitute a result value.  If traps are not implemented, this routine
 205| should be simply `float_exception_flags |= flags;'.
 206*----------------------------------------------------------------------------*/
 207
 208void float_raise(uint8_t flags, float_status *status)
 209{
 210    status->float_exception_flags |= flags;
 211}
 212
 213/*----------------------------------------------------------------------------
 214| Internal canonical NaN format.
 215*----------------------------------------------------------------------------*/
 216typedef struct {
 217    flag sign;
 218    uint64_t high, low;
 219} commonNaNT;
 220
 221#ifdef NO_SIGNALING_NANS
 222int float16_is_quiet_nan(float16 a_, float_status *status)
 223{
 224    return float16_is_any_nan(a_);
 225}
 226
 227int float16_is_signaling_nan(float16 a_, float_status *status)
 228{
 229    return 0;
 230}
 231#else
 232/*----------------------------------------------------------------------------
 233| Returns 1 if the half-precision floating-point value `a' is a quiet
 234| NaN; otherwise returns 0.
 235*----------------------------------------------------------------------------*/
 236
 237int float16_is_quiet_nan(float16 a_, float_status *status)
 238{
 239    uint16_t a = float16_val(a_);
 240    if (status->snan_bit_is_one) {
 241        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 242    } else {
 243        return ((a & ~0x8000) >= 0x7C80);
 244    }
 245}
 246
 247/*----------------------------------------------------------------------------
 248| Returns 1 if the half-precision floating-point value `a' is a signaling
 249| NaN; otherwise returns 0.
 250*----------------------------------------------------------------------------*/
 251
 252int float16_is_signaling_nan(float16 a_, float_status *status)
 253{
 254    uint16_t a = float16_val(a_);
 255    if (status->snan_bit_is_one) {
 256        return ((a & ~0x8000) >= 0x7C80);
 257    } else {
 258        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 259    }
 260}
 261#endif
 262
 263/*----------------------------------------------------------------------------
 264| Returns a quiet NaN if the half-precision floating point value `a' is a
 265| signaling NaN; otherwise returns `a'.
 266*----------------------------------------------------------------------------*/
 267float16 float16_maybe_silence_nan(float16 a_, float_status *status)
 268{
 269    if (float16_is_signaling_nan(a_, status)) {
 270        if (status->snan_bit_is_one) {
 271            return float16_default_nan(status);
 272        } else {
 273            uint16_t a = float16_val(a_);
 274            a |= (1 << 9);
 275            return make_float16(a);
 276        }
 277    }
 278    return a_;
 279}
 280
 281/*----------------------------------------------------------------------------
 282| Returns the result of converting the half-precision floating-point NaN
 283| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 284| exception is raised.
 285*----------------------------------------------------------------------------*/
 286
 287static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
 288{
 289    commonNaNT z;
 290
 291    if (float16_is_signaling_nan(a, status)) {
 292        float_raise(float_flag_invalid, status);
 293    }
 294    z.sign = float16_val(a) >> 15;
 295    z.low = 0;
 296    z.high = ((uint64_t) float16_val(a)) << 54;
 297    return z;
 298}
 299
 300/*----------------------------------------------------------------------------
 301| Returns the result of converting the canonical NaN `a' to the half-
 302| precision floating-point format.
 303*----------------------------------------------------------------------------*/
 304
 305static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
 306{
 307    uint16_t mantissa = a.high >> 54;
 308
 309    if (status->default_nan_mode) {
 310        return float16_default_nan(status);
 311    }
 312
 313    if (mantissa) {
 314        return make_float16(((((uint16_t) a.sign) << 15)
 315                             | (0x1F << 10) | mantissa));
 316    } else {
 317        return float16_default_nan(status);
 318    }
 319}
 320
 321#ifdef NO_SIGNALING_NANS
 322int float32_is_quiet_nan(float32 a_, float_status *status)
 323{
 324    return float32_is_any_nan(a_);
 325}
 326
 327int float32_is_signaling_nan(float32 a_, float_status *status)
 328{
 329    return 0;
 330}
 331#else
 332/*----------------------------------------------------------------------------
 333| Returns 1 if the single-precision floating-point value `a' is a quiet
 334| NaN; otherwise returns 0.
