qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qapi/error.h"
  12#include <libfdt.h>
  13#include "hw/hw.h"
  14#include "hw/arm/arm.h"
  15#include "hw/arm/linux-boot-if.h"
  16#include "sysemu/kvm.h"
  17#include "sysemu/sysemu.h"
  18#include "sysemu/numa.h"
  19#include "hw/boards.h"
  20#include "hw/loader.h"
  21#include "elf.h"
  22#include "sysemu/device_tree.h"
  23#include "qemu/config-file.h"
  24#include "exec/address-spaces.h"
  25
  26/* Kernel boot protocol is specified in the kernel docs
  27 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  28 * They have different preferred image load offsets from system RAM base.
  29 */
  30#define KERNEL_ARGS_ADDR 0x100
  31#define KERNEL_LOAD_ADDR 0x00010000
  32#define KERNEL64_LOAD_ADDR 0x00080000
  33
  34#define ARM64_TEXT_OFFSET_OFFSET    8
  35#define ARM64_MAGIC_OFFSET          56
  36
  37typedef enum {
  38    FIXUP_NONE = 0,     /* do nothing */
  39    FIXUP_TERMINATOR,   /* end of insns */
  40    FIXUP_BOARDID,      /* overwrite with board ID number */
  41    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  42    FIXUP_ARGPTR,       /* overwrite with pointer to kernel args */
  43    FIXUP_ENTRYPOINT,   /* overwrite with kernel entry point */
  44    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  45    FIXUP_BOOTREG,      /* overwrite with boot register address */
  46    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  47    FIXUP_MAX,
  48} FixupType;
  49
  50typedef struct ARMInsnFixup {
  51    uint32_t insn;
  52    FixupType fixup;
  53} ARMInsnFixup;
  54
  55static const ARMInsnFixup bootloader_aarch64[] = {
  56    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  57    { 0xaa1f03e1 }, /* mov x1, xzr */
  58    { 0xaa1f03e2 }, /* mov x2, xzr */
  59    { 0xaa1f03e3 }, /* mov x3, xzr */
  60    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  61    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  62    { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
  63    { 0 }, /* .word @DTB Higher 32-bits */
  64    { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
  65    { 0 }, /* .word @Kernel Entry Higher 32-bits */
  66    { 0, FIXUP_TERMINATOR }
  67};
  68
  69/* A very small bootloader: call the board-setup code (if needed),
  70 * set r0-r2, then jump to the kernel.
  71 * If we're not calling boot setup code then we don't copy across
  72 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
  73 */
  74
  75static const ARMInsnFixup bootloader[] = {
  76    { 0xe28fe004 }, /* add     lr, pc, #4 */
  77    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
  78    { 0, FIXUP_BOARD_SETUP },
  79#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
  80    { 0xe3a00000 }, /* mov     r0, #0 */
  81    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
  82    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
  83    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
  84    { 0, FIXUP_BOARDID },
  85    { 0, FIXUP_ARGPTR },
  86    { 0, FIXUP_ENTRYPOINT },
  87    { 0, FIXUP_TERMINATOR }
  88};
  89
  90/* Handling for secondary CPU boot in a multicore system.
  91 * Unlike the uniprocessor/primary CPU boot, this is platform
  92 * dependent. The default code here is based on the secondary
  93 * CPU boot protocol used on realview/vexpress boards, with
  94 * some parameterisation to increase its flexibility.
  95 * QEMU platform models for which this code is not appropriate
  96 * should override write_secondary_boot and secondary_cpu_reset_hook
  97 * instead.
  98 *
  99 * This code enables the interrupt controllers for the secondary
 100 * CPUs and then puts all the secondary CPUs into a loop waiting
 101 * for an interprocessor interrupt and polling a configurable
 102 * location for the kernel secondary CPU entry point.
 103 */
 104#define DSB_INSN 0xf57ff04f
 105#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 106
 107static const ARMInsnFixup smpboot[] = {
 108    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 109    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 110    { 0xe3a01001 }, /* mov r1, #1 */
 111    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 112    { 0xe3a010ff }, /* mov r1, #0xff */
 113    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 114    { 0, FIXUP_DSB },   /* dsb */
 115    { 0xe320f003 }, /* wfi */
 116    { 0xe5901000 }, /* ldr     r1, [r0] */
 117    { 0xe1110001 }, /* tst     r1, r1 */
 118    { 0x0afffffb }, /* beq     <wfi> */
 119    { 0xe12fff11 }, /* bx      r1 */
 120    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 121    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 122    { 0, FIXUP_TERMINATOR }
 123};
 124
 125static void write_bootloader(const char *name, hwaddr addr,
 126                             const ARMInsnFixup *insns, uint32_t *fixupcontext)
 127{
 128    /* Fix up the specified bootloader fragment and write it into
 129     * guest memory using rom_add_blob_fixed(). fixupcontext is
 130     * an array giving the values to write in for the fixup types
 131     * which write a value into the code array.
