qemu/hw/arm/omap1.c
<<
>>
Prefs
   1/*
   2 * TI OMAP processors emulation.
   3 *
   4 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 or
   9 * (at your option) version 3 of the License.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qapi/error.h"
  22#include "qemu-common.h"
  23#include "cpu.h"
  24#include "hw/boards.h"
  25#include "hw/hw.h"
  26#include "hw/arm/arm.h"
  27#include "hw/arm/omap.h"
  28#include "sysemu/sysemu.h"
  29#include "hw/arm/soc_dma.h"
  30#include "sysemu/block-backend.h"
  31#include "sysemu/blockdev.h"
  32#include "qemu/range.h"
  33#include "hw/sysbus.h"
  34#include "qemu/cutils.h"
  35#include "qemu/bcd.h"
  36
  37/* Should signal the TCMI/GPMC */
  38uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  39{
  40    uint8_t ret;
  41
  42    OMAP_8B_REG(addr);
  43    cpu_physical_memory_read(addr, &ret, 1);
  44    return ret;
  45}
  46
  47void omap_badwidth_write8(void *opaque, hwaddr addr,
  48                uint32_t value)
  49{
  50    uint8_t val8 = value;
  51
  52    OMAP_8B_REG(addr);
  53    cpu_physical_memory_write(addr, &val8, 1);
  54}
  55
  56uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  57{
  58    uint16_t ret;
  59
  60    OMAP_16B_REG(addr);
  61    cpu_physical_memory_read(addr, &ret, 2);
  62    return ret;
  63}
  64
  65void omap_badwidth_write16(void *opaque, hwaddr addr,
  66                uint32_t value)
  67{
  68    uint16_t val16 = value;
  69
  70    OMAP_16B_REG(addr);
  71    cpu_physical_memory_write(addr, &val16, 2);
  72}
  73
  74uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  75{
  76    uint32_t ret;
  77
  78    OMAP_32B_REG(addr);
  79    cpu_physical_memory_read(addr, &ret, 4);
  80    return ret;
  81}
  82
  83void omap_badwidth_write32(void *opaque, hwaddr addr,
  84                uint32_t value)
  85{
  86    OMAP_32B_REG(addr);
  87    cpu_physical_memory_write(addr, &value, 4);
  88}
  89
  90/* MPU OS timers */
  91struct omap_mpu_timer_s {
  92    MemoryRegion iomem;
  93    qemu_irq irq;
  94    omap_clk clk;
  95    uint32_t val;
  96    int64_t time;
  97    QEMUTimer *timer;
  98    QEMUBH *tick;
  99    int64_t rate;
 100    int it_ena;
 101
 102    int enable;
 103    int ptv;
 104    int ar;
 105    int st;
 106    uint32_t reset_val;
 107};
 108
 109static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
 110{
 111    uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
 112
 113    if (timer->st && timer->enable && timer->rate)
 114        return timer->val - muldiv64(distance >> (timer->ptv + 1),
 115                                     timer->rate, NANOSECONDS_PER_SECOND);
 116    else
 117        return timer->val;
 118}
 119
 120static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
 121{
 122    timer->val = omap_timer_read(timer);
 123    timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 124}
 125
 126static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
 127{
 128    int64_t expires;
 129
 130    if (timer->enable && timer->st && timer->rate) {
 131        timer->val = timer->reset_val;  /* Should skip this on clk enable */
 132        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
 133                           NANOSECONDS_PER_SECOND, timer->rate);
 134
 135        /* If timer expiry would be sooner than in about 1 ms and
 136         * auto-reload isn't set, then fire immediately.  This is a hack
 137         * to make systems like PalmOS run in acceptable time.  PalmOS
 138         * sets the interval to a very low value and polls the status bit
 139         * in a busy loop when it wants to sleep just a couple of CPU
 140         * ticks.  */
 141        if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
 142            timer_mod(timer->timer, timer->time + expires);
 143        } else {
 144            qemu_bh_schedule(timer->tick);
 145        }
 146    } else
 147        timer_del(timer->timer);
 148}
 149
 150static void omap_timer_fire(void *opaque)
 151{
 152    struct omap_mpu_timer_s *timer = opaque;
 153
 154    if (!timer->ar) {
 155        timer->val = 0;
 156        timer->st = 0;
 157    }
 158
 159    if (timer->it_ena)
 160        /* Edge-triggered irq */
 161        qemu_irq_pulse(timer->irq);
 162}
 163
 164static void omap_timer_tick(void *opaque)
 165{
 166    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 167
 168    omap_timer_sync(timer);
 169    omap_timer_fire(timer);
 170    omap_timer_update(timer);
 171}
 172
 173static void omap_timer_clk_update(void *opaque, int line, int on)
 174{
 175    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 176
 177    omap_timer_sync(timer);
 178    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
 179    omap_timer_update(timer);
 180}
 181
 182static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
 183{
 184    omap_clk_adduser(timer->clk,
 185                    qemu_allocate_irq(omap_timer_clk_update, timer, 0));
 186    timer->rate = omap_clk_getrate(timer->clk);
 187}
 188
 189static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
 190                                    unsigned size)
 191{
 192    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 193
 194    if (size != 4) {
 195        return omap_badwidth_read32(opaque, addr);
 196    }
 197
 198    switch (addr) {
 199    case 0x00:  /* CNTL_TIMER */
 200        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
 201
 202    case 0x04:  /* LOAD_TIM */
 203        break;
 204
 205    case 0x08:  /* READ_TIM */
 206        return omap_timer_read(s);
 207    }
 208
 209    OMAP_BAD_REG(addr);
 210    return 0;
 211}
 212
 213static void omap_mpu_timer_write(void *opaque, hwaddr addr,
 214                                 uint64_t value, unsigned size)
 215{
 216    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 217
 218    if (size != 4) {
 219        omap_badwidth_write32(opaque, addr, value);
 220        return;
 221    }
 222
 223    switch (addr) {
 224    case 0x00:  /* CNTL_TIMER */
 225        omap_timer_sync(s);
 226        s->enable = (value >> 5) & 1;
 227        s->ptv = (value >> 2) & 7;
 228        s->ar = (value >> 1) & 1;
 229        s->st = value & 1;
 230        omap_timer_update(s);
 231        return;
 232
 233    case 0x04:  /* LOAD_TIM */
 234        s->reset_val = value;
 235        return;
 236
 237    case 0x08:  /* READ_TIM */
 238        OMAP_RO_REG(addr);
 239        break;
 240
 241    default:
 242        OMAP_BAD_REG(addr);
 243    }
 244}
 245
 246static const MemoryRegionOps omap_mpu_timer_ops = {
 247    .read = omap_mpu_timer_read,
 248    .write = omap_mpu_timer_write,
 249    .endianness = DEVICE_LITTLE_ENDIAN,
 250};
 251
 252static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
 253{
 254    timer_del(s->timer);
 255    s->enable = 0;
 256    s->reset_val = 31337;
 257    s->val = 0;
 258    s->ptv = 0;
 259    s->ar = 0;
 260    s->st = 0;
 261    s->it_ena = 1;
 262}
 263
 264static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
 265                hwaddr base,
 266                qemu_irq irq, omap_clk clk)
 267{
 268    struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
 269
 270    s->irq = irq;
 271    s->clk = clk;
 272    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
 273    s->tick = qemu_bh_new(omap_timer_fire, s);
 274    omap_mpu_timer_reset(s);
 275    omap_timer_clk_setup(s);
 276
 277    memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
 278                          "omap-mpu-timer", 0x100);
 279
 280    memory_region_add_subregion(system_memory, base, &s->iomem);
 281
 282    return s;
 283}
 284
 285/* Watchdog timer */
 286struct omap_watchdog_timer_s {
 287    struct omap_mpu_timer_s timer;
 288    MemoryRegion iomem;
 289    uint8_t last_wr;
 290    int mode;
 291    int free;
 292    int reset;
 293};
 294
 295static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
 296                                   unsigned size)
 297{
 298    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 299
 300    if (size != 2) {
 301        return omap_badwidth_read16(opaque, addr);
 302    }
 303
 304    switch (addr) {
 305    case 0x00:  /* CNTL_TIMER */
 306        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
 307                (s->timer.st << 7) | (s->free << 1);
 308
 309    case 0x04:  /* READ_TIMER */
 310        return omap_timer_read(&s->timer);
 311
 312    case 0x08:  /* TIMER_MODE */
 313        return s->mode << 15;
 314    }
 315
 316    OMAP_BAD_REG(addr);
 317    return 0;
 318}
 319
 320static void omap_wd_timer_write(void *opaque, hwaddr addr,
 321                                uint64_t value, unsigned size)
 322{
 323    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 324
 325    if (size != 2) {
 326        omap_badwidth_write16(opaque, addr, value);
 327        return;
 328    }
 329
 330    switch (addr) {
 331    case 0x00:  /* CNTL_TIMER */
 332        omap_timer_sync(&s->timer);
 333        s->timer.ptv = (value >> 9) & 7;
 334        s->timer.ar = (value >> 8) & 1;
 335        s->timer.st = (value >> 7) & 1;
 336        s->free = (value >> 1) & 1;
 337        omap_timer_update(&s->timer);
 338        break;
 339
 340    case 0x04:  /* LOAD_TIMER */
 341        s->timer.reset_val = value & 0xffff;
 342        break;
 343
 344    case 0x08:  /* TIMER_MODE */
 345        if (!s->mode && ((value >> 15) & 1))
 346            omap_clk_get(s->timer.clk);
 347        s->mode |= (value >> 15) & 1;
 348        if (s->last_wr == 0xf5) {
 349            if ((value & 0xff) == 0xa0) {
 350                if (s->mode) {
 351                    s->mode = 0;
 352                    omap_clk_put(s->timer.clk);
 353                }
 354            } else {
 355                /* XXX: on T|E hardware somehow this has no effect,
 356                 * on Zire 71 it works as specified.  */
 357                s->reset = 1;
 358                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 359            }
 360        }
 361        s->last_wr = value & 0xff;
 362        break;
 363
 364    default:
 365        OMAP_BAD_REG(addr);
 366    }
 367}
 368
 369static const MemoryRegionOps omap_wd_timer_ops = {
 370    .read = omap_wd_timer_read,
 371    .write = omap_wd_timer_write,
 372    .endianness = DEVICE_NATIVE_ENDIAN,
 373};
 374
 375static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
 376{
 377    timer_del(s->timer.timer);
 378    if (!s->mode)
 379        omap_clk_get(s->timer.clk);
 380    s->mode = 1;
 381    s->free = 1;
 382    s->reset = 0;
 383    s->timer.enable = 1;
 384    s->timer.it_ena = 1;
 385    s->timer.reset_val = 0xffff;
 386    s->timer.val = 0;
 387    s->timer.st = 0;
 388    s->timer.ptv = 0;
 389    s->timer.ar = 0;
 390    omap_timer_update(&s->timer);
 391}
 392
 393static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
 394                hwaddr base,
 395                qemu_irq irq, omap_clk clk)
 396{
 397    struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
 398
 399    s->timer.irq = irq;
 400    s->timer.clk = clk;
 401    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 402    omap_wd_timer_reset(s);
 403    omap_timer_clk_setup(&s->timer);
 404
 405    memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
 406                          "omap-wd-timer", 0x100);
 407    memory_region_add_subregion(memory, base, &s->iomem);
 408
 409    return s;
 410}
 411
 412/* 32-kHz timer */
 413struct omap_32khz_timer_s {
 414    struct omap_mpu_timer_s timer;
 415    MemoryRegion iomem;
 416};
 417
 418static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
 419                                   unsigned size)
 420{
 421    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 422    int offset = addr & OMAP_MPUI_REG_MASK;
 423
 424    if (size != 4) {
 425        return omap_badwidth_read32(opaque, addr);
 426    }
 427
 428    switch (offset) {
 429    case 0x00:  /* TVR */
 430        return s->timer.reset_val;
 431
 432    case 0x04:  /* TCR */
 433        return omap_timer_read(&s->timer);
 434
 435    case 0x08:  /* CR */
 436        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
 437
 438    default:
 439        break;
 440    }
 441    OMAP_BAD_REG(addr);
 442    return 0;
 443}
 444
 445static void omap_os_timer_write(void *opaque, hwaddr addr,
 446                                uint64_t value, unsigned size)
 447{
 448    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 449    int offset = addr & OMAP_MPUI_REG_MASK;
 450
 451    if (size != 4) {
 452        omap_badwidth_write32(opaque, addr, value);
 453        return;
 454    }
 455
 456    switch (offset) {
 457    case 0x00:  /* TVR */
 458        s->timer.reset_val = value & 0x00ffffff;
 459        break;
 460
 461    case 0x04:  /* TCR */
 462        OMAP_RO_REG(addr);
 463        break;
 464
 465    case 0x08:  /* CR */
 466        s->timer.ar = (value >> 3) & 1;
 467        s->timer.it_ena = (value >> 2) & 1;
 468        if (s->timer.st != (value & 1) || (value & 2)) {
 469            omap_timer_sync(&s->timer);
 470            s->timer.enable = value & 1;
 471            s->timer.st = value & 1;
 472            omap_timer_update(&s->timer);
 473        }
 474        break;
 475
 476    default:
 477        OMAP_BAD_REG(addr);
 478    }
 479}
 480
 481static const MemoryRegionOps omap_os_timer_ops = {
 482    .read = omap_os_timer_read,
 483    .write = omap_os_timer_write,
 484    .endianness = DEVICE_NATIVE_ENDIAN,
 485};
 486
 487static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
 488{
 489    timer_del(s->timer.timer);
 490    s->timer.enable = 0;
 491    s->timer.it_ena = 0;
 492    s->timer.reset_val = 0x00ffffff;
 493    s->timer.val = 0;
 494    s->timer.st = 0;
 495    s->timer.ptv = 0;
 496    s->timer.ar = 1;
 497}
 498
 499static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
 500                hwaddr base,
 501                qemu_irq irq, omap_clk clk)
 502{
 503    struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
 504
 505    s->timer.irq = irq;
 506    s->timer.clk = clk;
 507    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 508    omap_os_timer_reset(s);
 509    omap_timer_clk_setup(&s->timer);
 510
 511    memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
 512                          "omap-os-timer", 0x800);
 513    memory_region_add_subregion(memory, base, &s->iomem);
 514
 515    return s;
 516}
 517
 518/* Ultra Low-Power Device Module */
 519static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
 520                                  unsigned size)
 521{
 522    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 523    uint16_t ret;
 524
 525    if (size != 2) {
 526        return omap_badwidth_read16(opaque, addr);
 527    }
 528
 529    switch (addr) {
 530    case 0x14:  /* IT_STATUS */
 531        ret = s->ulpd_pm_regs[addr >> 2];
 532        s->ulpd_pm_regs[addr >> 2] = 0;
 533        qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 534        return ret;
 535
 536    case 0x18:  /* Reserved */
 537    case 0x1c:  /* Reserved */
 538    case 0x20:  /* Reserved */
 539    case 0x28:  /* Reserved */
 540    case 0x2c:  /* Reserved */
 541        OMAP_BAD_REG(addr);
 542        /* fall through */
 543    case 0x00:  /* COUNTER_32_LSB */
 544    case 0x04:  /* COUNTER_32_MSB */