 335*----------------------------------------------------------------------------*/
 336
 337int float32_is_quiet_nan(float32 a_, float_status *status)
 338{
 339    uint32_t a = float32_val(a_);
 340    if (status->snan_bit_is_one) {
 341        return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 342    } else {
 343        return ((uint32_t)(a << 1) >= 0xFF800000);
 344    }
 345}
 346
 347/*----------------------------------------------------------------------------
 348| Returns 1 if the single-precision floating-point value `a' is a signaling
 349| NaN; otherwise returns 0.
 350*----------------------------------------------------------------------------*/
 351
 352int float32_is_signaling_nan(float32 a_, float_status *status)
 353{
 354    uint32_t a = float32_val(a_);
 355    if (status->snan_bit_is_one) {
 356        return ((uint32_t)(a << 1) >= 0xFF800000);
 357    } else {
 358        return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 359    }
 360}
 361#endif
 362
 363/*----------------------------------------------------------------------------
 364| Returns a quiet NaN if the single-precision floating point value `a' is a
 365| signaling NaN; otherwise returns `a'.
 366*----------------------------------------------------------------------------*/
 367
 368float32 float32_maybe_silence_nan(float32 a_, float_status *status)
 369{
 370    if (float32_is_signaling_nan(a_, status)) {
 371        if (status->snan_bit_is_one) {
 372#ifdef TARGET_HPPA
 373            uint32_t a = float32_val(a_);
 374            a &= ~0x00400000;
 375            a |=  0x00200000;
 376            return make_float32(a);
 377#else
 378            return float32_default_nan(status);
 379#endif
 380        } else {
 381            uint32_t a = float32_val(a_);
 382            a |= (1 << 22);
 383            return make_float32(a);
 384        }
 385    }
 386    return a_;
 387}
 388
 389/*----------------------------------------------------------------------------
 390| Returns the result of converting the single-precision floating-point NaN
 391| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 392| exception is raised.
 393*----------------------------------------------------------------------------*/
 394
 395static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
 396{
 397    commonNaNT z;
 398
 399    if (float32_is_signaling_nan(a, status)) {
 400        float_raise(float_flag_invalid, status);
 401    }
 402    z.sign = float32_val(a) >> 31;
 403    z.low = 0;
 404    z.high = ((uint64_t)float32_val(a)) << 41;
 405    return z;
 406}
 407
 408/*----------------------------------------------------------------------------
 409| Returns the result of converting the canonical NaN `a' to the single-
 410| precision floating-point format.
 411*----------------------------------------------------------------------------*/
 412
 413static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
 414{
 415    uint32_t mantissa = a.high >> 41;
 416
 417    if (status->default_nan_mode) {
 418        return float32_default_nan(status);
 419    }
 420
 421    if (mantissa) {
 422        return make_float32(
 423            (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
 424    } else {
 425        return float32_default_nan(status);
 426    }
 427}
 428
 429/*----------------------------------------------------------------------------
 430| Select which NaN to propagate for a two-input operation.
 431| IEEE754 doesn't specify all the details of this, so the
 432| algorithm is target-specific.
 433| The routine is passed various bits of information about the
 434| two NaNs and should return 0 to select NaN a and 1 for NaN b.
 435| Note that signalling NaNs are always squashed to quiet NaNs
 436| by the caller, by calling floatXX_maybe_silence_nan() before
 437| returning them.
 438|
 439| aIsLargerSignificand is only valid if both a and b are NaNs
 440| of some kind, and is true if a has the larger significand,
 441| or if both a and b have the same significand but a is
 442| positive but b is negative. It is only needed for the x87
 443| tie-break rule.
 444*----------------------------------------------------------------------------*/
 445
 446#if defined(TARGET_ARM)
 447static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 448                    flag aIsLargerSignificand)
 449{
 450    /* ARM mandated NaN propagation rules: take the first of:
 451     *  1. A if it is signaling
 452     *  2. B if it is signaling
 453     *  3. A (quiet)
 454     *  4. B (quiet)
 455     * A signaling NaN is always quietened before returning it.
 456     */
 457    if (aIsSNaN) {
 458        return 0;
 459    } else if (bIsSNaN) {
 460        return 1;
 461    } else if (aIsQNaN) {
 462        return 0;
 463    } else {
 464        return 1;
 465    }
 466}
 467#elif defined(TARGET_MIPS) || defined(TARGET_HPPA)
 468static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 469                    flag aIsLargerSignificand)
 470{
 471    /* According to MIPS specifications, if one of the two operands is
 472     * a sNaN, a new qNaN has to be generated. This is done in
 473     * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
 474     * says: "When possible, this QNaN result is one of the operand QNaN
 475     * values." In practice it seems that most implementations choose
 476     * the first operand if both operands are qNaN. In short this gives
 477     * the following rules:
 478     *  1. A if it is signaling
 479     *  2. B if it is signaling
 480     *  3. A (quiet)
 481     *  4. B (quiet)
 482     * A signaling NaN is always silenced before returning it.