 132     */
 133    int i, len;
 134    uint32_t *code;
 135
 136    len = 0;
 137    while (insns[len].fixup != FIXUP_TERMINATOR) {
 138        len++;
 139    }
 140
 141    code = g_new0(uint32_t, len);
 142
 143    for (i = 0; i < len; i++) {
 144        uint32_t insn = insns[i].insn;
 145        FixupType fixup = insns[i].fixup;
 146
 147        switch (fixup) {
 148        case FIXUP_NONE:
 149            break;
 150        case FIXUP_BOARDID:
 151        case FIXUP_BOARD_SETUP:
 152        case FIXUP_ARGPTR:
 153        case FIXUP_ENTRYPOINT:
 154        case FIXUP_GIC_CPU_IF:
 155        case FIXUP_BOOTREG:
 156        case FIXUP_DSB:
 157            insn = fixupcontext[fixup];
 158            break;
 159        default:
 160            abort();
 161        }
 162        code[i] = tswap32(insn);
 163    }
 164
 165    rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
 166
 167    g_free(code);
 168}
 169
 170static void default_write_secondary(ARMCPU *cpu,
 171                                    const struct arm_boot_info *info)
 172{
 173    uint32_t fixupcontext[FIXUP_MAX];
 174
 175    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 176    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 177    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 178        fixupcontext[FIXUP_DSB] = DSB_INSN;
 179    } else {
 180        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 181    }
 182
 183    write_bootloader("smpboot", info->smp_loader_start,
 184                     smpboot, fixupcontext);
 185}
 186
 187void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 188                                            const struct arm_boot_info *info,
 189                                            hwaddr mvbar_addr)
 190{
 191    int n;
 192    uint32_t mvbar_blob[] = {
 193        /* mvbar_addr: secure monitor vectors
 194         * Default unimplemented and unused vectors to spin. Makes it
 195         * easier to debug (as opposed to the CPU running away).
 196         */
 197        0xeafffffe, /* (spin) */
 198        0xeafffffe, /* (spin) */
 199        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 200        0xeafffffe, /* (spin) */
 201        0xeafffffe, /* (spin) */
 202        0xeafffffe, /* (spin) */
 203        0xeafffffe, /* (spin) */
 204        0xeafffffe, /* (spin) */
 205    };
 206    uint32_t board_setup_blob[] = {
 207        /* board setup addr */
 208        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 209        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 210        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 211        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 212        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 213        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 214        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 215        0xe1a0f001, /* mov     pc, r1                 ;return */
 216    };
 217
 218    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 219    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 220
 221    /* check that these blobs don't overlap */
 222    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 223          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 224
 225    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 226        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 227    }
 228    rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 229                       mvbar_addr);
 230
 231    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 232        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 233    }
 234    rom_add_blob_fixed("board-setup", board_setup_blob,
 235                       sizeof(board_setup_blob), info->board_setup_addr);
 236}
 237
 238static void default_reset_secondary(ARMCPU *cpu,
 239                                    const struct arm_boot_info *info)
 240{
 241    CPUState *cs = CPU(cpu);
 242
 243    address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
 244                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 245    cpu_set_pc(cs, info->smp_loader_start);
 246}
 247
 248static inline bool have_dtb(const struct arm_boot_info *info)
 249{
 250    return info->dtb_filename || info->get_dtb;
 251}
 252
 253#define WRITE_WORD(p, value) do { \
 254    address_space_stl_notdirty(&address_space_memory, p, value, \
 255                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 256    p += 4;                       \