 545    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 546    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 547    case 0x10:  /* GAUGING_CTRL */
 548    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 549    case 0x30:  /* CLOCK_CTRL */
 550    case 0x34:  /* SOFT_REQ */
 551    case 0x38:  /* COUNTER_32_FIQ */
 552    case 0x3c:  /* DPLL_CTRL */
 553    case 0x40:  /* STATUS_REQ */
 554        /* XXX: check clk::usecount state for every clock */
 555    case 0x48:  /* LOCL_TIME */
 556    case 0x4c:  /* APLL_CTRL */
 557    case 0x50:  /* POWER_CTRL */
 558        return s->ulpd_pm_regs[addr >> 2];
 559    }
 560
 561    OMAP_BAD_REG(addr);
 562    return 0;
 563}
 564
 565static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
 566                uint16_t diff, uint16_t value)
 567{
 568    if (diff & (1 << 4))                                /* USB_MCLK_EN */
 569        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
 570    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
 571        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
 572}
 573
 574static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
 575                uint16_t diff, uint16_t value)
 576{
 577    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
 578        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
 579    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
 580        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
 581    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
 582        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
 583    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
 584        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
 585}
 586
 587static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
 588                               uint64_t value, unsigned size)
 589{
 590    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 591    int64_t now, ticks;
 592    int div, mult;
 593    static const int bypass_div[4] = { 1, 2, 4, 4 };
 594    uint16_t diff;
 595
 596    if (size != 2) {
 597        omap_badwidth_write16(opaque, addr, value);
 598        return;
 599    }
 600
 601    switch (addr) {
 602    case 0x00:  /* COUNTER_32_LSB */
 603    case 0x04:  /* COUNTER_32_MSB */
 604    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 605    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 606    case 0x14:  /* IT_STATUS */
 607    case 0x40:  /* STATUS_REQ */
 608        OMAP_RO_REG(addr);
 609        break;
 610
 611    case 0x10:  /* GAUGING_CTRL */
 612        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
 613        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
 614            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 615
 616            if (value & 1)
 617                s->ulpd_gauge_start = now;
 618            else {
 619                now -= s->ulpd_gauge_start;
 620
 621                /* 32-kHz ticks */
 622                ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
 623                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
 624                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
 625                if (ticks >> 32)        /* OVERFLOW_32K */
 626                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
 627
 628                /* High frequency ticks */
 629                ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
 630                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
 631                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
 632                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
 633                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
 634
 635                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
 636                qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 637            }
 638        }
 639        s->ulpd_pm_regs[addr >> 2] = value;
 640        break;
 641
 642    case 0x18:  /* Reserved */
 643    case 0x1c:  /* Reserved */
 644    case 0x20:  /* Reserved */
 645    case 0x28:  /* Reserved */
 646    case 0x2c:  /* Reserved */
 647        OMAP_BAD_REG(addr);
 648        /* fall through */
 649    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 650    case 0x38:  /* COUNTER_32_FIQ */
 651    case 0x48:  /* LOCL_TIME */
 652    case 0x50:  /* POWER_CTRL */
 653        s->ulpd_pm_regs[addr >> 2] = value;
 654        break;
 655
 656    case 0x30:  /* CLOCK_CTRL */
 657        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 658        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
 659        omap_ulpd_clk_update(s, diff, value);
 660        break;
 661
 662    case 0x34:  /* SOFT_REQ */
 663        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 664        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
 665        omap_ulpd_req_update(s, diff, value);
 666        break;
 667
 668    case 0x3c:  /* DPLL_CTRL */
 669        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
 670         * omitted altogether, probably a typo.  */
 671        /* This register has identical semantics with DPLL(1:3) control
 672         * registers, see omap_dpll_write() */
 673        diff = s->ulpd_pm_regs[addr >> 2] & value;
 674        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
 675        if (diff & (0x3ff << 2)) {
 676            if (value & (1 << 4)) {                     /* PLL_ENABLE */
 677                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
 678                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
 679            } else {
 680                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
 681                mult = 1;
 682            }
 683            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
 684        }
 685
 686        /* Enter the desired mode.  */
 687        s->ulpd_pm_regs[addr >> 2] =
 688                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
 689                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
 690
 691        /* Act as if the lock is restored.  */
 692        s->ulpd_pm_regs[addr >> 2] |= 2;
 693        break;
 694
 695    case 0x4c:  /* APLL_CTRL */
 696        diff = s->ulpd_pm_regs[addr >> 2] & value;
 697        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
 698        if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
 699            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
 700                                    (value & (1 << 0)) ? "apll" : "dpll4"));
 701        break;
 702
 703    default:
 704        OMAP_BAD_REG(addr);
 705    }
 706}
 707
 708static const MemoryRegionOps omap_ulpd_pm_ops = {
 709    .read = omap_ulpd_pm_read,
 710    .write = omap_ulpd_pm_write,
 711    .endianness = DEVICE_NATIVE_ENDIAN,
 712};
 713
 714static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
 715{
 716    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
 717    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
 718    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
 719    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
 720    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
 721    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
 722    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
 723    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
 724    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
 725    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
 726    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
 727    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
 728    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
 729    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
 730    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
 731    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
 732    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
 733    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
 734    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
 735    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
 736    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
 737    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
 738    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
 739}
 740
 741static void omap_ulpd_pm_init(MemoryRegion *system_memory,
 742                hwaddr base,
 743                struct omap_mpu_state_s *mpu)
 744{
 745    memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
 746                          "omap-ulpd-pm", 0x800);
 747    memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
 748    omap_ulpd_pm_reset(mpu);
 749}
 750
 751/* OMAP Pin Configuration */
 752static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
 753                                  unsigned size)
 754{
 755    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 756
 757    if (size != 4) {
 758        return omap_badwidth_read32(opaque, addr);
 759    }
 760
 761    switch (addr) {
 762    case 0x00:  /* FUNC_MUX_CTRL_0 */
 763    case 0x04:  /* FUNC_MUX_CTRL_1 */
 764    case 0x08:  /* FUNC_MUX_CTRL_2 */
 765        return s->func_mux_ctrl[addr >> 2];
 766
 767    case 0x0c:  /* COMP_MODE_CTRL_0 */
 768        return s->comp_mode_ctrl[0];
 769
 770    case 0x10:  /* FUNC_MUX_CTRL_3 */
 771    case 0x14:  /* FUNC_MUX_CTRL_4 */
 772    case 0x18:  /* FUNC_MUX_CTRL_5 */
 773    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 774    case 0x20:  /* FUNC_MUX_CTRL_7 */
 775    case 0x24:  /* FUNC_MUX_CTRL_8 */
 776    case 0x28:  /* FUNC_MUX_CTRL_9 */
 777    case 0x2c:  /* FUNC_MUX_CTRL_A */
 778    case 0x30:  /* FUNC_MUX_CTRL_B */
 779    case 0x34:  /* FUNC_MUX_CTRL_C */
 780    case 0x38:  /* FUNC_MUX_CTRL_D */
 781        return s->func_mux_ctrl[(addr >> 2) - 1];
 782
 783    case 0x40:  /* PULL_DWN_CTRL_0 */
 784    case 0x44:  /* PULL_DWN_CTRL_1 */
 785    case 0x48:  /* PULL_DWN_CTRL_2 */
 786    case 0x4c:  /* PULL_DWN_CTRL_3 */
 787        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
 788
 789    case 0x50:  /* GATE_INH_CTRL_0 */
 790        return s->gate_inh_ctrl[0];
 791
 792    case 0x60:  /* VOLTAGE_CTRL_0 */
 793        return s->voltage_ctrl[0];
 794
 795    case 0x70:  /* TEST_DBG_CTRL_0 */
 796        return s->test_dbg_ctrl[0];
 797
 798    case 0x80:  /* MOD_CONF_CTRL_0 */
 799        return s->mod_conf_ctrl[0];
 800    }
 801
 802    OMAP_BAD_REG(addr);
 803    return 0;
 804}
 805
 806static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
 807                uint32_t diff, uint32_t value)
 808{
 809    if (s->compat1509) {
 810        if (diff & (1 << 9))                    /* BLUETOOTH */
 811            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
 812                            (~value >> 9) & 1);
 813        if (diff & (1 << 7))                    /* USB.CLKO */
 814            omap_clk_onoff(omap_findclk(s, "usb.clko"),
 815                            (value >> 7) & 1);
 816    }
 817}
 818
 819static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
 820                uint32_t diff, uint32_t value)
 821{
 822    if (s->compat1509) {
 823        if (diff & (1U << 31)) {
 824            /* MCBSP3_CLK_HIZ_DI */
 825            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
 826        }
 827        if (diff & (1 << 1)) {
 828            /* CLK32K */
 829            omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
 830        }
 831    }
 832}
 833
 834static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
 835                uint32_t diff, uint32_t value)
 836{
 837    if (diff & (1U << 31)) {
 838        /* CONF_MOD_UART3_CLK_MODE_R */
 839        omap_clk_reparent(omap_findclk(s, "uart3_ck"),
 840                          omap_findclk(s, ((value >> 31) & 1) ?
 841                                       "ck_48m" : "armper_ck"));
 842    }
 843    if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
 844         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
 845                         omap_findclk(s, ((value >> 30) & 1) ?
 846                                 "ck_48m" : "armper_ck"));
 847    if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
 848         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
 849                         omap_findclk(s, ((value >> 29) & 1) ?
 850                                 "ck_48m" : "armper_ck"));
 851    if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
 852         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
 853                         omap_findclk(s, ((value >> 23) & 1) ?
 854                                 "ck_48m" : "armper_ck"));
 855    if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
 856         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
 857                         omap_findclk(s, ((value >> 12) & 1) ?
 858                                 "ck_48m" : "armper_ck"));
 859    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
 860         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
 861}
 862
 863static void omap_pin_cfg_write(void *opaque, hwaddr addr,
 864                               uint64_t value, unsigned size)
 865{
 866    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 867    uint32_t diff;
 868
 869    if (size != 4) {
 870        omap_badwidth_write32(opaque, addr, value);
 871        return;
 872    }
 873
 874    switch (addr) {
 875    case 0x00:  /* FUNC_MUX_CTRL_0 */
 876        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 877        s->func_mux_ctrl[addr >> 2] = value;
 878        omap_pin_funcmux0_update(s, diff, value);
 879        return;
 880
 881    case 0x04:  /* FUNC_MUX_CTRL_1 */
 882        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 883        s->func_mux_ctrl[addr >> 2] = value;
 884        omap_pin_funcmux1_update(s, diff, value);
 885        return;
 886
 887    case 0x08:  /* FUNC_MUX_CTRL_2 */
 888        s->func_mux_ctrl[addr >> 2] = value;
 889        return;
 890
 891    case 0x0c:  /* COMP_MODE_CTRL_0 */
 892        s->comp_mode_ctrl[0] = value;
 893        s->compat1509 = (value != 0x0000eaef);
 894        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
 895        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
 896        return;
 897
 898    case 0x10:  /* FUNC_MUX_CTRL_3 */
 899    case 0x14:  /* FUNC_MUX_CTRL_4 */
 900    case 0x18:  /* FUNC_MUX_CTRL_5 */
 901    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 902    case 0x20:  /* FUNC_MUX_CTRL_7 */
 903    case 0x24:  /* FUNC_MUX_CTRL_8 */
 904    case 0x28:  /* FUNC_MUX_CTRL_9 */
 905    case 0x2c:  /* FUNC_MUX_CTRL_A */
 906    case 0x30:  /* FUNC_MUX_CTRL_B */
 907    case 0x34:  /* FUNC_MUX_CTRL_C */
 908    case 0x38:  /* FUNC_MUX_CTRL_D */
 909        s->func_mux_ctrl[(addr >> 2) - 1] = value;
 910        return;
 911
 912    case 0x40:  /* PULL_DWN_CTRL_0 */
 913    case 0x44:  /* PULL_DWN_CTRL_1 */
 914    case 0x48:  /* PULL_DWN_CTRL_2 */
 915    case 0x4c:  /* PULL_DWN_CTRL_3 */
 916        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
 917        return;
 918
 919    case 0x50:  /* GATE_INH_CTRL_0 */
 920        s->gate_inh_ctrl[0] = value;
 921        return;
 922