 483     */
 484    if (aIsSNaN) {
 485        return 0;
 486    } else if (bIsSNaN) {
 487        return 1;
 488    } else if (aIsQNaN) {
 489        return 0;
 490    } else {
 491        return 1;
 492    }
 493}
 494#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
 495static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 496                   flag aIsLargerSignificand)
 497{
 498    /* PowerPC propagation rules:
 499     *  1. A if it sNaN or qNaN
 500     *  2. B if it sNaN or qNaN
 501     * A signaling NaN is always silenced before returning it.
 502     */
 503    if (aIsSNaN || aIsQNaN) {
 504        return 0;
 505    } else {
 506        return 1;
 507    }
 508}
 509#elif defined(TARGET_M68K)
 510static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 511                   flag aIsLargerSignificand)
 512{
 513    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
 514     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
 515     * If either operand, but not both operands, of an operation is a
 516     * nonsignaling NaN, then that NaN is returned as the result. If both
 517     * operands are nonsignaling NaNs, then the destination operand
 518     * nonsignaling NaN is returned as the result.
 519     * If either operand to an operation is a signaling NaN (SNaN), then the
 520     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
 521     * is set in the FPCR ENABLE byte, then the exception is taken and the
 522     * destination is not modified. If the SNaN exception enable bit is not
 523     * set, setting the SNaN bit in the operand to a one converts the SNaN to
 524     * a nonsignaling NaN. The operation then continues as described in the
 525     * preceding paragraph for nonsignaling NaNs.
 526     */
 527    if (aIsQNaN || aIsSNaN) { /* a is the destination operand */
 528        return 0; /* return the destination operand */
 529    } else {
 530        return 1; /* return b */
 531    }
 532}
 533#else
 534static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 535                    flag aIsLargerSignificand)
 536{
 537    /* This implements x87 NaN propagation rules:
 538     * SNaN + QNaN => return the QNaN
 539     * two SNaNs => return the one with the larger significand, silenced
 540     * two QNaNs => return the one with the larger significand
 541     * SNaN and a non-NaN => return the SNaN, silenced
 542     * QNaN and a non-NaN => return the QNaN
 543     *
 544     * If we get down to comparing significands and they are the same,
 545     * return the NaN with the positive sign bit (if any).
 546     */
 547    if (aIsSNaN) {
 548        if (bIsSNaN) {
 549            return aIsLargerSignificand ? 0 : 1;
 550        }
 551        return bIsQNaN ? 1 : 0;
 552    } else if (aIsQNaN) {
 553        if (bIsSNaN || !bIsQNaN) {
 554            return 0;
 555        } else {
 556            return aIsLargerSignificand ? 0 : 1;
 557        }
 558    } else {
 559        return 1;
 560    }
 561}
 562#endif
 563
 564/*----------------------------------------------------------------------------
 565| Select which NaN to propagate for a three-input operation.
 566| For the moment we assume that no CPU needs the 'larger significand'
 567| information.