 257} while (0)
 258
 259static void set_kernel_args(const struct arm_boot_info *info)
 260{
 261    int initrd_size = info->initrd_size;
 262    hwaddr base = info->loader_start;
 263    hwaddr p;
 264
 265    p = base + KERNEL_ARGS_ADDR;
 266    /* ATAG_CORE */
 267    WRITE_WORD(p, 5);
 268    WRITE_WORD(p, 0x54410001);
 269    WRITE_WORD(p, 1);
 270    WRITE_WORD(p, 0x1000);
 271    WRITE_WORD(p, 0);
 272    /* ATAG_MEM */
 273    /* TODO: handle multiple chips on one ATAG list */
 274    WRITE_WORD(p, 4);
 275    WRITE_WORD(p, 0x54410002);
 276    WRITE_WORD(p, info->ram_size);
 277    WRITE_WORD(p, info->loader_start);
 278    if (initrd_size) {
 279        /* ATAG_INITRD2 */
 280        WRITE_WORD(p, 4);
 281        WRITE_WORD(p, 0x54420005);
 282        WRITE_WORD(p, info->initrd_start);
 283        WRITE_WORD(p, initrd_size);
 284    }
 285    if (info->kernel_cmdline && *info->kernel_cmdline) {
 286        /* ATAG_CMDLINE */
 287        int cmdline_size;
 288
 289        cmdline_size = strlen(info->kernel_cmdline);
 290        cpu_physical_memory_write(p + 8, info->kernel_cmdline,
 291                                  cmdline_size + 1);
 292        cmdline_size = (cmdline_size >> 2) + 1;
 293        WRITE_WORD(p, cmdline_size + 2);
 294        WRITE_WORD(p, 0x54410009);
 295        p += cmdline_size * 4;
 296    }
 297    if (info->atag_board) {
 298        /* ATAG_BOARD */
 299        int atag_board_len;
 300        uint8_t atag_board_buf[0x1000];
 301
 302        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 303        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 304        WRITE_WORD(p, 0x414f4d50);
 305        cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
 306        p += atag_board_len;
 307    }
 308    /* ATAG_END */
 309    WRITE_WORD(p, 0);
 310    WRITE_WORD(p, 0);
 311}
 312
 313static void set_kernel_args_old(const struct arm_boot_info *info)
 314{
 315    hwaddr p;
 316    const char *s;
 317    int initrd_size = info->initrd_size;
 318    hwaddr base = info->loader_start;
 319
 320    /* see linux/include/asm-arm/setup.h */
 321    p = base + KERNEL_ARGS_ADDR;
 322    /* page_size */
 323    WRITE_WORD(p, 4096);
 324    /* nr_pages */
 325    WRITE_WORD(p, info->ram_size / 4096);
 326    /* ramdisk_size */
 327    WRITE_WORD(p, 0);
 328#define FLAG_READONLY   1
 329#define FLAG_RDLOAD     4
 330#define FLAG_RDPROMPT   8
 331    /* flags */
 332    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 333    /* rootdev */
 334    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 335    /* video_num_cols */
 336    WRITE_WORD(p, 0);
 337    /* video_num_rows */
 338    WRITE_WORD(p, 0);
 339    /* video_x */
 340    WRITE_WORD(p, 0);
 341    /* video_y */
 342    WRITE_WORD(p, 0);
 343    /* memc_control_reg */
 344    WRITE_WORD(p, 0);
 345    /* unsigned char sounddefault */
 346    /* unsigned char adfsdrives */
 347    /* unsigned char bytes_per_char_h */
 348    /* unsigned char bytes_per_char_v */
 349    WRITE_WORD(p, 0);
 350    /* pages_in_bank[4] */
 351    WRITE_WORD(p, 0);
 352    WRITE_WORD(p, 0);
 353    WRITE_WORD(p, 0);
 354    WRITE_WORD(p, 0);
 355    /* pages_in_vram */
 356    WRITE_WORD(p, 0);
 357    /* initrd_start */
 358    if (initrd_size) {
 359        WRITE_WORD(p, info->initrd_start);
 360    } else {
 361        WRITE_WORD(p, 0);
 362    }
 363    /* initrd_size */
 364    WRITE_WORD(p, initrd_size);
 365    /* rd_start */
 366    WRITE_WORD(p, 0);
 367    /* system_rev */
 368    WRITE_WORD(p, 0);
 369    /* system_serial_low */
 370    WRITE_WORD(p, 0);
 371    /* system_serial_high */
 372    WRITE_WORD(p, 0);
 373    /* mem_fclk_21285 */
 374    WRITE_WORD(p, 0);
 375    /* zero unused fields */
 376    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 377        WRITE_WORD(p, 0);
 378    }
 379    s = info->kernel_cmdline;
 380    if (s) {
 381        cpu_physical_memory_write(p, s, strlen(s) + 1);
 382    } else {
 383        WRITE_WORD(p, 0);
 384    }
 385}
 386
 387/**
 388 * load_dtb() - load a device tree binary image into memory
 389 * @addr:       the address to load the image at
 390 * @binfo:      struct describing the boot environment
 391 * @addr_limit: upper limit of the available memory area at @addr
 392 *
 393 * Load a device tree supplied by the machine or by the user  with the
 394 * '-dtb' command line option, and put it at offset @addr in target
 395 * memory.