 923    case 0x60:  /* VOLTAGE_CTRL_0 */
 924        s->voltage_ctrl[0] = value;
 925        return;
 926
 927    case 0x70:  /* TEST_DBG_CTRL_0 */
 928        s->test_dbg_ctrl[0] = value;
 929        return;
 930
 931    case 0x80:  /* MOD_CONF_CTRL_0 */
 932        diff = s->mod_conf_ctrl[0] ^ value;
 933        s->mod_conf_ctrl[0] = value;
 934        omap_pin_modconf1_update(s, diff, value);
 935        return;
 936
 937    default:
 938        OMAP_BAD_REG(addr);
 939    }
 940}
 941
 942static const MemoryRegionOps omap_pin_cfg_ops = {
 943    .read = omap_pin_cfg_read,
 944    .write = omap_pin_cfg_write,
 945    .endianness = DEVICE_NATIVE_ENDIAN,
 946};
 947
 948static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
 949{
 950    /* Start in Compatibility Mode.  */
 951    mpu->compat1509 = 1;
 952    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
 953    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
 954    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
 955    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
 956    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
 957    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
 958    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
 959    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
 960    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
 961    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
 962}
 963
 964static void omap_pin_cfg_init(MemoryRegion *system_memory,
 965                hwaddr base,
 966                struct omap_mpu_state_s *mpu)
 967{
 968    memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
 969                          "omap-pin-cfg", 0x800);
 970    memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
 971    omap_pin_cfg_reset(mpu);
 972}
 973
 974/* Device Identification, Die Identification */
 975static uint64_t omap_id_read(void *opaque, hwaddr addr,
 976                             unsigned size)
 977{
 978    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 979
 980    if (size != 4) {
 981        return omap_badwidth_read32(opaque, addr);
 982    }
 983
 984    switch (addr) {
 985    case 0xfffe1800:    /* DIE_ID_LSB */
 986        return 0xc9581f0e;
 987    case 0xfffe1804:    /* DIE_ID_MSB */
 988        return 0xa8858bfa;
 989
 990    case 0xfffe2000:    /* PRODUCT_ID_LSB */
 991        return 0x00aaaafc;
 992    case 0xfffe2004:    /* PRODUCT_ID_MSB */
 993        return 0xcafeb574;
 994
 995    case 0xfffed400:    /* JTAG_ID_LSB */
 996        switch (s->mpu_model) {
 997        case omap310:
 998            return 0x03310315;
 999        case omap1510:
1000            return 0x03310115;
1001        default:
1002            hw_error("%s: bad mpu model\n", __FUNCTION__);
1003        }
1004        break;
1005
1006    case 0xfffed404:    /* JTAG_ID_MSB */
1007        switch (s->mpu_model) {
1008        case omap310:
1009            return 0xfb57402f;
1010        case omap1510:
1011            return 0xfb47002f;
1012        default:
1013            hw_error("%s: bad mpu model\n", __FUNCTION__);
1014        }
1015        break;
1016    }
1017
1018    OMAP_BAD_REG(addr);
1019    return 0;
1020}
1021
1022static void omap_id_write(void *opaque, hwaddr addr,
1023                          uint64_t value, unsigned size)
1024{
1025    if (size != 4) {
1026        omap_badwidth_write32(opaque, addr, value);
1027        return;
1028    }
1029
1030    OMAP_BAD_REG(addr);
1031}
1032
1033static const MemoryRegionOps omap_id_ops = {
1034    .read = omap_id_read,
1035    .write = omap_id_write,
1036    .endianness = DEVICE_NATIVE_ENDIAN,
1037};
1038
1039static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1040{
1041    memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042                          "omap-id", 0x100000000ULL);
1043    memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1044                             0xfffe1800, 0x800);
1045    memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046    memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1047                             0xfffed400, 0x100);
1048    memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049    if (!cpu_is_omap15xx(mpu)) {
1050        memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051                                 &mpu->id_iomem, 0xfffe2000, 0x800);
1052        memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1053    }
1054}
1055
1056/* MPUI Control (Dummy) */
1057static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1058                               unsigned size)
1059{
1060    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1061
1062    if (size != 4) {
1063        return omap_badwidth_read32(opaque, addr);
1064    }
1065
1066    switch (addr) {
1067    case 0x00:  /* CTRL */
1068        return s->mpui_ctrl;
1069    case 0x04:  /* DEBUG_ADDR */
1070        return 0x01ffffff;
1071    case 0x08:  /* DEBUG_DATA */
1072        return 0xffffffff;
1073    case 0x0c:  /* DEBUG_FLAG */
1074        return 0x00000800;
1075    case 0x10:  /* STATUS */
1076        return 0x00000000;
1077
1078    /* Not in OMAP310 */
1079    case 0x14:  /* DSP_STATUS */
1080    case 0x18:  /* DSP_BOOT_CONFIG */
1081        return 0x00000000;
1082    case 0x1c:  /* DSP_MPUI_CONFIG */
1083        return 0x0000ffff;
1084    }
1085
1086    OMAP_BAD_REG(addr);
1087    return 0;
1088}
1089
1090static void omap_mpui_write(void *opaque, hwaddr addr,
1091                            uint64_t value, unsigned size)
1092{
1093    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1094
1095    if (size != 4) {
1096        omap_badwidth_write32(opaque, addr, value);
1097        return;
1098    }
1099
1100    switch (addr) {
1101    case 0x00:  /* CTRL */
1102        s->mpui_ctrl = value & 0x007fffff;
1103        break;
1104
1105    case 0x04:  /* DEBUG_ADDR */
1106    case 0x08:  /* DEBUG_DATA */
1107    case 0x0c:  /* DEBUG_FLAG */
1108    case 0x10:  /* STATUS */
1109    /* Not in OMAP310 */
1110    case 0x14:  /* DSP_STATUS */
1111        OMAP_RO_REG(addr);
1112        break;
1113    case 0x18:  /* DSP_BOOT_CONFIG */
1114    case 0x1c:  /* DSP_MPUI_CONFIG */
1115        break;
1116
1117    default:
1118        OMAP_BAD_REG(addr);
1119    }
1120}
1121
1122static const MemoryRegionOps omap_mpui_ops = {
1123    .read = omap_mpui_read,
1124    .write = omap_mpui_write,
1125    .endianness = DEVICE_NATIVE_ENDIAN,
1126};
1127
1128static void omap_mpui_reset(struct omap_mpu_state_s *s)
1129{
1130    s->mpui_ctrl = 0x0003ff1b;
1131}
1132
1133static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134                struct omap_mpu_state_s *mpu)
1135{
1136    memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137                          "omap-mpui", 0x100);
1138    memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1139
1140    omap_mpui_reset(mpu);
1141}
1142
1143/* TIPB Bridges */
1144struct omap_tipb_bridge_s {
1145    qemu_irq abort;
1146    MemoryRegion iomem;
1147
1148    int width_intr;
1149    uint16_t control;
1150    uint16_t alloc;
1151    uint16_t buffer;
1152    uint16_t enh_control;
1153};
1154
1155static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1156                                      unsigned size)
1157{
1158    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1159
1160    if (size < 2) {
1161        return omap_badwidth_read16(opaque, addr);
1162    }
1163
1164    switch (addr) {
1165    case 0x00:  /* TIPB_CNTL */
1166        return s->control;
1167    case 0x04:  /* TIPB_BUS_ALLOC */
1168        return s->alloc;
1169    case 0x08:  /* MPU_TIPB_CNTL */
1170        return s->buffer;
1171    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1172        return s->enh_control;
1173    case 0x10:  /* ADDRESS_DBG */
1174    case 0x14:  /* DATA_DEBUG_LOW */
1175    case 0x18:  /* DATA_DEBUG_HIGH */
1176        return 0xffff;
1177    case 0x1c:  /* DEBUG_CNTR_SIG */
1178        return 0x00f8;
1179    }
1180
1181    OMAP_BAD_REG(addr);
1182    return 0;
1183}
1184
1185static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186                                   uint64_t value, unsigned size)
1187{
1188    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1189
1190    if (size < 2) {
1191        omap_badwidth_write16(opaque, addr, value);
1192        return;
1193    }
1194
1195    switch (addr) {
1196    case 0x00:  /* TIPB_CNTL */
1197        s->control = value & 0xffff;
1198        break;
1199
1200    case 0x04:  /* TIPB_BUS_ALLOC */
1201        s->alloc = value & 0x003f;
1202        break;
1203
1204    case 0x08:  /* MPU_TIPB_CNTL */
1205        s->buffer = value & 0x0003;
1206        break;
1207
1208    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1209        s->width_intr = !(value & 2);
1210        s->enh_control = value & 0x000f;
1211        break;
1212
1213    case 0x10:  /* ADDRESS_DBG */
1214    case 0x14:  /* DATA_DEBUG_LOW */
1215    case 0x18:  /* DATA_DEBUG_HIGH */
1216    case 0x1c:  /* DEBUG_CNTR_SIG */
1217        OMAP_RO_REG(addr);
1218        break;
1219
1220    default:
1221        OMAP_BAD_REG(addr);
1222    }
1223}
1224
1225static const MemoryRegionOps omap_tipb_bridge_ops = {
1226    .read = omap_tipb_bridge_read,
1227    .write = omap_tipb_bridge_write,
1228    .endianness = DEVICE_NATIVE_ENDIAN,
1229};
1230
1231static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1232{
1233    s->control = 0xffff;
1234    s->alloc = 0x0009;
1235    s->buffer = 0x0000;
1236    s->enh_control = 0x000f;
1237}
1238
1239static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240    MemoryRegion *memory, hwaddr base,
1241    qemu_irq abort_irq, omap_clk clk)
1242{
1243    struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1244
1245    s->abort = abort_irq;
1246    omap_tipb_bridge_reset(s);
1247
1248    memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249                          "omap-tipb-bridge", 0x100);
1250    memory_region_add_subregion(memory, base, &s->iomem);
1251
1252    return s;
1253}
1254
1255/* Dummy Traffic Controller's Memory Interface */
1256static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1257                               unsigned size)
1258{
1259    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1260    uint32_t ret;
1261
1262    if (size != 4) {
1263        return omap_badwidth_read32(opaque, addr);
1264    }
1265
1266    switch (addr) {
1267    case 0x00:  /* IMIF_PRIO */
1268    case 0x04:  /* EMIFS_PRIO */
1269    case 0x08:  /* EMIFF_PRIO */
1270    case 0x0c:  /* EMIFS_CONFIG */
1271    case 0x10:  /* EMIFS_CS0_CONFIG */
1272    case 0x14:  /* EMIFS_CS1_CONFIG */
1273    case 0x18:  /* EMIFS_CS2_CONFIG */
1274    case 0x1c:  /* EMIFS_CS3_CONFIG */
1275    case 0x24:  /* EMIFF_MRS */
1276    case 0x28:  /* TIMEOUT1 */
1277    case 0x2c:  /* TIMEOUT2 */
1278    case 0x30:  /* TIMEOUT3 */
1279    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1280    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1281        return s->tcmi_regs[addr >> 2];
1282
1283    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1284        ret = s->tcmi_regs[addr >> 2];
1285        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286        /* XXX: We can try using the VGA_DIRTY flag for this */
1287        return ret;
1288    }
1289
1290    OMAP_BAD_REG(addr);
1291    return 0;
1292}
1293
1294static void omap_tcmi_write(void *opaque, hwaddr addr,
1295                            uint64_t value, unsigned size)
1296{
1297    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1298
1299    if (size != 4) {
1300        omap_badwidth_write32(opaque, addr, value);
1301        return;
1302    }
1303
1304    switch (addr) {
1305    case 0x00:  /* IMIF_PRIO */
1306    case 0x04:  /* EMIFS_PRIO */
1307    case 0x08:  /* EMIFF_PRIO */
1308    case 0x10:  /* EMIFS_CS0_CONFIG */
1309    case 0x14:  /* EMIFS_CS1_CONFIG */
1310    case 0x18:  /* EMIFS_CS2_CONFIG */
1311    case 0x1c:  /* EMIFS_CS3_CONFIG */
1312    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1313    case 0x24:  /* EMIFF_MRS */
1314    case 0x28:  /* TIMEOUT1 */
1315    case 0x2c:  /* TIMEOUT2 */
1316    case 0x30:  /* TIMEOUT3 */
1317    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1318    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1319        s->tcmi_regs[addr >> 2] = value;
1320        break;
1321    case 0x0c:  /* EMIFS_CONFIG */
1322        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1323        break;
1324
1325    default:
1326        OMAP_BAD_REG(addr);
1327    }
1328}
1329
1330static const MemoryRegionOps omap_tcmi_ops = {
1331    .read = omap_tcmi_read,
1332    .write = omap_tcmi_write,
1333    .endianness = DEVICE_NATIVE_ENDIAN,
1334};
1335
1336static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1337{
1338    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1353}
1354
1355static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356                struct omap_mpu_state_s *mpu)
1357{
1358    memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359                          "omap-tcmi", 0x100);
1360    memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361    omap_tcmi_reset(mpu);
1362}
1363
1364/* Digital phase-locked loops control */
1365struct dpll_ctl_s {
1366    MemoryRegion iomem;
1367    uint16_t mode;
1368    omap_clk dpll;
1369};
1370
1371static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1372                               unsigned size)
1373{
1374    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1375
1376    if (size != 2) {
1377        return omap_badwidth_read16(opaque, addr);
1378    }
1379
1380    if (addr == 0x00)   /* CTL_REG */
1381        return s->mode;
1382
1383    OMAP_BAD_REG(addr);
1384    return 0;
1385}
1386
1387static void omap_dpll_write(void *opaque, hwaddr addr,
1388                            uint64_t value, unsigned size)
1389{
1390    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1391    uint16_t diff;
1392    static const int bypass_div[4] = { 1, 2, 4, 4 };
1393    int div, mult;
1394
1395    if (size != 2) {
1396        omap_badwidth_write16(opaque, addr, value);
1397        return;
1398    }
1399
1400    if (addr == 0x00) { /* CTL_REG */
1401        /* See omap_ulpd_pm_write() too */
1402        diff = s->mode & value;
1403        s->mode = value & 0x2fff;
1404        if (diff & (0x3ff << 2)) {
1405            if (value & (1 << 4)) {                     /* PLL_ENABLE */
1406                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1407                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1408            } else {
1409                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1410                mult = 1;
1411            }
1412            omap_clk_setrate(s->dpll, div, mult);
1413        }
1414
1415        /* Enter the desired mode.  */
1416        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1417
1418        /* Act as if the lock is restored.  */
1419        s->mode |= 2;
1420    } else {
1421        OMAP_BAD_REG(addr);
1422    }
1423}
1424
1425static const MemoryRegionOps omap_dpll_ops = {
1426    .read = omap_dpll_read,
1427    .write = omap_dpll_write,
1428    .endianness = DEVICE_NATIVE_ENDIAN,
1429};
1430
1431static void omap_dpll_reset(struct dpll_ctl_s *s)
1432{