 568| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
 569*----------------------------------------------------------------------------*/
 570#if defined(TARGET_ARM)
 571static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 572                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 573                         float_status *status)
 574{
 575    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
 576     * the default NaN
 577     */
 578    if (infzero && cIsQNaN) {
 579        float_raise(float_flag_invalid, status);
 580        return 3;
 581    }
 582
 583    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
 584     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
 585     */
 586    if (cIsSNaN) {
 587        return 2;
 588    } else if (aIsSNaN) {
 589        return 0;
 590    } else if (bIsSNaN) {
 591        return 1;
 592    } else if (cIsQNaN) {
 593        return 2;
 594    } else if (aIsQNaN) {
 595        return 0;
 596    } else {
 597        return 1;
 598    }
 599}
 600#elif defined(TARGET_MIPS)
 601static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 602                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 603                         float_status *status)
 604{
 605    /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
 606     * the default NaN
 607     */
 608    if (infzero) {
 609        float_raise(float_flag_invalid, status);
 610        return 3;
 611    }
 612
 613    if (status->snan_bit_is_one) {
 614        /* Prefer sNaN over qNaN, in the a, b, c order. */
 615        if (aIsSNaN) {
 616            return 0;
 617        } else if (bIsSNaN) {
 618            return 1;
 619        } else if (cIsSNaN) {
 620            return 2;
 621        } else if (aIsQNaN) {
 622            return 0;
 623        } else if (bIsQNaN) {
 624            return 1;
 625        } else {
 626            return 2;
 627        }
 628    } else {
 629        /* Prefer sNaN over qNaN, in the c, a, b order. */
 630        if (cIsSNaN) {
 631            return 2;
 632        } else if (aIsSNaN) {
 633            return 0;
 634        } else if (bIsSNaN) {
 635            return 1;
 636        } else if (cIsQNaN) {
 637            return 2;
 638        } else if (aIsQNaN) {
 639            return 0;
 640        } else {
 641            return 1;
 642        }
 643    }
 644}
 645#elif defined(TARGET_PPC)
 646static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 647                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 648                         float_status *status)
 649{
 650    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
 651     * to return an input NaN if we have one (ie c) rather than generating
 652     * a default NaN
 653     */
 654    if (infzero) {
 655        float_raise(float_flag_invalid, status);
 656        return 2;
 657    }
 658
 659    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
 660     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
 661     */
 662    if (aIsSNaN || aIsQNaN) {
 663        return 0;
 664    } else if (cIsSNaN || cIsQNaN) {
 665        return 2;
 666    } else {
 667        return 1;
 668    }
 669}
 670#else
 671/* A default implementation: prefer a to b to c.
 672 * This is unlikely to actually match any real implementation.
 673 */
 674static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 675                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 676                         float_status *status)
 677{
 678    if (aIsSNaN || aIsQNaN) {
 679        return 0;
 680    } else if (bIsSNaN || bIsQNaN) {
 681        return 1;
 682    } else {
 683        return 2;
 684    }
 685}
 686#endif
 687
 688/*----------------------------------------------------------------------------
 689| Takes two single-precision floating-point values `a' and `b', one of which
 690| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 691| signaling NaN, the invalid exception is raised.
 692*----------------------------------------------------------------------------*/
 693
 694static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
 695{
 696    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
 697    flag aIsLargerSignificand;
 698    uint32_t av, bv;
 699
 700    aIsQuietNaN = float32_is_quiet_nan(a, status);
 701    aIsSignalingNaN = float32_is_signaling_nan(a, status);
 702    bIsQuietNaN = float32_is_quiet_nan(b, status);
 703    bIsSignalingNaN = float32_is_signaling_nan(b, status);
 704    av = float32_val(a);
 705    bv = float32_val(b);
 706
 707    if (aIsSignalingNaN | bIsSignalingNaN) {
 708        float_raise(float_flag_invalid, status);
 709    }
 710
 711    if (status->default_nan_mode) {
 712        return float32_default_nan(status);
 713    }
 714
 715    if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
 716        aIsLargerSignificand = 0;
 717    } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
 718        aIsLargerSignificand = 1;
 719    } else {
 720        aIsLargerSignificand = (av < bv) ? 1 : 0;
 721    }
 722
 723    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 724                aIsLargerSignificand)) {
 725        return float32_maybe_silence_nan(b, status);
 726    } else {
 727        return float32_maybe_silence_nan(a, status);
 728    }
 729}
 730
 731/*----------------------------------------------------------------------------
 732| Takes three single-precision floating-point values `a', `b' and `c', one of
 733| which is a NaN, and returns the appropriate NaN result.  If any of  `a',
 734| `b' or `c' is a signaling NaN, the invalid exception is raised.
 735| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
 736| obviously c is a NaN, and whether to propagate c or some other NaN is
 737| implementation defined).
 738*----------------------------------------------------------------------------*/
 739
 740static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
 741                                         float32 c, flag infzero,
 742                                         float_status *status)
 743{
 744    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 745        cIsQuietNaN, cIsSignalingNaN;
 746    int which;
 747
 748    aIsQuietNaN = float32_is_quiet_nan(a, status);
 749    aIsSignalingNaN = float32_is_signaling_nan(a, status);
 750    bIsQuietNaN = float32_is_quiet_nan(b, status);
 751    bIsSignalingNaN = float32_is_signaling_nan(b, status);
 752    cIsQuietNaN = float32_is_quiet_nan(c, status);
 753    cIsSignalingNaN = float32_is_signaling_nan(c, status);
 754
 755    if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
 756        float_raise(float_flag_invalid, status);
 757    }
 758
 759    which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
 760                          bIsQuietNaN, bIsSignalingNaN,
 761                          cIsQuietNaN, cIsSignalingNaN, infzero, status);
 762
 763    if (status->default_nan_mode) {
 764        /* Note that this check is after pickNaNMulAdd so that function
 765         * has an opportunity to set the Invalid flag.