 396 *
 397 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
 398 * than @addr), the device tree is only loaded if its size does not exceed
 399 * the limit.
 400 *
 401 * Returns: the size of the device tree image on success,
 402 *          0 if the image size exceeds the limit,
 403 *          -1 on errors.
 404 *
 405 * Note: Must not be called unless have_dtb(binfo) is true.
 406 */
 407static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 408                    hwaddr addr_limit)
 409{
 410    void *fdt = NULL;
 411    int size, rc;
 412    uint32_t acells, scells;
 413    char *nodename;
 414    unsigned int i;
 415    hwaddr mem_base, mem_len;
 416
 417    if (binfo->dtb_filename) {
 418        char *filename;
 419        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 420        if (!filename) {
 421            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 422            goto fail;
 423        }
 424
 425        fdt = load_device_tree(filename, &size);
 426        if (!fdt) {
 427            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 428            g_free(filename);
 429            goto fail;
 430        }
 431        g_free(filename);
 432    } else {
 433        fdt = binfo->get_dtb(binfo, &size);
 434        if (!fdt) {
 435            fprintf(stderr, "Board was unable to create a dtb blob\n");
 436            goto fail;
 437        }
 438    }
 439
 440    if (addr_limit > addr && size > (addr_limit - addr)) {
 441        /* Installing the device tree blob at addr would exceed addr_limit.
 442         * Whether this constitutes failure is up to the caller to decide,
 443         * so just return 0 as size, i.e., no error.
 444         */
 445        g_free(fdt);
 446        return 0;
 447    }
 448
 449    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 450                                   NULL, &error_fatal);
 451    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 452                                   NULL, &error_fatal);
 453    if (acells == 0 || scells == 0) {
 454        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 455        goto fail;
 456    }
 457
 458    if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
 459        /* This is user error so deserves a friendlier error message
 460         * than the failure of setprop_sized_cells would provide
 461         */
 462        fprintf(stderr, "qemu: dtb file not compatible with "
 463                "RAM size > 4GB\n");
 464        goto fail;
 465    }
 466
 467    if (nb_numa_nodes > 0) {
 468        /*
 469         * Turn the /memory node created before into a NOP node, then create
 470         * /memory@addr nodes for all numa nodes respectively.
 471         */
 472        qemu_fdt_nop_node(fdt, "/memory");
 473        mem_base = binfo->loader_start;
 474        for (i = 0; i < nb_numa_nodes; i++) {
 475            mem_len = numa_info[i].node_mem;
 476            nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 477            qemu_fdt_add_subnode(fdt, nodename);
 478            qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 479            rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
 480                                              acells, mem_base,
 481                                              scells, mem_len);
 482            if (rc < 0) {
 483                fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
 484                        i);
 485                goto fail;
 486            }
 487
 488            qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
 489            mem_base += mem_len;
 490            g_free(nodename);
 491        }
 492    } else {
 493        Error *err = NULL;
 494
 495        rc = fdt_path_offset(fdt, "/memory");
 496        if (rc < 0) {
 497            qemu_fdt_add_subnode(fdt, "/memory");
 498        }
 499
 500        if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
 501            qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 502        }
 503
 504        rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
 505                                          acells, binfo->loader_start,
 506                                          scells, binfo->ram_size);
 507        if (rc < 0) {
 508            fprintf(stderr, "couldn't set /memory/reg\n");
 509            goto fail;
 510        }
 511    }
 512
 513    rc = fdt_path_offset(fdt, "/chosen");
 514    if (rc < 0) {
 515        qemu_fdt_add_subnode(fdt, "/chosen");
 516    }
 517
 518    if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
 519        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 520                                     binfo->kernel_cmdline);
 521        if (rc < 0) {
 522            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 523            goto fail;
 524        }
 525    }
 526
 527    if (binfo->initrd_size) {
 528        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 529                                   binfo->initrd_start);
 530        if (rc < 0) {
 531            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 532            goto fail;
 533        }
 534
 535        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 536                                   binfo->initrd_start + binfo->initrd_size);
 537        if (rc < 0) {
 538            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 539            goto fail;
 540        }
 541    }
 542
 543    if (binfo->modify_dtb) {
 544        binfo->modify_dtb(binfo, fdt);
 545    }
 546
 547    qemu_fdt_dumpdtb(fdt, size);
 548
 549    /* Put the DTB into the memory map as a ROM image: this will ensure
 550     * the DTB is copied again upon reset, even if addr points into RAM.