1433    s->mode = 0x2002;
1434    omap_clk_setrate(s->dpll, 1, 1);
1435}
1436
1437static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1438                           hwaddr base, omap_clk clk)
1439{
1440    struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441    memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1442
1443    s->dpll = clk;
1444    omap_dpll_reset(s);
1445
1446    memory_region_add_subregion(memory, base, &s->iomem);
1447    return s;
1448}
1449
1450/* MPU Clock/Reset/Power Mode Control */
1451static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1452                               unsigned size)
1453{
1454    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1455
1456    if (size != 2) {
1457        return omap_badwidth_read16(opaque, addr);
1458    }
1459
1460    switch (addr) {
1461    case 0x00:  /* ARM_CKCTL */
1462        return s->clkm.arm_ckctl;
1463
1464    case 0x04:  /* ARM_IDLECT1 */
1465        return s->clkm.arm_idlect1;
1466
1467    case 0x08:  /* ARM_IDLECT2 */
1468        return s->clkm.arm_idlect2;
1469
1470    case 0x0c:  /* ARM_EWUPCT */
1471        return s->clkm.arm_ewupct;
1472
1473    case 0x10:  /* ARM_RSTCT1 */
1474        return s->clkm.arm_rstct1;
1475
1476    case 0x14:  /* ARM_RSTCT2 */
1477        return s->clkm.arm_rstct2;
1478
1479    case 0x18:  /* ARM_SYSST */
1480        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1481
1482    case 0x1c:  /* ARM_CKOUT1 */
1483        return s->clkm.arm_ckout1;
1484
1485    case 0x20:  /* ARM_CKOUT2 */
1486        break;
1487    }
1488
1489    OMAP_BAD_REG(addr);
1490    return 0;
1491}
1492
1493static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494                uint16_t diff, uint16_t value)
1495{
1496    omap_clk clk;
1497
1498    if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1499        if (value & (1 << 14))
1500            /* Reserved */;
1501        else {
1502            clk = omap_findclk(s, "arminth_ck");
1503            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1504        }
1505    }
1506    if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1507        clk = omap_findclk(s, "armtim_ck");
1508        if (value & (1 << 12))
1509            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1510        else
1511            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1512    }
1513    /* XXX: en_dspck */
1514    if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1515        clk = omap_findclk(s, "dspmmu_ck");
1516        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1517    }
1518    if (diff & (3 << 8)) {                              /* TCDIV */
1519        clk = omap_findclk(s, "tc_ck");
1520        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1521    }
1522    if (diff & (3 << 6)) {                              /* DSPDIV */
1523        clk = omap_findclk(s, "dsp_ck");
1524        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1525    }
1526    if (diff & (3 << 4)) {                              /* ARMDIV */
1527        clk = omap_findclk(s, "arm_ck");
1528        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1529    }
1530    if (diff & (3 << 2)) {                              /* LCDDIV */
1531        clk = omap_findclk(s, "lcd_ck");
1532        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1533    }
1534    if (diff & (3 << 0)) {                              /* PERDIV */
1535        clk = omap_findclk(s, "armper_ck");
1536        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537    }
1538}
1539
1540static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541                uint16_t diff, uint16_t value)
1542{
1543    omap_clk clk;
1544
1545    if (value & (1 << 11)) {                            /* SETARM_IDLE */
1546        cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1547    }
1548    if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1549        /* XXX: disable wakeup from IRQ */
1550        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1551    }
1552
1553#define SET_CANIDLE(clock, bit)                         \
1554    if (diff & (1 << bit)) {                            \
1555        clk = omap_findclk(s, clock);                   \
1556        omap_clk_canidle(clk, (value >> bit) & 1);      \
1557    }
1558    SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1559    SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1560    SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1561    SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1562    SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1563    SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1564    SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1565    SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1566    SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1567    SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1568    SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1569    SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1570    SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1571    SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1572}
1573
1574static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1575                uint16_t diff, uint16_t value)
1576{
1577    omap_clk clk;
1578
1579#define SET_ONOFF(clock, bit)                           \
1580    if (diff & (1 << bit)) {                            \
1581        clk = omap_findclk(s, clock);                   \
1582        omap_clk_onoff(clk, (value >> bit) & 1);        \
1583    }
1584    SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1585    SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1586    SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1587    SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1588    SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1589    SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1590    SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1591    SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1592    SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1593    SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1594    SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1595}
1596
1597static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1598                uint16_t diff, uint16_t value)
1599{
1600    omap_clk clk;
1601
1602    if (diff & (3 << 4)) {                              /* TCLKOUT */
1603        clk = omap_findclk(s, "tclk_out");
1604        switch ((value >> 4) & 3) {
1605        case 1:
1606            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1607            omap_clk_onoff(clk, 1);
1608            break;
1609        case 2:
1610            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1611            omap_clk_onoff(clk, 1);
1612            break;
1613        default:
1614            omap_clk_onoff(clk, 0);
1615        }
1616    }
1617    if (diff & (3 << 2)) {                              /* DCLKOUT */
1618        clk = omap_findclk(s, "dclk_out");
1619        switch ((value >> 2) & 3) {
1620        case 0:
1621            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1622            break;
1623        case 1:
1624            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1625            break;
1626        case 2:
1627            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1628            break;
1629        case 3:
1630            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1631            break;
1632        }
1633    }
1634    if (diff & (3 << 0)) {                              /* ACLKOUT */
1635        clk = omap_findclk(s, "aclk_out");
1636        switch ((value >> 0) & 3) {
1637        case 1:
1638            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1639            omap_clk_onoff(clk, 1);
1640            break;
1641        case 2:
1642            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1643            omap_clk_onoff(clk, 1);
1644            break;
1645        case 3:
1646            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1647            omap_clk_onoff(clk, 1);
1648            break;
1649        default:
1650            omap_clk_onoff(clk, 0);
1651        }
1652    }
1653}
1654
1655static void omap_clkm_write(void *opaque, hwaddr addr,
1656                            uint64_t value, unsigned size)
1657{
1658    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1659    uint16_t diff;
1660    omap_clk clk;
1661    static const char *clkschemename[8] = {
1662        "fully synchronous", "fully asynchronous", "synchronous scalable",
1663        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1664    };
1665
1666    if (size != 2) {
1667        omap_badwidth_write16(opaque, addr, value);
1668        return;
1669    }
1670
1671    switch (addr) {
1672    case 0x00:  /* ARM_CKCTL */
1673        diff = s->clkm.arm_ckctl ^ value;
1674        s->clkm.arm_ckctl = value & 0x7fff;
1675        omap_clkm_ckctl_update(s, diff, value);
1676        return;
1677
1678    case 0x04:  /* ARM_IDLECT1 */
1679        diff = s->clkm.arm_idlect1 ^ value;
1680        s->clkm.arm_idlect1 = value & 0x0fff;
1681        omap_clkm_idlect1_update(s, diff, value);
1682        return;
1683
1684    case 0x08:  /* ARM_IDLECT2 */
1685        diff = s->clkm.arm_idlect2 ^ value;
1686        s->clkm.arm_idlect2 = value & 0x07ff;
1687        omap_clkm_idlect2_update(s, diff, value);
1688        return;
1689
1690    case 0x0c:  /* ARM_EWUPCT */
1691        s->clkm.arm_ewupct = value & 0x003f;
1692        return;
1693
1694    case 0x10:  /* ARM_RSTCT1 */
1695        diff = s->clkm.arm_rstct1 ^ value;
1696        s->clkm.arm_rstct1 = value & 0x0007;
1697        if (value & 9) {
1698            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1699            s->clkm.cold_start = 0xa;
1700        }
1701        if (diff & ~value & 4) {                                /* DSP_RST */
1702            omap_mpui_reset(s);
1703            omap_tipb_bridge_reset(s->private_tipb);
1704            omap_tipb_bridge_reset(s->public_tipb);
1705        }
1706        if (diff & 2) {                                         /* DSP_EN */
1707            clk = omap_findclk(s, "dsp_ck");
1708            omap_clk_canidle(clk, (~value >> 1) & 1);
1709        }
1710        return;
1711
1712    case 0x14:  /* ARM_RSTCT2 */
1713        s->clkm.arm_rstct2 = value & 0x0001;
1714        return;
1715
1716    case 0x18:  /* ARM_SYSST */
1717        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1718            s->clkm.clocking_scheme = (value >> 11) & 7;
1719            printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1720                            clkschemename[s->clkm.clocking_scheme]);
1721        }
1722        s->clkm.cold_start &= value & 0x3f;
1723        return;
1724
1725    case 0x1c:  /* ARM_CKOUT1 */
1726        diff = s->clkm.arm_ckout1 ^ value;
1727        s->clkm.arm_ckout1 = value & 0x003f;
1728        omap_clkm_ckout1_update(s, diff, value);
1729        return;
1730
1731    case 0x20:  /* ARM_CKOUT2 */
1732    default:
1733        OMAP_BAD_REG(addr);
1734    }
1735}
1736
1737static const MemoryRegionOps omap_clkm_ops = {
1738    .read = omap_clkm_read,
1739    .write = omap_clkm_write,
1740    .endianness = DEVICE_NATIVE_ENDIAN,
1741};
1742
1743static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1744                                 unsigned size)
1745{
1746    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1747    CPUState *cpu = CPU(s->cpu);
1748
1749    if (size != 2) {
1750        return omap_badwidth_read16(opaque, addr);
1751    }
1752
1753    switch (addr) {
1754    case 0x04:  /* DSP_IDLECT1 */
1755        return s->clkm.dsp_idlect1;
1756
1757    case 0x08:  /* DSP_IDLECT2 */
1758        return s->clkm.dsp_idlect2;
1759
1760    case 0x14:  /* DSP_RSTCT2 */
1761        return s->clkm.dsp_rstct2;
1762
1763    case 0x18:  /* DSP_SYSST */
1764        cpu = CPU(s->cpu);
1765        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1766                (cpu->halted << 6);      /* Quite useless... */
1767    }
1768
1769    OMAP_BAD_REG(addr);
1770    return 0;
1771}
1772
1773static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1774                uint16_t diff, uint16_t value)
1775{
1776    omap_clk clk;
1777
1778    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1779}
1780
1781static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1782                uint16_t diff, uint16_t value)
1783{
1784    omap_clk clk;
1785
1786    SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1787}
1788
1789static void omap_clkdsp_write(void *opaque, hwaddr addr,
1790                              uint64_t value, unsigned size)
1791{
1792    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1793    uint16_t diff;
1794
1795    if (size != 2) {
1796        omap_badwidth_write16(opaque, addr, value);
1797        return;
1798    }
1799
1800    switch (addr) {
1801    case 0x04:  /* DSP_IDLECT1 */
1802        diff = s->clkm.dsp_idlect1 ^ value;
1803        s->clkm.dsp_idlect1 = value & 0x01f7;
1804        omap_clkdsp_idlect1_update(s, diff, value);
1805        break;
1806
1807    case 0x08:  /* DSP_IDLECT2 */
1808        s->clkm.dsp_idlect2 = value & 0x0037;
1809        diff = s->clkm.dsp_idlect1 ^ value;
1810        omap_clkdsp_idlect2_update(s, diff, value);
1811        break;
1812
1813    case 0x14:  /* DSP_RSTCT2 */
1814        s->clkm.dsp_rstct2 = value & 0x0001;
1815        break;
1816
1817    case 0x18:  /* DSP_SYSST */
1818        s->clkm.cold_start &= value & 0x3f;
1819        break;
1820
1821    default:
1822        OMAP_BAD_REG(addr);
1823    }
1824}
1825
1826static const MemoryRegionOps omap_clkdsp_ops = {
1827    .read = omap_clkdsp_read,
1828    .write = omap_clkdsp_write,
1829    .endianness = DEVICE_NATIVE_ENDIAN,
1830};
1831
1832static void omap_clkm_reset(struct omap_mpu_state_s *s)
1833{
1834    if (s->wdt && s->wdt->reset)
1835        s->clkm.cold_start = 0x6;
1836    s->clkm.clocking_scheme = 0;
1837    omap_clkm_ckctl_update(s, ~0, 0x3000);
1838    s->clkm.arm_ckctl = 0x3000;
1839    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1840    s->clkm.arm_idlect1 = 0x0400;
1841    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1842    s->clkm.arm_idlect2 = 0x0100;
1843    s->clkm.arm_ewupct = 0x003f;
1844    s->clkm.arm_rstct1 = 0x0000;
1845    s->clkm.arm_rstct2 = 0x0000;
1846    s->clkm.arm_ckout1 = 0x0015;
1847    s->clkm.dpll1_mode = 0x2002;
1848    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1849    s->clkm.dsp_idlect1 = 0x0040;
1850    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1851    s->clkm.dsp_idlect2 = 0x0000;
1852    s->clkm.dsp_rstct2 = 0x0000;
1853}
1854
1855static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1856                hwaddr dsp_base, struct omap_mpu_state_s *s)
1857{
1858    memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1859                          "omap-clkm", 0x100);
1860    memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1861                          "omap-clkdsp", 0x1000);
1862
1863    s->clkm.arm_idlect1 = 0x03ff;
1864    s->clkm.arm_idlect2 = 0x0100;
1865    s->clkm.dsp_idlect1 = 0x0002;
1866    omap_clkm_reset(s);