 766         */
 767        return float32_default_nan(status);
 768    }
 769
 770    switch (which) {
 771    case 0:
 772        return float32_maybe_silence_nan(a, status);
 773    case 1:
 774        return float32_maybe_silence_nan(b, status);
 775    case 2:
 776        return float32_maybe_silence_nan(c, status);
 777    case 3:
 778    default:
 779        return float32_default_nan(status);
 780    }
 781}
 782
 783#ifdef NO_SIGNALING_NANS
 784int float64_is_quiet_nan(float64 a_, float_status *status)
 785{
 786    return float64_is_any_nan(a_);
 787}
 788
 789int float64_is_signaling_nan(float64 a_, float_status *status)
 790{
 791    return 0;
 792}
 793#else
 794/*----------------------------------------------------------------------------
 795| Returns 1 if the double-precision floating-point value `a' is a quiet
 796| NaN; otherwise returns 0.
 797*----------------------------------------------------------------------------*/
 798
 799int float64_is_quiet_nan(float64 a_, float_status *status)
 800{
 801    uint64_t a = float64_val(a_);
 802    if (status->snan_bit_is_one) {
 803        return (((a >> 51) & 0xFFF) == 0xFFE)
 804            && (a & 0x0007FFFFFFFFFFFFULL);
 805    } else {
 806        return ((a << 1) >= 0xFFF0000000000000ULL);
 807    }
 808}
 809
 810/*----------------------------------------------------------------------------
 811| Returns 1 if the double-precision floating-point value `a' is a signaling
 812| NaN; otherwise returns 0.
 813*----------------------------------------------------------------------------*/
 814
 815int float64_is_signaling_nan(float64 a_, float_status *status)
 816{
 817    uint64_t a = float64_val(a_);
 818    if (status->snan_bit_is_one) {
 819        return ((a << 1) >= 0xFFF0000000000000ULL);
 820    } else {
 821        return (((a >> 51) & 0xFFF) == 0xFFE)
 822            && (a & LIT64(0x0007FFFFFFFFFFFF));
 823    }
 824}
 825#endif
 826
 827/*----------------------------------------------------------------------------
 828| Returns a quiet NaN if the double-precision floating point value `a' is a
 829| signaling NaN; otherwise returns `a'.
 830*----------------------------------------------------------------------------*/
 831
 832float64 float64_maybe_silence_nan(float64 a_, float_status *status)
 833{
 834    if (float64_is_signaling_nan(a_, status)) {
 835        if (status->snan_bit_is_one) {
 836#ifdef TARGET_HPPA
 837            uint64_t a = float64_val(a_);
 838            a &= ~0x0008000000000000ULL;
 839            a |=  0x0004000000000000ULL;
 840            return make_float64(a);
 841#else
 842            return float64_default_nan(status);
 843#endif
 844        } else {
 845            uint64_t a = float64_val(a_);
 846            a |= LIT64(0x0008000000000000);
 847            return make_float64(a);
 848        }
 849    }
 850    return a_;
 851}
 852
 853/*----------------------------------------------------------------------------
 854| Returns the result of converting the double-precision floating-point NaN
 855| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 856| exception is raised.
 857*----------------------------------------------------------------------------*/
 858
 859static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
 860{
 861    commonNaNT z;
 862
 863    if (float64_is_signaling_nan(a, status)) {
 864        float_raise(float_flag_invalid, status);
 865    }
 866    z.sign = float64_val(a) >> 63;
 867    z.low = 0;
 868    z.high = float64_val(a) << 12;
 869    return z;
 870}
 871
 872/*----------------------------------------------------------------------------
 873| Returns the result of converting the canonical NaN `a' to the double-
 874| precision floating-point format.