 551     */
 552    rom_add_blob_fixed("dtb", fdt, size, addr);
 553
 554    g_free(fdt);
 555
 556    return size;
 557
 558fail:
 559    g_free(fdt);
 560    return -1;
 561}
 562
 563static void do_cpu_reset(void *opaque)
 564{
 565    ARMCPU *cpu = opaque;
 566    CPUState *cs = CPU(cpu);
 567    CPUARMState *env = &cpu->env;
 568    const struct arm_boot_info *info = env->boot_info;
 569
 570    cpu_reset(cs);
 571    if (info) {
 572        if (!info->is_linux) {
 573            int i;
 574            /* Jump to the entry point.  */
 575            uint64_t entry = info->entry;
 576
 577            switch (info->endianness) {
 578            case ARM_ENDIANNESS_LE:
 579                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 580                for (i = 1; i < 4; ++i) {
 581                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 582                }
 583                env->uncached_cpsr &= ~CPSR_E;
 584                break;
 585            case ARM_ENDIANNESS_BE8:
 586                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 587                for (i = 1; i < 4; ++i) {
 588                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 589                }
 590                env->uncached_cpsr |= CPSR_E;
 591                break;
 592            case ARM_ENDIANNESS_BE32:
 593                env->cp15.sctlr_el[1] |= SCTLR_B;
 594                break;
 595            case ARM_ENDIANNESS_UNKNOWN:
 596                break; /* Board's decision */
 597            default:
 598                g_assert_not_reached();
 599            }
 600
 601            if (!env->aarch64) {
 602                env->thumb = info->entry & 1;
 603                entry &= 0xfffffffe;
 604            }
 605            cpu_set_pc(cs, entry);
 606        } else {
 607            /* If we are booting Linux then we need to check whether we are
 608             * booting into secure or non-secure state and adjust the state
 609             * accordingly.  Out of reset, ARM is defined to be in secure state
 610             * (SCR.NS = 0), we change that here if non-secure boot has been
 611             * requested.
 612             */
 613            if (arm_feature(env, ARM_FEATURE_EL3)) {
 614                /* AArch64 is defined to come out of reset into EL3 if enabled.
 615                 * If we are booting Linux then we need to adjust our EL as
 616                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 617                 * SVC, which Linux expects, so no privilege/exception level to
 618                 * adjust.
 619                 */
 620                if (env->aarch64) {
 621                    env->cp15.scr_el3 |= SCR_RW;
 622                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 623                        env->cp15.hcr_el2 |= HCR_RW;
 624                        env->pstate = PSTATE_MODE_EL2h;
 625                    } else {
 626                        env->pstate = PSTATE_MODE_EL1h;
 627                    }
 628                }
 629
 630                /* Set to non-secure if not a secure boot */
 631                if (!info->secure_boot &&
 632                    (cs != first_cpu || !info->secure_board_setup)) {
 633                    /* Linux expects non-secure state */
 634                    env->cp15.scr_el3 |= SCR_NS;
 635                }
 636            }
 637
 638            if (cs == first_cpu) {
 639                cpu_set_pc(cs, info->loader_start);
 640
 641                if (!have_dtb(info)) {
 642                    if (old_param) {
 643                        set_kernel_args_old(info);
 644                    } else {
 645                        set_kernel_args(info);
 646                    }
 647                }
 648            } else {
 649                info->secondary_cpu_reset_hook(cpu, info);
 650            }
 651        }
 652    }
 653}
 654
 655/**
 656 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 657 *                          by key.
 658 * @fw_cfg:         The firmware config instance to store the data in.
 659 * @size_key:       The firmware config key to store the size of the loaded
 660 *                  data under, with fw_cfg_add_i32().
 661 * @data_key:       The firmware config key to store the loaded data under,
 662 *                  with fw_cfg_add_bytes().
 663 * @image_name:     The name of the image file to load. If it is NULL, the
 664 *                  function returns without doing anything.
 665 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 666 *                  adding it to fw_cfg. If decompression fails, the image is
 667 *                  loaded as-is.
 668 *
 669 * In case of failure, the function prints an error message to stderr and the
 670 * process exits with status 1.