1867    s->clkm.cold_start = 0x3a;
1868
1869    memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1870    memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1871}
1872
1873/* MPU I/O */
1874struct omap_mpuio_s {
1875    qemu_irq irq;
1876    qemu_irq kbd_irq;
1877    qemu_irq *in;
1878    qemu_irq handler[16];
1879    qemu_irq wakeup;
1880    MemoryRegion iomem;
1881
1882    uint16_t inputs;
1883    uint16_t outputs;
1884    uint16_t dir;
1885    uint16_t edge;
1886    uint16_t mask;
1887    uint16_t ints;
1888
1889    uint16_t debounce;
1890    uint16_t latch;
1891    uint8_t event;
1892
1893    uint8_t buttons[5];
1894    uint8_t row_latch;
1895    uint8_t cols;
1896    int kbd_mask;
1897    int clk;
1898};
1899
1900static void omap_mpuio_set(void *opaque, int line, int level)
1901{
1902    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1903    uint16_t prev = s->inputs;
1904
1905    if (level)
1906        s->inputs |= 1 << line;
1907    else
1908        s->inputs &= ~(1 << line);
1909
1910    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1911        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1912            s->ints |= 1 << line;
1913            qemu_irq_raise(s->irq);
1914            /* TODO: wakeup */
1915        }
1916        if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1917                (s->event >> 1) == line)        /* PIN_SELECT */
1918            s->latch = s->inputs;
1919    }
1920}
1921
1922static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1923{
1924    int i;
1925    uint8_t *row, rows = 0, cols = ~s->cols;
1926
1927    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1928        if (*row & cols)
1929            rows |= i;
1930
1931    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1932    s->row_latch = ~rows;
1933}
1934
1935static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1936                                unsigned size)
1937{
1938    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1939    int offset = addr & OMAP_MPUI_REG_MASK;
1940    uint16_t ret;
1941
1942    if (size != 2) {
1943        return omap_badwidth_read16(opaque, addr);
1944    }
1945
1946    switch (offset) {
1947    case 0x00:  /* INPUT_LATCH */
1948        return s->inputs;
1949
1950    case 0x04:  /* OUTPUT_REG */
1951        return s->outputs;
1952
1953    case 0x08:  /* IO_CNTL */
1954        return s->dir;
1955
1956    case 0x10:  /* KBR_LATCH */
1957        return s->row_latch;
1958
1959    case 0x14:  /* KBC_REG */
1960        return s->cols;
1961
1962    case 0x18:  /* GPIO_EVENT_MODE_REG */
1963        return s->event;
1964
1965    case 0x1c:  /* GPIO_INT_EDGE_REG */
1966        return s->edge;
1967
1968    case 0x20:  /* KBD_INT */
1969        return (~s->row_latch & 0x1f) && !s->kbd_mask;
1970
1971    case 0x24:  /* GPIO_INT */
1972        ret = s->ints;
1973        s->ints &= s->mask;
1974        if (ret)
1975            qemu_irq_lower(s->irq);
1976        return ret;
1977
1978    case 0x28:  /* KBD_MASKIT */
1979        return s->kbd_mask;
1980
1981    case 0x2c:  /* GPIO_MASKIT */
1982        return s->mask;
1983
1984    case 0x30:  /* GPIO_DEBOUNCING_REG */
1985        return s->debounce;
1986
1987    case 0x34:  /* GPIO_LATCH_REG */
1988        return s->latch;
1989    }
1990
1991    OMAP_BAD_REG(addr);
1992    return 0;
1993}
1994
1995static void omap_mpuio_write(void *opaque, hwaddr addr,
1996                             uint64_t value, unsigned size)
1997{
1998    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1999    int offset = addr & OMAP_MPUI_REG_MASK;
2000    uint16_t diff;
2001    int ln;
2002
2003    if (size != 2) {
2004        omap_badwidth_write16(opaque, addr, value);
2005        return;
2006    }
2007
2008    switch (offset) {
2009    case 0x04:  /* OUTPUT_REG */
2010        diff = (s->outputs ^ value) & ~s->dir;
2011        s->outputs = value;
2012        while ((ln = ctz32(diff)) != 32) {
2013            if (s->handler[ln])
2014                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2015            diff &= ~(1 << ln);
2016        }
2017        break;
2018
2019    case 0x08:  /* IO_CNTL */
2020        diff = s->outputs & (s->dir ^ value);
2021        s->dir = value;
2022
2023        value = s->outputs & ~s->dir;
2024        while ((ln = ctz32(diff)) != 32) {
2025            if (s->handler[ln])
2026                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2027            diff &= ~(1 << ln);
2028        }
2029        break;
2030
2031    case 0x14:  /* KBC_REG */
2032        s->cols = value;
2033        omap_mpuio_kbd_update(s);
2034        break;
2035
2036    case 0x18:  /* GPIO_EVENT_MODE_REG */
2037        s->event = value & 0x1f;
2038        break;
2039
2040    case 0x1c:  /* GPIO_INT_EDGE_REG */
2041        s->edge = value;
2042        break;
2043
2044    case 0x28:  /* KBD_MASKIT */
2045        s->kbd_mask = value & 1;
2046        omap_mpuio_kbd_update(s);
2047        break;
2048
2049    case 0x2c:  /* GPIO_MASKIT */
2050        s->mask = value;
2051        break;
2052
2053    case 0x30:  /* GPIO_DEBOUNCING_REG */
2054        s->debounce = value & 0x1ff;
2055        break;
2056
2057    case 0x00:  /* INPUT_LATCH */
2058    case 0x10:  /* KBR_LATCH */
2059    case 0x20:  /* KBD_INT */
2060    case 0x24:  /* GPIO_INT */
2061    case 0x34:  /* GPIO_LATCH_REG */
2062        OMAP_RO_REG(addr);
2063        return;
2064
2065    default:
2066        OMAP_BAD_REG(addr);
2067        return;
2068    }
2069}
2070
2071static const MemoryRegionOps omap_mpuio_ops  = {
2072    .read = omap_mpuio_read,
2073    .write = omap_mpuio_write,
2074    .endianness = DEVICE_NATIVE_ENDIAN,
2075};
2076
2077static void omap_mpuio_reset(struct omap_mpuio_s *s)
2078{
2079    s->inputs = 0;
2080    s->outputs = 0;
2081    s->dir = ~0;
2082    s->event = 0;
2083    s->edge = 0;
2084    s->kbd_mask = 0;
2085    s->mask = 0;
2086    s->debounce = 0;
2087    s->latch = 0;
2088    s->ints = 0;
2089    s->row_latch = 0x1f;
2090    s->clk = 1;
2091}
2092
2093static void omap_mpuio_onoff(void *opaque, int line, int on)
2094{
2095    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2096
2097    s->clk = on;
2098    if (on)
2099        omap_mpuio_kbd_update(s);
2100}
2101
2102static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2103                hwaddr base,
2104                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2105                omap_clk clk)
2106{
2107    struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2108
2109    s->irq = gpio_int;
2110    s->kbd_irq = kbd_int;
2111    s->wakeup = wakeup;
2112    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2113    omap_mpuio_reset(s);
2114
2115    memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2116                          "omap-mpuio", 0x800);
2117    memory_region_add_subregion(memory, base, &s->iomem);
2118
2119    omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2120
2121    return s;
2122}
2123
2124qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2125{
2126    return s->in;
2127}
2128
2129void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2130{
2131    if (line >= 16 || line < 0)
2132        hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2133    s->handler[line] = handler;
2134}
2135
2136void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2137{
2138    if (row >= 5 || row < 0)
2139        hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2140
2141    if (down)
2142        s->buttons[row] |= 1 << col;
2143    else
2144        s->buttons[row] &= ~(1 << col);
2145
2146    omap_mpuio_kbd_update(s);
2147}
2148
2149/* MicroWire Interface */
2150struct omap_uwire_s {
2151    MemoryRegion iomem;
2152    qemu_irq txirq;
2153    qemu_irq rxirq;
2154    qemu_irq txdrq;
2155
2156    uint16_t txbuf;
2157    uint16_t rxbuf;
2158    uint16_t control;
2159    uint16_t setup[5];
2160
2161    uWireSlave *chip[4];
2162};
2163
2164static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2165{
2166    int chipselect = (s->control >> 10) & 3;            /* INDEX */
2167    uWireSlave *slave = s->chip[chipselect];
2168
2169    if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2170        if (s->control & (1 << 12))                     /* CS_CMD */
2171            if (slave && slave->send)
2172                slave->send(slave->opaque,
2173                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2174        s->control &= ~(1 << 14);                       /* CSRB */
2175        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2176         * a DRQ.  When is the level IRQ supposed to be reset?  */
2177    }
2178
2179    if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2180        if (s->control & (1 << 12))                     /* CS_CMD */
2181            if (slave && slave->receive)
2182                s->rxbuf = slave->receive(slave->opaque);
2183        s->control |= 1 << 15;                          /* RDRB */
2184        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2185         * a DRQ.  When is the level IRQ supposed to be reset?  */
2186    }
2187}
2188
2189static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2190                                unsigned size)
2191{
2192    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2193    int offset = addr & OMAP_MPUI_REG_MASK;
2194
2195    if (size != 2) {
2196        return omap_badwidth_read16(opaque, addr);
2197    }
2198
2199    switch (offset) {
2200    case 0x00:  /* RDR */
2201        s->control &= ~(1 << 15);                       /* RDRB */
2202        return s->rxbuf;
2203
2204    case 0x04:  /* CSR */
2205        return s->control;
2206
2207    case 0x08:  /* SR1 */
2208        return s->setup[0];
2209    case 0x0c:  /* SR2 */
2210        return s->setup[1];
2211    case 0x10:  /* SR3 */
2212        return s->setup[2];
2213    case 0x14:  /* SR4 */
2214        return s->setup[3];
2215    case 0x18:  /* SR5 */
2216        return s->setup[4];
2217    }
2218
2219    OMAP_BAD_REG(addr);
2220    return 0;
2221}
2222
2223static void omap_uwire_write(void *opaque, hwaddr addr,
2224                             uint64_t value, unsigned size)
2225{
2226    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2227    int offset = addr & OMAP_MPUI_REG_MASK;
2228
2229    if (size != 2) {
2230        omap_badwidth_write16(opaque, addr, value);
2231        return;
2232    }
2233
2234    switch (offset) {
2235    case 0x00:  /* TDR */
2236        s->txbuf = value;                               /* TD */
2237        if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2238                        ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2239                         (s->control & (1 << 12)))) {   /* CS_CMD */
2240            s->control |= 1 << 14;                      /* CSRB */
2241            omap_uwire_transfer_start(s);
2242        }
2243        break;
2244
2245    case 0x04:  /* CSR */
2246        s->control = value & 0x1fff;
2247        if (value & (1 << 13))                          /* START */
2248            omap_uwire_transfer_start(s);
2249        break;
2250
2251    case 0x08:  /* SR1 */
2252        s->setup[0] = value & 0x003f;
2253        break;
2254
2255    case 0x0c:  /* SR2 */
2256        s->setup[1] = value & 0x0fc0;
2257        break;
2258
2259    case 0x10:  /* SR3 */
2260        s->setup[2] = value & 0x0003;
2261        break;
2262
2263    case 0x14:  /* SR4 */
2264        s->setup[3] = value & 0x0001;
2265        break;
2266
2267    case 0x18:  /* SR5 */
2268        s->setup[4] = value & 0x000f;
2269        break;
2270
2271    default:
2272        OMAP_BAD_REG(addr);
2273        return;
2274    }
2275}
2276
2277static const MemoryRegionOps omap_uwire_ops = {
2278    .read = omap_uwire_read,
2279    .write = omap_uwire_write,
2280    .endianness = DEVICE_NATIVE_ENDIAN,
2281};
2282
2283static void omap_uwire_reset(struct omap_uwire_s *s)
2284{
2285    s->control = 0;
2286    s->setup[0] = 0;
2287    s->setup[1] = 0;
2288    s->setup[2] = 0;
2289    s->setup[3] = 0;
2290    s->setup[4] = 0;
2291}
2292
2293static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2294                                            hwaddr base,
2295                                            qemu_irq txirq, qemu_irq rxirq,
2296                                            qemu_irq dma,
2297                                            omap_clk clk)
2298{
2299    struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2300
2301    s->txirq = txirq;
2302    s->rxirq = rxirq;
2303    s->txdrq = dma;
2304    omap_uwire_reset(s);
2305
2306    memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2307    memory_region_add_subregion(system_memory, base, &s->iomem);
2308
2309    return s;
2310}
2311
2312void omap_uwire_attach(struct omap_uwire_s *s,
2313                uWireSlave *slave, int chipselect)
2314{
2315    if (chipselect < 0 || chipselect > 3) {
2316        fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2317        exit(-1);
2318    }
2319
2320    s->chip[chipselect] = slave;
2321}
2322
2323/* Pseudonoise Pulse-Width Light Modulator */
2324struct omap_pwl_s {
2325    MemoryRegion iomem;
2326    uint8_t output;
2327    uint8_t level;
2328    uint8_t enable;
2329    int clk;
2330};
2331
2332static void omap_pwl_update(struct omap_pwl_s *s)
2333{
2334    int output = (s->clk && s->enable) ? s->level : 0;
2335
2336    if (output != s->output) {
2337        s->output = output;
2338        printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2339    }
2340}
2341
2342static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2343                              unsigned size)
2344{
2345    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2346    int offset = addr & OMAP_MPUI_REG_MASK;
2347
2348    if (size != 1) {
2349        return omap_badwidth_read8(opaque, addr);
2350    }
2351
2352    switch (offset) {
2353    case 0x00:  /* PWL_LEVEL */
2354        return s->level;
2355    case 0x04:  /* PWL_CTRL */
2356        return s->enable;
2357    }
2358    OMAP_BAD_REG(addr);
2359    return 0;
2360}
2361
2362static void omap_pwl_write(void *opaque, hwaddr addr,
2363                           uint64_t value, unsigned size)
2364{
2365    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2366    int offset = addr & OMAP_MPUI_REG_MASK;
2367
2368    if (size != 1) {
2369        omap_badwidth_write8(opaque, addr, value);
2370        return;
2371    }
2372
2373    switch (offset) {
2374    case 0x00:  /* PWL_LEVEL */
2375        s->level = value;
2376        omap_pwl_update(s);
2377        break;
2378    case 0x04:  /* PWL_CTRL */
2379        s->enable = value & 1;
2380        omap_pwl_update(s);
2381        break;
2382    default:
2383        OMAP_BAD_REG(addr);
2384        return;
2385    }
2386}
2387
2388static const MemoryRegionOps omap_pwl_ops = {
2389    .read = omap_pwl_read,
2390    .write = omap_pwl_write,
2391    .endianness = DEVICE_NATIVE_ENDIAN,
2392};
2393
2394static void omap_pwl_reset(struct omap_pwl_s *s)
2395{
2396    s->output = 0;
2397    s->level = 0;
2398    s->enable = 0;
2399    s->clk = 1;
2400    omap_pwl_update(s);
2401}
2402
2403static void omap_pwl_clk_update(void *opaque, int line, int on)
2404{
2405    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2406
2407    s->clk = on;
2408    omap_pwl_update(s);