 875*----------------------------------------------------------------------------*/
 876
 877static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
 878{
 879    uint64_t mantissa = a.high >> 12;
 880
 881    if (status->default_nan_mode) {
 882        return float64_default_nan(status);
 883    }
 884
 885    if (mantissa) {
 886        return make_float64(
 887              (((uint64_t) a.sign) << 63)
 888            | LIT64(0x7FF0000000000000)
 889            | (a.high >> 12));
 890    } else {
 891        return float64_default_nan(status);
 892    }
 893}
 894
 895/*----------------------------------------------------------------------------
 896| Takes two double-precision floating-point values `a' and `b', one of which
 897| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 898| signaling NaN, the invalid exception is raised.
 899*----------------------------------------------------------------------------*/
 900
 901static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
 902{
 903    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
 904    flag aIsLargerSignificand;
 905    uint64_t av, bv;
 906
 907    aIsQuietNaN = float64_is_quiet_nan(a, status);
 908    aIsSignalingNaN = float64_is_signaling_nan(a, status);
 909    bIsQuietNaN = float64_is_quiet_nan(b, status);
 910    bIsSignalingNaN = float64_is_signaling_nan(b, status);
 911    av = float64_val(a);
 912    bv = float64_val(b);
 913
 914    if (aIsSignalingNaN | bIsSignalingNaN) {
 915        float_raise(float_flag_invalid, status);
 916    }
 917
 918    if (status->default_nan_mode) {
 919        return float64_default_nan(status);
 920    }
 921
 922    if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
 923        aIsLargerSignificand = 0;
 924    } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
 925        aIsLargerSignificand = 1;
 926    } else {
 927        aIsLargerSignificand = (av < bv) ? 1 : 0;
 928    }
 929
 930    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 931                aIsLargerSignificand)) {
 932        return float64_maybe_silence_nan(b, status);
 933    } else {
 934        return float64_maybe_silence_nan(a, status);
 935    }
 936}
 937
 938/*----------------------------------------------------------------------------
 939| Takes three double-precision floating-point values `a', `b' and `c', one of
 940| which is a NaN, and returns the appropriate NaN result.  If any of  `a',
 941| `b' or `c' is a signaling NaN, the invalid exception is raised.
 942| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
 943| obviously c is a NaN, and whether to propagate c or some other NaN is
 944| implementation defined).
 945*----------------------------------------------------------------------------*/
 946
 947static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
 948                                         float64 c, flag infzero,
 949                                         float_status *status)
 950{
 951    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 952        cIsQuietNaN, cIsSignalingNaN;
 953    int which;
 954
 955    aIsQuietNaN = float64_is_quiet_nan(a, status);
 956    aIsSignalingNaN = float64_is_signaling_nan(a, status);
 957    bIsQuietNaN = float64_is_quiet_nan(b, status);
 958    bIsSignalingNaN = float64_is_signaling_nan(b, status);
 959    cIsQuietNaN = float64_is_quiet_nan(c, status);
 960    cIsSignalingNaN = float64_is_signaling_nan(c, status);
 961
 962    if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
 963        float_raise(float_flag_invalid, status);
 964    }
 965
 966    which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
 967                          bIsQuietNaN, bIsSignalingNaN,
 968                          cIsQuietNaN, cIsSignalingNaN, infzero, status);
 969
 970    if (status->default_nan_mode) {
 971        /* Note that this check is after pickNaNMulAdd so that function
 972         * has an opportunity to set the Invalid flag.
 973         */
 974        return float64_default_nan(status);
 975    }
 976
 977    switch (which) {
 978    case 0:
 979        return float64_maybe_silence_nan(a, status);
 980    case 1:
 981        return float64_maybe_silence_nan(b, status);
 982    case 2:
 983        return float64_maybe_silence_nan(c, status);
 984    case 3:
 985    default:
 986        return float64_default_nan(status);
 987    }
 988}
 989
 990#ifdef NO_SIGNALING_NANS
 991int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
 992{
 993    return floatx80_is_any_nan(a_);
 994}
 995
 996int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
 997{
 998    return 0;
 999}
1000#else
1001/*----------------------------------------------------------------------------
1002| Returns 1 if the extended double-precision floating-point value `a' is a
1003| quiet NaN; otherwise returns 0. This slightly differs from the same
1004| function for other types as floatx80 has an explicit bit.