 671 */
 672static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 673                                 uint16_t data_key, const char *image_name,
 674                                 bool try_decompress)
 675{
 676    size_t size = -1;
 677    uint8_t *data;
 678
 679    if (image_name == NULL) {
 680        return;
 681    }
 682
 683    if (try_decompress) {
 684        size = load_image_gzipped_buffer(image_name,
 685                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 686    }
 687
 688    if (size == (size_t)-1) {
 689        gchar *contents;
 690        gsize length;
 691
 692        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 693            fprintf(stderr, "failed to load \"%s\"\n", image_name);
 694            exit(1);
 695        }
 696        size = length;
 697        data = (uint8_t *)contents;
 698    }
 699
 700    fw_cfg_add_i32(fw_cfg, size_key, size);
 701    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 702}
 703
 704static int do_arm_linux_init(Object *obj, void *opaque)
 705{
 706    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 707        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 708        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 709        struct arm_boot_info *info = opaque;
 710
 711        if (albifc->arm_linux_init) {
 712            albifc->arm_linux_init(albif, info->secure_boot);
 713        }
 714    }
 715    return 0;
 716}
 717
 718static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 719                             uint64_t *lowaddr, uint64_t *highaddr,
 720                             int elf_machine)
 721{
 722    bool elf_is64;
 723    union {
 724        Elf32_Ehdr h32;
 725        Elf64_Ehdr h64;
 726    } elf_header;
 727    int data_swab = 0;
 728    bool big_endian;
 729    uint64_t ret = -1;
 730    Error *err = NULL;
 731
 732
 733    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 734    if (err) {
 735        return ret;
 736    }
 737
 738    if (elf_is64) {
 739        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 740        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 741                                      : ARM_ENDIANNESS_LE;
 742    } else {
 743        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 744        if (big_endian) {
 745            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 746                info->endianness = ARM_ENDIANNESS_BE8;
 747            } else {
 748                info->endianness = ARM_ENDIANNESS_BE32;
 749                /* In BE32, the CPU has a different view of the per-byte
 750                 * address map than the rest of the system. BE32 ELF files
 751                 * are organised such that they can be programmed through
 752                 * the CPU's per-word byte-reversed view of the world. QEMU
 753                 * however loads ELF files independently of the CPU. So
 754                 * tell the ELF loader to byte reverse the data for us.
 755                 */
 756                data_swab = 2;
 757            }
 758        } else {
 759            info->endianness = ARM_ENDIANNESS_LE;
 760        }
 761    }
 762
 763    ret = load_elf(info->kernel_filename, NULL, NULL,
 764                   pentry, lowaddr, highaddr, big_endian, elf_machine,
 765                   1, data_swab);
 766    if (ret <= 0) {
 767        /* The header loaded but the image didn't */
 768        exit(1);
 769    }
 770
 771    return ret;
 772}
 773
 774static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 775                                   hwaddr *entry)
 776{
 777    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 778    uint8_t *buffer;
 779    int size;
 780
 781    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 782    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 783                                     &buffer);
 784
 785    if (size < 0) {
 786        gsize len;
 787
 788        /* Load as raw file otherwise */
 789        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 790            return -1;
 791        }
 792        size = len;
 793    }
 794
 795    /* check the arm64 magic header value -- very old kernels may not have it */
 796    if (memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 797        uint64_t hdrvals[2];
 798
 799        /* The arm64 Image header has text_offset and image_size fields at 8 and
 800         * 16 bytes into the Image header, respectively. The text_offset field
 801         * is only valid if the image_size is non-zero.
 802         */
 803        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 804        if (hdrvals[1] != 0) {
 805            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 806        }
 807    }
 808
 809    *entry = mem_base + kernel_load_offset;
 810    rom_add_blob_fixed(filename, buffer, size, *entry);
 811
 812    g_free(buffer);
 813
 814    return size;
 815}
 816
 817static void arm_load_kernel_notify(Notifier *notifier, void *data)
 818{
 819    CPUState *cs;
 820    int kernel_size;
 821    int initrd_size;
 822    int is_linux = 0;
 823    uint64_t elf_entry, elf_low_addr, elf_high_addr;
 824    int elf_machine;
 825    hwaddr entry;
 826    static const ARMInsnFixup *primary_loader;
 827    ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
 828                                         notifier, notifier);
 829    ARMCPU *cpu = n->cpu;
 830    struct arm_boot_info *info =
 831        container_of(n, struct arm_boot_info, load_kernel_notifier);
 832
 833    /* The board code is not supposed to set secure_board_setup unless
 834     * running its code in secure mode is actually possible, and KVM
 835     * doesn't support secure.