2409}
2410
2411static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2412                                        hwaddr base,
2413                                        omap_clk clk)
2414{
2415    struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2416
2417    omap_pwl_reset(s);
2418
2419    memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2420                          "omap-pwl", 0x800);
2421    memory_region_add_subregion(system_memory, base, &s->iomem);
2422
2423    omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2424    return s;
2425}
2426
2427/* Pulse-Width Tone module */
2428struct omap_pwt_s {
2429    MemoryRegion iomem;
2430    uint8_t frc;
2431    uint8_t vrc;
2432    uint8_t gcr;
2433    omap_clk clk;
2434};
2435
2436static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2437                              unsigned size)
2438{
2439    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2440    int offset = addr & OMAP_MPUI_REG_MASK;
2441
2442    if (size != 1) {
2443        return omap_badwidth_read8(opaque, addr);
2444    }
2445
2446    switch (offset) {
2447    case 0x00:  /* FRC */
2448        return s->frc;
2449    case 0x04:  /* VCR */
2450        return s->vrc;
2451    case 0x08:  /* GCR */
2452        return s->gcr;
2453    }
2454    OMAP_BAD_REG(addr);
2455    return 0;
2456}
2457
2458static void omap_pwt_write(void *opaque, hwaddr addr,
2459                           uint64_t value, unsigned size)
2460{
2461    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2462    int offset = addr & OMAP_MPUI_REG_MASK;
2463
2464    if (size != 1) {
2465        omap_badwidth_write8(opaque, addr, value);
2466        return;
2467    }
2468
2469    switch (offset) {
2470    case 0x00:  /* FRC */
2471        s->frc = value & 0x3f;
2472        break;
2473    case 0x04:  /* VRC */
2474        if ((value ^ s->vrc) & 1) {
2475            if (value & 1)
2476                printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2477                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2478                                ((omap_clk_getrate(s->clk) >> 3) /
2479                                 /* Pre-multiplexer divider */
2480                                 ((s->gcr & 2) ? 1 : 154) /
2481                                 /* Octave multiplexer */
2482                                 (2 << (value & 3)) *
2483                                 /* 101/107 divider */
2484                                 ((value & (1 << 2)) ? 101 : 107) *
2485                                 /*  49/55 divider */
2486                                 ((value & (1 << 3)) ?  49 : 55) *
2487                                 /*  50/63 divider */
2488                                 ((value & (1 << 4)) ?  50 : 63) *
2489                                 /*  80/127 divider */
2490                                 ((value & (1 << 5)) ?  80 : 127) /
2491                                 (107 * 55 * 63 * 127)));
2492            else
2493                printf("%s: silence!\n", __FUNCTION__);
2494        }
2495        s->vrc = value & 0x7f;
2496        break;
2497    case 0x08:  /* GCR */
2498        s->gcr = value & 3;
2499        break;
2500    default:
2501        OMAP_BAD_REG(addr);
2502        return;
2503    }
2504}
2505
2506static const MemoryRegionOps omap_pwt_ops = {
2507    .read =omap_pwt_read,
2508    .write = omap_pwt_write,
2509    .endianness = DEVICE_NATIVE_ENDIAN,
2510};
2511
2512static void omap_pwt_reset(struct omap_pwt_s *s)
2513{
2514    s->frc = 0;
2515    s->vrc = 0;
2516    s->gcr = 0;
2517}
2518
2519static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2520                                        hwaddr base,
2521                                        omap_clk clk)
2522{
2523    struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2524    s->clk = clk;
2525    omap_pwt_reset(s);
2526
2527    memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2528                          "omap-pwt", 0x800);
2529    memory_region_add_subregion(system_memory, base, &s->iomem);
2530    return s;
2531}
2532
2533/* Real-time Clock module */
2534struct omap_rtc_s {
2535    MemoryRegion iomem;
2536    qemu_irq irq;
2537    qemu_irq alarm;
2538    QEMUTimer *clk;
2539
2540    uint8_t interrupts;
2541    uint8_t status;
2542    int16_t comp_reg;
2543    int running;
2544    int pm_am;
2545    int auto_comp;
2546    int round;
2547    struct tm alarm_tm;
2548    time_t alarm_ti;
2549
2550    struct tm current_tm;
2551    time_t ti;
2552    uint64_t tick;
2553};
2554
2555static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2556{
2557    /* s->alarm is level-triggered */
2558    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2559}
2560
2561static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2562{
2563    s->alarm_ti = mktimegm(&s->alarm_tm);
2564    if (s->alarm_ti == -1)
2565        printf("%s: conversion failed\n", __FUNCTION__);
2566}
2567
2568static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2569                              unsigned size)
2570{
2571    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2572    int offset = addr & OMAP_MPUI_REG_MASK;
2573    uint8_t i;
2574
2575    if (size != 1) {
2576        return omap_badwidth_read8(opaque, addr);
2577    }
2578
2579    switch (offset) {
2580    case 0x00:  /* SECONDS_REG */
2581        return to_bcd(s->current_tm.tm_sec);
2582
2583    case 0x04:  /* MINUTES_REG */
2584        return to_bcd(s->current_tm.tm_min);
2585
2586    case 0x08:  /* HOURS_REG */
2587        if (s->pm_am)
2588            return ((s->current_tm.tm_hour > 11) << 7) |
2589                    to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2590        else
2591            return to_bcd(s->current_tm.tm_hour);
2592
2593    case 0x0c:  /* DAYS_REG */
2594        return to_bcd(s->current_tm.tm_mday);
2595
2596    case 0x10:  /* MONTHS_REG */
2597        return to_bcd(s->current_tm.tm_mon + 1);
2598
2599    case 0x14:  /* YEARS_REG */
2600        return to_bcd(s->current_tm.tm_year % 100);
2601
2602    case 0x18:  /* WEEK_REG */
2603        return s->current_tm.tm_wday;
2604
2605    case 0x20:  /* ALARM_SECONDS_REG */
2606        return to_bcd(s->alarm_tm.tm_sec);
2607
2608    case 0x24:  /* ALARM_MINUTES_REG */
2609        return to_bcd(s->alarm_tm.tm_min);
2610
2611    case 0x28:  /* ALARM_HOURS_REG */
2612        if (s->pm_am)
2613            return ((s->alarm_tm.tm_hour > 11) << 7) |
2614                    to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2615        else
2616            return to_bcd(s->alarm_tm.tm_hour);
2617
2618    case 0x2c:  /* ALARM_DAYS_REG */
2619        return to_bcd(s->alarm_tm.tm_mday);
2620
2621    case 0x30:  /* ALARM_MONTHS_REG */
2622        return to_bcd(s->alarm_tm.tm_mon + 1);
2623
2624    case 0x34:  /* ALARM_YEARS_REG */
2625        return to_bcd(s->alarm_tm.tm_year % 100);
2626
2627    case 0x40:  /* RTC_CTRL_REG */
2628        return (s->pm_am << 3) | (s->auto_comp << 2) |
2629                (s->round << 1) | s->running;
2630
2631    case 0x44:  /* RTC_STATUS_REG */
2632        i = s->status;
2633        s->status &= ~0x3d;
2634        return i;
2635
2636    case 0x48:  /* RTC_INTERRUPTS_REG */
2637        return s->interrupts;
2638
2639    case 0x4c:  /* RTC_COMP_LSB_REG */
2640        return ((uint16_t) s->comp_reg) & 0xff;
2641
2642    case 0x50:  /* RTC_COMP_MSB_REG */
2643        return ((uint16_t) s->comp_reg) >> 8;
2644    }
2645
2646    OMAP_BAD_REG(addr);
2647    return 0;
2648}
2649
2650static void omap_rtc_write(void *opaque, hwaddr addr,
2651                           uint64_t value, unsigned size)
2652{
2653    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2654    int offset = addr & OMAP_MPUI_REG_MASK;
2655    struct tm new_tm;
2656    time_t ti[2];
2657
2658    if (size != 1) {
2659        omap_badwidth_write8(opaque, addr, value);
2660        return;
2661    }
2662
2663    switch (offset) {
2664    case 0x00:  /* SECONDS_REG */
2665#ifdef ALMDEBUG
2666        printf("RTC SEC_REG <-- %02x\n", value);
2667#endif
2668        s->ti -= s->current_tm.tm_sec;
2669        s->ti += from_bcd(value);
2670        return;
2671
2672    case 0x04:  /* MINUTES_REG */
2673#ifdef ALMDEBUG
2674        printf("RTC MIN_REG <-- %02x\n", value);
2675#endif
2676        s->ti -= s->current_tm.tm_min * 60;
2677        s->ti += from_bcd(value) * 60;
2678        return;
2679
2680    case 0x08:  /* HOURS_REG */
2681#ifdef ALMDEBUG
2682        printf("RTC HRS_REG <-- %02x\n", value);
2683#endif
2684        s->ti -= s->current_tm.tm_hour * 3600;
2685        if (s->pm_am) {
2686            s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2687            s->ti += ((value >> 7) & 1) * 43200;
2688        } else
2689            s->ti += from_bcd(value & 0x3f) * 3600;
2690        return;
2691
2692    case 0x0c:  /* DAYS_REG */
2693#ifdef ALMDEBUG
2694        printf("RTC DAY_REG <-- %02x\n", value);
2695#endif
2696        s->ti -= s->current_tm.tm_mday * 86400;
2697        s->ti += from_bcd(value) * 86400;
2698        return;
2699
2700    case 0x10:  /* MONTHS_REG */
2701#ifdef ALMDEBUG
2702        printf("RTC MTH_REG <-- %02x\n", value);
2703#endif
2704        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2705        new_tm.tm_mon = from_bcd(value);
2706        ti[0] = mktimegm(&s->current_tm);
2707        ti[1] = mktimegm(&new_tm);
2708
2709        if (ti[0] != -1 && ti[1] != -1) {
2710            s->ti -= ti[0];
2711            s->ti += ti[1];
2712        } else {
2713            /* A less accurate version */
2714            s->ti -= s->current_tm.tm_mon * 2592000;
2715            s->ti += from_bcd(value) * 2592000;
2716        }
2717        return;
2718
2719    case 0x14:  /* YEARS_REG */
2720#ifdef ALMDEBUG
2721        printf("RTC YRS_REG <-- %02x\n", value);
2722#endif
2723        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2724        new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2725        ti[0] = mktimegm(&s->current_tm);
2726        ti[1] = mktimegm(&new_tm);
2727
2728        if (ti[0] != -1 && ti[1] != -1) {
2729            s->ti -= ti[0];
2730            s->ti += ti[1];
2731        } else {
2732            /* A less accurate version */
2733            s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2734            s->ti += (time_t)from_bcd(value) * 31536000;
2735        }
2736        return;
2737
2738    case 0x18:  /* WEEK_REG */
2739        return; /* Ignored */
2740
2741    case 0x20:  /* ALARM_SECONDS_REG */
2742#ifdef ALMDEBUG
2743        printf("ALM SEC_REG <-- %02x\n", value);
2744#endif
2745        s->alarm_tm.tm_sec = from_bcd(value);
2746        omap_rtc_alarm_update(s);
2747        return;
2748
2749    case 0x24:  /* ALARM_MINUTES_REG */
2750#ifdef ALMDEBUG
2751        printf("ALM MIN_REG <-- %02x\n", value);
2752#endif
2753        s->alarm_tm.tm_min = from_bcd(value);
2754        omap_rtc_alarm_update(s);
2755        return;
2756
2757    case 0x28:  /* ALARM_HOURS_REG */
2758#ifdef ALMDEBUG
2759        printf("ALM HRS_REG <-- %02x\n", value);
2760#endif
2761        if (s->pm_am)
2762            s->alarm_tm.tm_hour =
2763                    ((from_bcd(value & 0x3f)) % 12) +
2764                    ((value >> 7) & 1) * 12;
2765        else
2766            s->alarm_tm.tm_hour = from_bcd(value);
2767        omap_rtc_alarm_update(s);
2768        return;
2769
2770    case 0x2c:  /* ALARM_DAYS_REG */
2771#ifdef ALMDEBUG
2772        printf("ALM DAY_REG <-- %02x\n", value);
2773#endif
2774        s->alarm_tm.tm_mday = from_bcd(value);
2775        omap_rtc_alarm_update(s);
2776        return;
2777
2778    case 0x30:  /* ALARM_MONTHS_REG */
2779#ifdef ALMDEBUG
2780        printf("ALM MON_REG <-- %02x\n", value);
2781#endif
2782        s->alarm_tm.tm_mon = from_bcd(value);
2783        omap_rtc_alarm_update(s);
2784        return;
2785
2786    case 0x34:  /* ALARM_YEARS_REG */
2787#ifdef ALMDEBUG
2788        printf("ALM YRS_REG <-- %02x\n", value);
2789#endif
2790        s->alarm_tm.tm_year = from_bcd(value);
2791        omap_rtc_alarm_update(s);
2792        return;
2793
2794    case 0x40:  /* RTC_CTRL_REG */
2795#ifdef ALMDEBUG
2796        printf("RTC CONTROL <-- %02x\n", value);
2797#endif
2798        s->pm_am = (value >> 3) & 1;
2799        s->auto_comp = (value >> 2) & 1;
2800        s->round = (value >> 1) & 1;
2801        s->running = value & 1;
2802        s->status &= 0xfd;
2803        s->status |= s->running << 1;
2804        return;
2805
2806    case 0x44:  /* RTC_STATUS_REG */
2807#ifdef ALMDEBUG
2808        printf("RTC STATUSL <-- %02x\n", value);
2809#endif
2810        s->status &= ~((value & 0xc0) ^ 0x80);
2811        omap_rtc_interrupts_update(s);
2812        return;
2813
2814    case 0x48:  /* RTC_INTERRUPTS_REG */
2815#ifdef ALMDEBUG
2816        printf("RTC INTRS <-- %02x\n", value);
2817#endif
2818        s->interrupts = value;
2819        return;
2820
2821    case 0x4c:  /* RTC_COMP_LSB_REG */
2822#ifdef ALMDEBUG
2823        printf("RTC COMPLSB <-- %02x\n", value);
2824#endif
2825        s->comp_reg &= 0xff00;
2826        s->comp_reg |= 0x00ff & value;
2827        return;
2828
2829    case 0x50:  /* RTC_COMP_MSB_REG */
2830#ifdef ALMDEBUG
2831        printf("RTC COMPMSB <-- %02x\n", value);
2832#endif
2833        s->comp_reg &= 0x00ff;
2834        s->comp_reg |= 0xff00 & (value << 8);
2835        return;
2836
2837    default:
2838        OMAP_BAD_REG(addr);
2839        return;
2840    }
2841}
2842
2843static const MemoryRegionOps omap_rtc_ops = {
2844    .read = omap_rtc_read,
2845    .write = omap_rtc_write,
2846    .endianness = DEVICE_NATIVE_ENDIAN,
2847};
2848
2849static void omap_rtc_tick(void *opaque)
2850{
2851    struct omap_rtc_s *s = opaque;
2852
2853    if (s->round) {
2854        /* Round to nearest full minute.  */
2855        if (s->current_tm.tm_sec < 30)
2856            s->ti -= s->current_tm.tm_sec;
2857        else
2858            s->ti += 60 - s->current_tm.tm_sec;
2859
2860        s->round = 0;
2861    }
2862
2863    localtime_r(&s->ti, &s->current_tm);
2864
2865    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2866        s->status |= 0x40;
2867        omap_rtc_interrupts_update(s);
2868    }
2869
2870    if (s->interrupts & 0x04)
2871        switch (s->interrupts & 3) {
2872        case 0:
2873            s->status |= 0x04;
2874            qemu_irq_pulse(s->irq);
2875            break;
2876        case 1:
2877            if (s->current_tm.tm_sec)
2878                break;
2879            s->status |= 0x08;
2880            qemu_irq_pulse(s->irq);
2881            break;
2882        case 2:
2883            if (s->current_tm.tm_sec || s->current_tm.tm_min)
2884                break;
2885            s->status |= 0x10;
2886            qemu_irq_pulse(s->irq);
2887            break;
2888        case 3:
2889            if (s->current_tm.tm_sec ||
2890                            s->current_tm.tm_min || s->current_tm.tm_hour)
2891                break;
2892            s->status |= 0x20;
2893            qemu_irq_pulse(s->irq);
2894            break;
2895        }
2896
2897    /* Move on */
2898    if (s->running)
2899        s->ti ++;
2900    s->tick += 1000;
2901
2902    /*
2903     * Every full hour add a rough approximation of the compensation
2904     * register to the 32kHz Timer (which drives the RTC) value. 