1005*----------------------------------------------------------------------------*/
1006
1007int floatx80_is_quiet_nan(floatx80 a, float_status *status)
1008{
1009    if (status->snan_bit_is_one) {
1010        uint64_t aLow;
1011
1012        aLow = a.low & ~0x4000000000000000ULL;
1013        return ((a.high & 0x7FFF) == 0x7FFF)
1014            && (aLow << 1)
1015            && (a.low == aLow);
1016    } else {
1017        return ((a.high & 0x7FFF) == 0x7FFF)
1018            && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
1019    }
1020}
1021
1022/*----------------------------------------------------------------------------
1023| Returns 1 if the extended double-precision floating-point value `a' is a
1024| signaling NaN; otherwise returns 0. This slightly differs from the same
1025| function for other types as floatx80 has an explicit bit.
1026*----------------------------------------------------------------------------*/
1027
1028int floatx80_is_signaling_nan(floatx80 a, float_status *status)
1029{
1030    if (status->snan_bit_is_one) {
1031        return ((a.high & 0x7FFF) == 0x7FFF)
1032            && ((a.low << 1) >= 0x8000000000000000ULL);
1033    } else {
1034        uint64_t aLow;
1035
1036        aLow = a.low & ~LIT64(0x4000000000000000);
1037        return ((a.high & 0x7FFF) == 0x7FFF)
1038            && (uint64_t)(aLow << 1)
1039            && (a.low == aLow);
1040    }
1041}
1042#endif
1043
1044/*----------------------------------------------------------------------------
1045| Returns a quiet NaN if the extended double-precision floating point value
1046| `a' is a signaling NaN; otherwise returns `a'.
1047*----------------------------------------------------------------------------*/
1048
1049floatx80 floatx80_maybe_silence_nan(floatx80 a, float_status *status)
1050{
1051    if (floatx80_is_signaling_nan(a, status)) {
1052        if (status->snan_bit_is_one) {
1053            a = floatx80_default_nan(status);
1054        } else {
1055            a.low |= LIT64(0xC000000000000000);
1056            return a;
1057        }
1058    }
1059    return a;
1060}
1061
1062/*----------------------------------------------------------------------------
1063| Returns the result of converting the extended double-precision floating-
1064| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
1065| invalid exception is raised.
1066*----------------------------------------------------------------------------*/
1067
1068static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
1069{
1070    floatx80 dflt;
1071    commonNaNT z;
1072
1073    if (floatx80_is_signaling_nan(a, status)) {
1074        float_raise(float_flag_invalid, status);
1075    }
1076    if (a.low >> 63) {
1077        z.sign = a.high >> 15;
1078        z.low = 0;
1079        z.high = a.low << 1;
1080    } else {
1081        dflt = floatx80_default_nan(status);
1082        z.sign = dflt.high >> 15;
1083        z.low = 0;
1084        z.high = dflt.low << 1;
1085    }
1086    return z;
1087}
1088
1089/*----------------------------------------------------------------------------
1090| Returns the result of converting the canonical NaN `a' to the extended
1091| double-precision floating-point format.
1092*----------------------------------------------------------------------------*/
1093
1094static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
1095{
1096    floatx80 z;
1097
1098    if (status->default_nan_mode) {
1099        return floatx80_default_nan(status);
1100    }
1101
1102    if (a.high >> 1) {
1103        z.low = LIT64(0x8000000000000000) | a.high >> 1;
1104        z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
1105    } else {
1106        z = floatx80_default_nan(status);
1107    }
1108    return z;
1109}
1110
1111/*----------------------------------------------------------------------------
1112| Takes two extended double-precision floating-point values `a' and `b', one
1113| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
1114| `b' is a signaling NaN, the invalid exception is raised.
1115*----------------------------------------------------------------------------*/
1116
1117static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
1118                                     float_status *status)
1119{
1120    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1121    flag aIsLargerSignificand;
1122
1123    aIsQuietNaN = floatx80_is_quiet_nan(a, status);
1124    aIsSignalingNaN = floatx80_is_signaling_nan(a, status);
1125    bIsQuietNaN = floatx80_is_quiet_nan(b, status);
1126    bIsSignalingNaN = floatx80_is_signaling_nan(b, status);
1127
1128    if (aIsSignalingNaN | bIsSignalingNaN) {
1129        float_raise(float_flag_invalid, status);
1130    }
1131
1132    if (status->default_nan_mode) {
1133        return floatx80_default_nan(status);
1134    }
1135
1136    if (a.low < b.low) {
1137        aIsLargerSignificand = 0;
1138    } else if (b.low < a.low) {
1139        aIsLargerSignificand = 1;
1140    } else {
1141        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1142    }
1143
1144    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1145                aIsLargerSignificand)) {
1146        return floatx80_maybe_silence_nan(b, status);
1147    } else {
1148        return floatx80_maybe_silence_nan(a, status);
1149    }
1150}
1151
1152#ifdef NO_SIGNALING_NANS
1153int float128_is_quiet_nan(float128 a_, float_status *status)
1154{
1155    return float128_is_any_nan(a_);
1156}
1157
1158int float128_is_signaling_nan(float128 a_, float_status *status)
1159{
1160    return 0;
1161}
1162#else
1163/*----------------------------------------------------------------------------
1164| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
1165| NaN; otherwise returns 0.