 836     */
 837    assert(!(info->secure_board_setup && kvm_enabled()));
 838
 839    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
 840
 841    /* Load the kernel.  */
 842    if (!info->kernel_filename || info->firmware_loaded) {
 843
 844        if (have_dtb(info)) {
 845            /* If we have a device tree blob, but no kernel to supply it to (or
 846             * the kernel is supposed to be loaded by the bootloader), copy the
 847             * DTB to the base of RAM for the bootloader to pick up.
 848             */
 849            if (load_dtb(info->loader_start, info, 0) < 0) {
 850                exit(1);
 851            }
 852        }
 853
 854        if (info->kernel_filename) {
 855            FWCfgState *fw_cfg;
 856            bool try_decompressing_kernel;
 857
 858            fw_cfg = fw_cfg_find();
 859            try_decompressing_kernel = arm_feature(&cpu->env,
 860                                                   ARM_FEATURE_AARCH64);
 861
 862            /* Expose the kernel, the command line, and the initrd in fw_cfg.
 863             * We don't process them here at all, it's all left to the
 864             * firmware.
 865             */
 866            load_image_to_fw_cfg(fw_cfg,
 867                                 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
 868                                 info->kernel_filename,
 869                                 try_decompressing_kernel);
 870            load_image_to_fw_cfg(fw_cfg,
 871                                 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
 872                                 info->initrd_filename, false);
 873
 874            if (info->kernel_cmdline) {
 875                fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 876                               strlen(info->kernel_cmdline) + 1);
 877                fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
 878                                  info->kernel_cmdline);
 879            }
 880        }
 881
 882        /* We will start from address 0 (typically a boot ROM image) in the
 883         * same way as hardware.
 884         */
 885        return;
 886    }
 887
 888    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 889        primary_loader = bootloader_aarch64;
 890        elf_machine = EM_AARCH64;
 891    } else {
 892        primary_loader = bootloader;
 893        if (!info->write_board_setup) {
 894            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
 895        }
 896        elf_machine = EM_ARM;
 897    }
 898
 899    if (!info->secondary_cpu_reset_hook) {
 900        info->secondary_cpu_reset_hook = default_reset_secondary;
 901    }
 902    if (!info->write_secondary_boot) {
 903        info->write_secondary_boot = default_write_secondary;
 904    }
 905
 906    if (info->nb_cpus == 0)
 907        info->nb_cpus = 1;
 908
 909    /* We want to put the initrd far enough into RAM that when the
 910     * kernel is uncompressed it will not clobber the initrd. However
 911     * on boards without much RAM we must ensure that we still leave
 912     * enough room for a decent sized initrd, and on boards with large
 913     * amounts of RAM we must avoid the initrd being so far up in RAM
 914     * that it is outside lowmem and inaccessible to the kernel.
 915     * So for boards with less  than 256MB of RAM we put the initrd
 916     * halfway into RAM, and for boards with 256MB of RAM or more we put
 917     * the initrd at 128MB.
 918     */
 919    info->initrd_start = info->loader_start +
 920        MIN(info->ram_size / 2, 128 * 1024 * 1024);
 921
 922    /* Assume that raw images are linux kernels, and ELF images are not.  */
 923    kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
 924                               &elf_high_addr, elf_machine);
 925    if (kernel_size > 0 && have_dtb(info)) {
 926        /* If there is still some room left at the base of RAM, try and put
 927         * the DTB there like we do for images loaded with -bios or -pflash.