2905     */
2906    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2907        s->tick += s->comp_reg * 1000 / 32768;
2908
2909    timer_mod(s->clk, s->tick);
2910}
2911
2912static void omap_rtc_reset(struct omap_rtc_s *s)
2913{
2914    struct tm tm;
2915
2916    s->interrupts = 0;
2917    s->comp_reg = 0;
2918    s->running = 0;
2919    s->pm_am = 0;
2920    s->auto_comp = 0;
2921    s->round = 0;
2922    s->tick = qemu_clock_get_ms(rtc_clock);
2923    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2924    s->alarm_tm.tm_mday = 0x01;
2925    s->status = 1 << 7;
2926    qemu_get_timedate(&tm, 0);
2927    s->ti = mktimegm(&tm);
2928
2929    omap_rtc_alarm_update(s);
2930    omap_rtc_tick(s);
2931}
2932
2933static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2934                                        hwaddr base,
2935                                        qemu_irq timerirq, qemu_irq alarmirq,
2936                                        omap_clk clk)
2937{
2938    struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2939
2940    s->irq = timerirq;
2941    s->alarm = alarmirq;
2942    s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2943
2944    omap_rtc_reset(s);
2945
2946    memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2947                          "omap-rtc", 0x800);
2948    memory_region_add_subregion(system_memory, base, &s->iomem);
2949
2950    return s;
2951}
2952
2953/* Multi-channel Buffered Serial Port interfaces */
2954struct omap_mcbsp_s {
2955    MemoryRegion iomem;
2956    qemu_irq txirq;
2957    qemu_irq rxirq;
2958    qemu_irq txdrq;
2959    qemu_irq rxdrq;
2960
2961    uint16_t spcr[2];
2962    uint16_t rcr[2];
2963    uint16_t xcr[2];
2964    uint16_t srgr[2];
2965    uint16_t mcr[2];
2966    uint16_t pcr;
2967    uint16_t rcer[8];
2968    uint16_t xcer[8];
2969    int tx_rate;
2970    int rx_rate;
2971    int tx_req;
2972    int rx_req;
2973
2974    I2SCodec *codec;
2975    QEMUTimer *source_timer;
2976    QEMUTimer *sink_timer;
2977};
2978
2979static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2980{
2981    int irq;
2982
2983    switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2984    case 0:
2985        irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2986        break;
2987    case 3:
2988        irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2989        break;
2990    default:
2991        irq = 0;
2992        break;
2993    }
2994
2995    if (irq)
2996        qemu_irq_pulse(s->rxirq);
2997
2998    switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
2999    case 0:
3000        irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
3001        break;
3002    case 3:
3003        irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
3004        break;
3005    default:
3006        irq = 0;
3007        break;
3008    }
3009
3010    if (irq)
3011        qemu_irq_pulse(s->txirq);
3012}
3013
3014static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3015{
3016    if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
3017        s->spcr[0] |= 1 << 2;                           /* RFULL */
3018    s->spcr[0] |= 1 << 1;                               /* RRDY */
3019    qemu_irq_raise(s->rxdrq);
3020    omap_mcbsp_intr_update(s);
3021}
3022
3023static void omap_mcbsp_source_tick(void *opaque)
3024{
3025    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3026    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3027
3028    if (!s->rx_rate)
3029        return;
3030    if (s->rx_req)
3031        printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3032
3033    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3034
3035    omap_mcbsp_rx_newdata(s);
3036    timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3037                   NANOSECONDS_PER_SECOND);
3038}
3039
3040static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3041{
3042    if (!s->codec || !s->codec->rts)
3043        omap_mcbsp_source_tick(s);
3044    else if (s->codec->in.len) {
3045        s->rx_req = s->codec->in.len;
3046        omap_mcbsp_rx_newdata(s);
3047    }
3048}
3049
3050static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3051{
3052    timer_del(s->source_timer);
3053}
3054
3055static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3056{
3057    s->spcr[0] &= ~(1 << 1);                            /* RRDY */
3058    qemu_irq_lower(s->rxdrq);
3059    omap_mcbsp_intr_update(s);
3060}
3061
3062static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3063{
3064    s->spcr[1] |= 1 << 1;                               /* XRDY */
3065    qemu_irq_raise(s->txdrq);
3066    omap_mcbsp_intr_update(s);
3067}
3068
3069static void omap_mcbsp_sink_tick(void *opaque)
3070{
3071    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3072    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3073
3074    if (!s->tx_rate)
3075        return;
3076    if (s->tx_req)
3077        printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3078
3079    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3080
3081    omap_mcbsp_tx_newdata(s);
3082    timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3083                   NANOSECONDS_PER_SECOND);
3084}
3085
3086static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3087{
3088    if (!s->codec || !s->codec->cts)
3089        omap_mcbsp_sink_tick(s);
3090    else if (s->codec->out.size) {
3091        s->tx_req = s->codec->out.size;
3092        omap_mcbsp_tx_newdata(s);
3093    }
3094}
3095
3096static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3097{
3098    s->spcr[1] &= ~(1 << 1);                            /* XRDY */
3099    qemu_irq_lower(s->txdrq);
3100    omap_mcbsp_intr_update(s);
3101    if (s->codec && s->codec->cts)
3102        s->codec->tx_swallow(s->codec->opaque);
3103}
3104
3105static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3106{
3107    s->tx_req = 0;
3108    omap_mcbsp_tx_done(s);
3109    timer_del(s->sink_timer);
3110}
3111
3112static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3113{
3114    int prev_rx_rate, prev_tx_rate;
3115    int rx_rate = 0, tx_rate = 0;
3116    int cpu_rate = 1500000;     /* XXX */
3117
3118    /* TODO: check CLKSTP bit */
3119    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3120        if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3121            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3122                            (s->pcr & (1 << 8))) {      /* CLKRM */
3123                if (~s->pcr & (1 << 7))                 /* SCLKME */
3124                    rx_rate = cpu_rate /
3125                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3126            } else
3127                if (s->codec)
3128                    rx_rate = s->codec->rx_rate;
3129        }
3130
3131        if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3132            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3133                            (s->pcr & (1 << 9))) {      /* CLKXM */
3134                if (~s->pcr & (1 << 7))                 /* SCLKME */
3135                    tx_rate = cpu_rate /
3136                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3137            } else
3138                if (s->codec)
3139                    tx_rate = s->codec->tx_rate;
3140        }
3141    }
3142    prev_tx_rate = s->tx_rate;
3143    prev_rx_rate = s->rx_rate;
3144    s->tx_rate = tx_rate;
3145    s->rx_rate = rx_rate;
3146
3147    if (s->codec)
3148        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3149
3150    if (!prev_tx_rate && tx_rate)
3151        omap_mcbsp_tx_start(s);
3152    else if (s->tx_rate && !tx_rate)
3153        omap_mcbsp_tx_stop(s);
3154
3155    if (!prev_rx_rate && rx_rate)
3156        omap_mcbsp_rx_start(s);
3157    else if (prev_tx_rate && !tx_rate)
3158        omap_mcbsp_rx_stop(s);
3159}
3160
3161static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3162                                unsigned size)
3163{
3164    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3165    int offset = addr & OMAP_MPUI_REG_MASK;
3166    uint16_t ret;
3167
3168    if (size != 2) {
3169        return omap_badwidth_read16(opaque, addr);
3170    }
3171
3172    switch (offset) {
3173    case 0x00:  /* DRR2 */
3174        if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3175            return 0x0000;
3176        /* Fall through.  */
3177    case 0x02:  /* DRR1 */
3178        if (s->rx_req < 2) {
3179            printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3180            omap_mcbsp_rx_done(s);
3181        } else {
3182            s->tx_req -= 2;
3183            if (s->codec && s->codec->in.len >= 2) {
3184                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3185                ret |= s->codec->in.fifo[s->codec->in.start ++];
3186                s->codec->in.len -= 2;
3187            } else
3188                ret = 0x0000;
3189            if (!s->tx_req)
3190                omap_mcbsp_rx_done(s);
3191            return ret;
3192        }
3193        return 0x0000;
3194
3195    case 0x04:  /* DXR2 */
3196    case 0x06:  /* DXR1 */
3197        return 0x0000;
3198
3199    case 0x08:  /* SPCR2 */
3200        return s->spcr[1];
3201    case 0x0a:  /* SPCR1 */
3202        return s->spcr[0];
3203    case 0x0c:  /* RCR2 */
3204        return s->rcr[1];
3205    case 0x0e:  /* RCR1 */
3206        return s->rcr[0];
3207    case 0x10:  /* XCR2 */
3208        return s->xcr[1];
3209    case 0x12:  /* XCR1 */
3210        return s->xcr[0];
3211    case 0x14:  /* SRGR2 */
3212        return s->srgr[1];
3213    case 0x16:  /* SRGR1 */
3214        return s->srgr[0];
3215    case 0x18:  /* MCR2 */
3216        return s->mcr[1];
3217    case 0x1a:  /* MCR1 */
3218        return s->mcr[0];
3219    case 0x1c:  /* RCERA */
3220        return s->rcer[0];
3221    case 0x1e:  /* RCERB */
3222        return s->rcer[1];
3223    case 0x20:  /* XCERA */
3224        return s->xcer[0];
3225    case 0x22:  /* XCERB */
3226        return s->xcer[1];
3227    case 0x24:  /* PCR0 */
3228        return s->pcr;
3229    case 0x26:  /* RCERC */
3230        return s->rcer[2];
3231    case 0x28:  /* RCERD */
3232        return s->rcer[3];
3233    case 0x2a:  /* XCERC */
3234        return s->xcer[2];
3235    case 0x2c:  /* XCERD */
3236        return s->xcer[3];
3237    case 0x2e:  /* RCERE */
3238        return s->rcer[4];
3239    case 0x30:  /* RCERF */
3240        return s->rcer[5];
3241    case 0x32:  /* XCERE */
3242        return s->xcer[4];
3243    case 0x34:  /* XCERF */
3244        return s->xcer[5];
3245    case 0x36:  /* RCERG */
3246        return s->rcer[6];
3247    case 0x38:  /* RCERH */
3248        return s->rcer[7];
3249    case 0x3a:  /* XCERG */
3250        return s->xcer[6];
3251    case 0x3c:  /* XCERH */
3252        return s->xcer[7];
3253    }
3254
3255    OMAP_BAD_REG(addr);
3256    return 0;
3257}
3258
3259static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3260                uint32_t value)
3261{
3262    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3263    int offset = addr & OMAP_MPUI_REG_MASK;
3264
3265    switch (offset) {
3266    case 0x00:  /* DRR2 */
3267    case 0x02:  /* DRR1 */
3268        OMAP_RO_REG(addr);
3269        return;
3270
3271    case 0x04:  /* DXR2 */
3272        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3273            return;
3274        /* Fall through.  */
3275    case 0x06:  /* DXR1 */
3276        if (s->tx_req > 1) {
3277            s->tx_req -= 2;
3278            if (s->codec && s->codec->cts) {
3279                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3280                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3281            }
3282            if (s->tx_req < 2)
3283                omap_mcbsp_tx_done(s);
3284        } else
3285            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3286        return;
3287
3288    case 0x08:  /* SPCR2 */
3289        s->spcr[1] &= 0x0002;
3290        s->spcr[1] |= 0x03f9 & value;
3291        s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3292        if (~value & 1)                                 /* XRST */
3293            s->spcr[1] &= ~6;
3294        omap_mcbsp_req_update(s);
3295        return;
3296    case 0x0a:  /* SPCR1 */
3297        s->spcr[0] &= 0x0006;
3298        s->spcr[0] |= 0xf8f9 & value;
3299        if (value & (1 << 15))                          /* DLB */
3300            printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3301        if (~value & 1) {                               /* RRST */
3302            s->spcr[0] &= ~6;
3303            s->rx_req = 0;
3304            omap_mcbsp_rx_done(s);
3305        }
3306        omap_mcbsp_req_update(s);
3307        return;
3308
3309    case 0x0c:  /* RCR2 */
3310        s->rcr[1] = value & 0xffff;
3311        return;
3312    case 0x0e:  /* RCR1 */
3313        s->rcr[0] = value & 0x7fe0;
3314        return;
3315    case 0x10:  /* XCR2 */
3316        s->xcr[1] = value & 0xffff;
3317        return;
3318    case 0x12:  /* XCR1 */
3319        s->xcr[0] = value & 0x7fe0;
3320        return;
3321    case 0x14:  /* SRGR2 */
3322        s->srgr[1] = value & 0xffff;
3323        omap_mcbsp_req_update(s);
3324        return;
3325    case 0x16:  /* SRGR1 */
3326        s->srgr[0] = value & 0xffff;
3327        omap_mcbsp_req_update(s);
3328        return;
3329    case 0x18:  /* MCR2 */
3330        s->mcr[1] = value & 0x03e3;
3331        if (value & 3)                                  /* XMCM */
3332            printf("%s: Tx channel selection mode enable attempt\n",
3333                            __FUNCTION__);
3334        return;
3335    case 0x1a:  /* MCR1 */
3336        s->mcr[0] = value & 0x03e1;
3337        if (value & 1)                                  /* RMCM */
3338            printf("%s: Rx channel selection mode enable attempt\n",
3339                            __FUNCTION__);
3340        return;
3341    case 0x1c:  /* RCERA */
3342        s->rcer[0] = value & 0xffff;
3343        return;
3344    case 0x1e:  /* RCERB */
3345        s->rcer[1] = value & 0xffff;
3346        return;
3347    case 0x20:  /* XCERA */
3348        s->xcer[0] = value & 0xffff;
3349        return;
3350    case 0x22:  /* XCERB */
3351        s->xcer[1] = value & 0xffff;
3352        return;
3353    case 0x24:  /* PCR0 */
3354        s->pcr = value & 0x7faf;
3355        return;
3356    case 0x26:  /* RCERC */
3357        s->rcer[2] = value & 0xffff;
3358        return;
3359    case 0x28:  /* RCERD */
3360        s->rcer[3] = value & 0xffff;
3361        return;
3362    case 0x2a:  /* XCERC */
3363        s->xcer[2] = value & 0xffff;
3364        return;
3365    case 0x2c:  /* XCERD */
3366        s->xcer[3] = value & 0xffff;
3367        return;
3368    case 0x2e:  /* RCERE */
3369        s->rcer[4] = value & 0xffff;
3370        return;
3371    case 0x30:  /* RCERF */
3372        s->rcer[5] = value & 0xffff;
3373        return;
3374    case 0x32:  /* XCERE */
3375        s->xcer[4] = value & 0xffff;
3376        return;
3377    case 0x34:  /* XCERF */
3378        s->xcer[5] = value & 0xffff;
3379        return;
3380    case 0x36:  /* RCERG */
3381        s->rcer[6] = value & 0xffff;
3382        return;
3383    case 0x38:  /* RCERH */
3384        s->rcer[7] = value & 0xffff;
3385        return;
3386    case 0x3a:  /* XCERG */
3387        s->xcer[6] = value & 0xffff;
3388        return;
3389    case 0x3c:  /* XCERH */
3390        s->xcer[7] = value & 0xffff;
3391        return;
3392    }
3393
3394    OMAP_BAD_REG(addr);
3395}
3396
3397static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3398                uint32_t value)
3399{
3400    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3401    int offset = addr & OMAP_MPUI_REG_MASK;
3402
3403    if (offset == 0x04) {                               /* DXR */
3404        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3405            return;
3406        if (s->tx_req > 3) {
3407            s->tx_req -= 4;
3408            if (s->codec && s->codec->cts) {
3409                s->codec->out.fifo[s->codec->out.len ++] =
3410                        (value >> 24) & 0xff;
3411                s->codec->out.fifo[s->codec->out.len ++] =
3412                        (value >> 16) & 0xff;
3413                s->codec->out.fifo[s->codec->out.len ++] =
3414                        (value >> 8) & 0xff;
3415                s->codec->out.fifo[s->codec->out.len ++] =
3416                        (value >> 0) & 0xff;
3417            }
3418            if (s->tx_req < 4)
3419                omap_mcbsp_tx_done(s);
3420        } else
3421            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3422        return;