1166*----------------------------------------------------------------------------*/
1167
1168int float128_is_quiet_nan(float128 a, float_status *status)
1169{
1170    if (status->snan_bit_is_one) {
1171        return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1172            && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
1173    } else {
1174        return ((a.high << 1) >= 0xFFFF000000000000ULL)
1175            && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1176    }
1177}
1178
1179/*----------------------------------------------------------------------------
1180| Returns 1 if the quadruple-precision floating-point value `a' is a
1181| signaling NaN; otherwise returns 0.
1182*----------------------------------------------------------------------------*/
1183
1184int float128_is_signaling_nan(float128 a, float_status *status)
1185{
1186    if (status->snan_bit_is_one) {
1187        return ((a.high << 1) >= 0xFFFF000000000000ULL)
1188            && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
1189    } else {
1190        return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
1191            && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
1192    }
1193}
1194#endif
1195
1196/*----------------------------------------------------------------------------
1197| Returns a quiet NaN if the quadruple-precision floating point value `a' is
1198| a signaling NaN; otherwise returns `a'.
1199*----------------------------------------------------------------------------*/
1200
1201float128 float128_maybe_silence_nan(float128 a, float_status *status)
1202{
1203    if (float128_is_signaling_nan(a, status)) {
1204        if (status->snan_bit_is_one) {
1205            a = float128_default_nan(status);
1206        } else {
1207            a.high |= LIT64(0x0000800000000000);
1208            return a;
1209        }
1210    }
1211    return a;
1212}
1213
1214/*----------------------------------------------------------------------------
1215| Returns the result of converting the quadruple-precision floating-point NaN
1216| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
1217| exception is raised.
1218*----------------------------------------------------------------------------*/
1219
1220static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
1221{
1222    commonNaNT z;
1223
1224    if (float128_is_signaling_nan(a, status)) {
1225        float_raise(float_flag_invalid, status);
1226    }
1227    z.sign = a.high >> 63;
1228    shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1229    return z;
1230}
1231
1232/*----------------------------------------------------------------------------
1233| Returns the result of converting the canonical NaN `a' to the quadruple-
1234| precision floating-point format.
1235*----------------------------------------------------------------------------*/
1236
1237static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1238{
1239    float128 z;
1240
1241    if (status->default_nan_mode) {
1242        return float128_default_nan(status);
1243    }
1244
1245    shift128Right(a.high, a.low, 16, &z.high, &z.low);
1246    z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
1247    return z;
1248}
1249
1250/*----------------------------------------------------------------------------
1251| Takes two quadruple-precision floating-point values `a' and `b', one of
1252| which is a NaN, and returns the appropriate NaN result.  If either `a' or
1253| `b' is a signaling NaN, the invalid exception is raised.
1254*----------------------------------------------------------------------------*/
1255
1256static float128 propagateFloat128NaN(float128 a, float128 b,
1257                                     float_status *status)
1258{
1259    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1260    flag aIsLargerSignificand;
1261
1262    aIsQuietNaN = float128_is_quiet_nan(a, status);
1263    aIsSignalingNaN = float128_is_signaling_nan(a, status);
1264    bIsQuietNaN = float128_is_quiet_nan(b, status);
1265    bIsSignalingNaN = float128_is_signaling_nan(b, status);
1266
1267    if (aIsSignalingNaN | bIsSignalingNaN) {
1268        float_raise(float_flag_invalid, status);
1269    }
1270
1271    if (status->default_nan_mode) {
1272        return float128_default_nan(status);
1273    }
1274
1275    if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1276        aIsLargerSignificand = 0;
1277    } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1278        aIsLargerSignificand = 1;
1279    } else {
1280        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1281    }
1282
1283    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
1284                aIsLargerSignificand)) {
1285        return float128_maybe_silence_nan(b, status);
1286    } else {
1287        return float128_maybe_silence_nan(a, status);
1288    }
1289}
1290