 928         */
 929        if (elf_low_addr > info->loader_start
 930            || elf_high_addr < info->loader_start) {
 931            /* Pass elf_low_addr as address limit to load_dtb if it may be
 932             * pointing into RAM, otherwise pass '0' (no limit)
 933             */
 934            if (elf_low_addr < info->loader_start) {
 935                elf_low_addr = 0;
 936            }
 937            if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
 938                exit(1);
 939            }
 940        }
 941    }
 942    entry = elf_entry;
 943    if (kernel_size < 0) {
 944        kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
 945                                  &is_linux, NULL, NULL);
 946    }
 947    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
 948        kernel_size = load_aarch64_image(info->kernel_filename,
 949                                         info->loader_start, &entry);
 950        is_linux = 1;
 951    } else if (kernel_size < 0) {
 952        /* 32-bit ARM */
 953        entry = info->loader_start + KERNEL_LOAD_ADDR;
 954        kernel_size = load_image_targphys(info->kernel_filename, entry,
 955                                          info->ram_size - KERNEL_LOAD_ADDR);
 956        is_linux = 1;
 957    }
 958    if (kernel_size < 0) {
 959        fprintf(stderr, "qemu: could not load kernel '%s'\n",
 960                info->kernel_filename);
 961        exit(1);
 962    }
 963    info->entry = entry;
 964    if (is_linux) {
 965        uint32_t fixupcontext[FIXUP_MAX];
 966
 967        if (info->initrd_filename) {
 968            initrd_size = load_ramdisk(info->initrd_filename,
 969                                       info->initrd_start,
 970                                       info->ram_size -
 971                                       info->initrd_start);
 972            if (initrd_size < 0) {
 973                initrd_size = load_image_targphys(info->initrd_filename,
 974                                                  info->initrd_start,
 975                                                  info->ram_size -
 976                                                  info->initrd_start);
 977            }
 978            if (initrd_size < 0) {
 979                fprintf(stderr, "qemu: could not load initrd '%s'\n",
 980                        info->initrd_filename);
 981                exit(1);
 982            }
 983        } else {
 984            initrd_size = 0;
 985        }
 986        info->initrd_size = initrd_size;
 987
 988        fixupcontext[FIXUP_BOARDID] = info->board_id;
 989        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
 990
 991        /* for device tree boot, we pass the DTB directly in r2. Otherwise
 992         * we point to the kernel args.
 993         */
 994        if (have_dtb(info)) {
 995            hwaddr align;
 996            hwaddr dtb_start;
 997
 998            if (elf_machine == EM_AARCH64) {
 999                /*
1000                 * Some AArch64 kernels on early bootup map the fdt region as
1001                 *
1002                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1003                 *
1004                 * Let's play safe and prealign it to 2MB to give us some space.
1005                 */
1006                align = 2 * 1024 * 1024;
1007            } else {
1008                /*
1009                 * Some 32bit kernels will trash anything in the 4K page the
1010                 * initrd ends in, so make sure the DTB isn't caught up in that.
1011                 */
1012                align = 4096;
1013            }
1014
1015            /* Place the DTB after the initrd in memory with alignment. */
1016            dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
1017            if (load_dtb(dtb_start, info, 0) < 0) {
1018                exit(1);
1019            }
1020            fixupcontext[FIXUP_ARGPTR] = dtb_start;
1021        } else {
1022            fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1023            if (info->ram_size >= (1ULL << 32)) {
1024                fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
1025                        " Linux kernel using ATAGS (try passing a device tree"
1026                        " using -dtb)\n");
1027                exit(1);
1028            }
1029        }
1030        fixupcontext[FIXUP_ENTRYPOINT] = entry;
1031
1032        write_bootloader("bootloader", info->loader_start,
1033                         primary_loader, fixupcontext);
1034
1035        if (info->nb_cpus > 1) {
1036            info->write_secondary_boot(cpu, info);
1037        }
1038        if (info->write_board_setup) {
1039            info->write_board_setup(cpu, info);
1040        }
1041
1042        /* Notify devices which need to fake up firmware initialization
1043         * that we're doing a direct kernel boot.
1044         */
1045        object_child_foreach_recursive(object_get_root(),
1046                                       do_arm_linux_init, info);
1047    }
1048    info->is_linux = is_linux;
1049
1050    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1051        ARM_CPU(cs)->env.boot_info = info;
1052    }
1053}
1054
1055void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1056{
1057    CPUState *cs;
1058
1059    info->load_kernel_notifier.cpu = cpu;
1060    info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1061    qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1062
1063    /* CPU objects (unlike devices) are not automatically reset on system
1064     * reset, so we must always register a handler to do so. If we're
1065     * actually loading a kernel, the handler is also responsible for
1066     * arranging that we start it correctly.
1067     */
1068    for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1069        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1070    }
1071}
1072
1073static const TypeInfo arm_linux_boot_if_info = {
1074    .name = TYPE_ARM_LINUX_BOOT_IF,
1075    .parent = TYPE_INTERFACE,
1076    .class_size = sizeof(ARMLinuxBootIfClass),
1077};
1078
1079static void arm_linux_boot_register_types(void)
1080{
1081    type_register_static(&arm_linux_boot_if_info);
1082}
1083
1084type_init(arm_linux_boot_register_types)
1085