3423    }
3424
3425    omap_badwidth_write16(opaque, addr, value);
3426}
3427
3428static void omap_mcbsp_write(void *opaque, hwaddr addr,
3429                             uint64_t value, unsigned size)
3430{
3431    switch (size) {
3432    case 2:
3433        omap_mcbsp_writeh(opaque, addr, value);
3434        break;
3435    case 4:
3436        omap_mcbsp_writew(opaque, addr, value);
3437        break;
3438    default:
3439        omap_badwidth_write16(opaque, addr, value);
3440    }
3441}
3442
3443static const MemoryRegionOps omap_mcbsp_ops = {
3444    .read = omap_mcbsp_read,
3445    .write = omap_mcbsp_write,
3446    .endianness = DEVICE_NATIVE_ENDIAN,
3447};
3448
3449static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3450{
3451    memset(&s->spcr, 0, sizeof(s->spcr));
3452    memset(&s->rcr, 0, sizeof(s->rcr));
3453    memset(&s->xcr, 0, sizeof(s->xcr));
3454    s->srgr[0] = 0x0001;
3455    s->srgr[1] = 0x2000;
3456    memset(&s->mcr, 0, sizeof(s->mcr));
3457    memset(&s->pcr, 0, sizeof(s->pcr));
3458    memset(&s->rcer, 0, sizeof(s->rcer));
3459    memset(&s->xcer, 0, sizeof(s->xcer));
3460    s->tx_req = 0;
3461    s->rx_req = 0;
3462    s->tx_rate = 0;
3463    s->rx_rate = 0;
3464    timer_del(s->source_timer);
3465    timer_del(s->sink_timer);
3466}
3467
3468static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3469                                            hwaddr base,
3470                                            qemu_irq txirq, qemu_irq rxirq,
3471                                            qemu_irq *dma, omap_clk clk)
3472{
3473    struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3474
3475    s->txirq = txirq;
3476    s->rxirq = rxirq;
3477    s->txdrq = dma[0];
3478    s->rxdrq = dma[1];
3479    s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3480    s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3481    omap_mcbsp_reset(s);
3482
3483    memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3484    memory_region_add_subregion(system_memory, base, &s->iomem);
3485
3486    return s;
3487}
3488
3489static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3490{
3491    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3492
3493    if (s->rx_rate) {
3494        s->rx_req = s->codec->in.len;
3495        omap_mcbsp_rx_newdata(s);
3496    }
3497}
3498
3499static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3500{
3501    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3502
3503    if (s->tx_rate) {
3504        s->tx_req = s->codec->out.size;
3505        omap_mcbsp_tx_newdata(s);
3506    }
3507}
3508
3509void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3510{
3511    s->codec = slave;
3512    slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3513    slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3514}
3515
3516/* LED Pulse Generators */
3517struct omap_lpg_s {
3518    MemoryRegion iomem;
3519    QEMUTimer *tm;
3520
3521    uint8_t control;
3522    uint8_t power;
3523    int64_t on;
3524    int64_t period;
3525    int clk;
3526    int cycle;
3527};
3528
3529static void omap_lpg_tick(void *opaque)
3530{
3531    struct omap_lpg_s *s = opaque;
3532
3533    if (s->cycle)
3534        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3535    else
3536        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3537
3538    s->cycle = !s->cycle;
3539    printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3540}
3541
3542static void omap_lpg_update(struct omap_lpg_s *s)
3543{
3544    int64_t on, period = 1, ticks = 1000;
3545    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3546
3547    if (~s->control & (1 << 6))                                 /* LPGRES */
3548        on = 0;
3549    else if (s->control & (1 << 7))                             /* PERM_ON */
3550        on = period;
3551    else {
3552        period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3553                        256 / 32);
3554        on = (s->clk && s->power) ? muldiv64(ticks,
3555                        per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3556    }
3557
3558    timer_del(s->tm);
3559    if (on == period && s->on < s->period)
3560        printf("%s: LED is on\n", __FUNCTION__);
3561    else if (on == 0 && s->on)
3562        printf("%s: LED is off\n", __FUNCTION__);
3563    else if (on && (on != s->on || period != s->period)) {
3564        s->cycle = 0;
3565        s->on = on;
3566        s->period = period;
3567        omap_lpg_tick(s);
3568        return;
3569    }
3570
3571    s->on = on;
3572    s->period = period;
3573}
3574
3575static void omap_lpg_reset(struct omap_lpg_s *s)
3576{
3577    s->control = 0x00;
3578    s->power = 0x00;
3579    s->clk = 1;
3580    omap_lpg_update(s);
3581}
3582
3583static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3584                              unsigned size)
3585{
3586    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3587    int offset = addr & OMAP_MPUI_REG_MASK;
3588
3589    if (size != 1) {
3590        return omap_badwidth_read8(opaque, addr);
3591    }
3592
3593    switch (offset) {
3594    case 0x00:  /* LCR */
3595        return s->control;
3596
3597    case 0x04:  /* PMR */
3598        return s->power;
3599    }
3600
3601    OMAP_BAD_REG(addr);
3602    return 0;
3603}
3604
3605static void omap_lpg_write(void *opaque, hwaddr addr,
3606                           uint64_t value, unsigned size)
3607{
3608    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3609    int offset = addr & OMAP_MPUI_REG_MASK;
3610
3611    if (size != 1) {
3612        omap_badwidth_write8(opaque, addr, value);
3613        return;
3614    }
3615
3616    switch (offset) {
3617    case 0x00:  /* LCR */
3618        if (~value & (1 << 6))                                  /* LPGRES */
3619            omap_lpg_reset(s);
3620        s->control = value & 0xff;
3621        omap_lpg_update(s);
3622        return;
3623
3624    case 0x04:  /* PMR */
3625        s->power = value & 0x01;
3626        omap_lpg_update(s);
3627        return;
3628
3629    default:
3630        OMAP_BAD_REG(addr);
3631        return;
3632    }
3633}
3634
3635static const MemoryRegionOps omap_lpg_ops = {
3636    .read = omap_lpg_read,
3637    .write = omap_lpg_write,
3638    .endianness = DEVICE_NATIVE_ENDIAN,
3639};
3640
3641static void omap_lpg_clk_update(void *opaque, int line, int on)
3642{
3643    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3644
3645    s->clk = on;
3646    omap_lpg_update(s);
3647}
3648
3649static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3650                                        hwaddr base, omap_clk clk)
3651{
3652    struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3653
3654    s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3655
3656    omap_lpg_reset(s);
3657
3658    memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3659    memory_region_add_subregion(system_memory, base, &s->iomem);
3660
3661    omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3662
3663    return s;
3664}
3665
3666/* MPUI Peripheral Bridge configuration */
3667static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3668                                  unsigned size)
3669{
3670    if (size != 2) {
3671        return omap_badwidth_read16(opaque, addr);
3672    }
3673
3674    if (addr == OMAP_MPUI_BASE) /* CMR */
3675        return 0xfe4d;
3676
3677    OMAP_BAD_REG(addr);
3678    return 0;
3679}
3680
3681static void omap_mpui_io_write(void *opaque, hwaddr addr,
3682                               uint64_t value, unsigned size)
3683{
3684    /* FIXME: infinite loop */
3685    omap_badwidth_write16(opaque, addr, value);
3686}
3687
3688static const MemoryRegionOps omap_mpui_io_ops = {
3689    .read = omap_mpui_io_read,
3690    .write = omap_mpui_io_write,
3691    .endianness = DEVICE_NATIVE_ENDIAN,
3692};
3693
3694static void omap_setup_mpui_io(MemoryRegion *system_memory,
3695                               struct omap_mpu_state_s *mpu)
3696{
3697    memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3698                          "omap-mpui-io", 0x7fff);
3699    memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3700                                &mpu->mpui_io_iomem);
3701}
3702
3703/* General chip reset */
3704static void omap1_mpu_reset(void *opaque)
3705{
3706    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3707
3708    omap_dma_reset(mpu->dma);
3709    omap_mpu_timer_reset(mpu->timer[0]);
3710    omap_mpu_timer_reset(mpu->timer[1]);
3711    omap_mpu_timer_reset(mpu->timer[2]);
3712    omap_wd_timer_reset(mpu->wdt);
3713    omap_os_timer_reset(mpu->os_timer);
3714    omap_lcdc_reset(mpu->lcd);
3715    omap_ulpd_pm_reset(mpu);
3716    omap_pin_cfg_reset(mpu);
3717    omap_mpui_reset(mpu);
3718    omap_tipb_bridge_reset(mpu->private_tipb);
3719    omap_tipb_bridge_reset(mpu->public_tipb);
3720    omap_dpll_reset(mpu->dpll[0]);
3721    omap_dpll_reset(mpu->dpll[1]);
3722    omap_dpll_reset(mpu->dpll[2]);
3723    omap_uart_reset(mpu->uart[0]);
3724    omap_uart_reset(mpu->uart[1]);
3725    omap_uart_reset(mpu->uart[2]);
3726    omap_mmc_reset(mpu->mmc);
3727    omap_mpuio_reset(mpu->mpuio);
3728    omap_uwire_reset(mpu->microwire);
3729    omap_pwl_reset(mpu->pwl);
3730    omap_pwt_reset(mpu->pwt);
3731    omap_rtc_reset(mpu->rtc);
3732    omap_mcbsp_reset(mpu->mcbsp1);
3733    omap_mcbsp_reset(mpu->mcbsp2);
3734    omap_mcbsp_reset(mpu->mcbsp3);
3735    omap_lpg_reset(mpu->led[0]);
3736    omap_lpg_reset(mpu->led[1]);
3737    omap_clkm_reset(mpu);
3738    cpu_reset(CPU(mpu->cpu));
3739}
3740
3741static const struct omap_map_s {
3742    hwaddr phys_dsp;
3743    hwaddr phys_mpu;
3744    uint32_t size;
3745    const char *name;
3746} omap15xx_dsp_mm[] = {
3747    /* Strobe 0 */
3748    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3749    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3750    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3751    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3752    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3753    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3754    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3755    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3756    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3757    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3758    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3759    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3760    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3761    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3762    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3763    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3764    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3765    /* Strobe 1 */
3766    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3767
3768    { 0 }
3769};
3770
3771static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3772                                   const struct omap_map_s *map)
3773{
3774    MemoryRegion *io;
3775
3776    for (; map->phys_dsp; map ++) {
3777        io = g_new(MemoryRegion, 1);
3778        memory_region_init_alias(io, NULL, map->name,
3779                                 system_memory, map->phys_mpu, map->size);
3780        memory_region_add_subregion(system_memory, map->phys_dsp, io);
3781    }
3782}
3783
3784void omap_mpu_wakeup(void *opaque, int irq, int req)
3785{
3786    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3787    CPUState *cpu = CPU(mpu->cpu);
3788
3789    if (cpu->halted) {
3790        cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3791    }
3792}
3793
3794static const struct dma_irq_map omap1_dma_irq_map[] = {
3795    { 0, OMAP_INT_DMA_CH0_6 },
3796    { 0, OMAP_INT_DMA_CH1_7 },
3797    { 0, OMAP_INT_DMA_CH2_8 },
3798    { 0, OMAP_INT_DMA_CH3 },
3799    { 0, OMAP_INT_DMA_CH4 },
3800    { 0, OMAP_INT_DMA_CH5 },
3801    { 1, OMAP_INT_1610_DMA_CH6 },
3802    { 1, OMAP_INT_1610_DMA_CH7 },
3803    { 1, OMAP_INT_1610_DMA_CH8 },
3804    { 1, OMAP_INT_1610_DMA_CH9 },
3805    { 1, OMAP_INT_1610_DMA_CH10 },
3806    { 1, OMAP_INT_1610_DMA_CH11 },
3807    { 1, OMAP_INT_1610_DMA_CH12 },
3808    { 1, OMAP_INT_1610_DMA_CH13 },
3809    { 1, OMAP_INT_1610_DMA_CH14 },
3810    { 1, OMAP_INT_1610_DMA_CH15 }
3811};
3812
3813/* DMA ports for OMAP1 */
3814static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3815                hwaddr addr)
3816{
3817    return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3818}
3819
3820static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3821                hwaddr addr)
3822{
3823    return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3824                             addr);
3825}
3826
3827static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3828                hwaddr addr)
3829{
3830    return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3831}
3832
3833static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3834                hwaddr addr)
3835{
3836    return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3837}
3838
3839static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3840                hwaddr addr)
3841{
3842    return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3843}
3844
3845static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3846                hwaddr addr)
3847{
3848    return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3849}
3850
3851struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3852                unsigned long sdram_size,
3853                const char *core)
3854{
3855    int i;
3856    struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3857    qemu_irq dma_irqs[6];
3858    DriveInfo *dinfo;
3859    SysBusDevice *busdev;
3860
3861    if (!core)
3862        core = "ti925t";
3863
3864    /* Core */
3865    s->mpu_model = omap310;
3866    s->cpu = cpu_arm_init(core);
3867    if (s->cpu == NULL) {
3868        fprintf(stderr, "Unable to find CPU definition\n");
3869        exit(1);
3870    }
3871    s->sdram_size = sdram_size;
3872    s->sram_size = OMAP15XX_SRAM_SIZE;
3873
3874    s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3875
3876    /* Clocks */
3877    omap_clk_init(s);
3878
3879    /* Memory-mapped stuff */
3880    memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3881                                         s->sdram_size);
3882    memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3883    memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3884                           &error_fatal);
3885    memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3886
3887    omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3888
3889    s->ih[0] = qdev_create(NULL, "omap-intc");
3890    qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3891    qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3892    qdev_init_nofail(s->ih[0]);
3893    busdev = SYS_BUS_DEVICE(s->ih[0]);
3894    sysbus_connect_irq(busdev, 0,
3895                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3896    sysbus_connect_irq(busdev, 1,
3897                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3898    sysbus_mmio_map(busdev, 0, 0xfffecb00);
3899    s->ih[1] = qdev_create(NULL, "omap-intc");
3900    qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3901    qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3902    qdev_init_nofail(s->ih[1]);
3903    busdev = SYS_BUS_DEVICE(s->ih[1]);
3904    sysbus_connect_irq(busdev, 0,
3905                       qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3906    /* The second interrupt controller's FIQ output is not wired up */
3907    sysbus_mmio_map(busdev, 0, 0xfffe0000);
3908
3909    for (i = 0; i < 6; i++) {
3910        dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3911                                       omap1_dma_irq_map[i].intr);
3912    }
3913    s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3914                           qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3915                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3916
3917    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3918    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3919    s->port[imif     ].addr_valid = omap_validate_imif_addr;
3920    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3921    s->port[local    ].addr_valid = omap_validate_local_addr;
3922    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3923
3924    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3925    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3926                         OMAP_EMIFF_BASE, s->sdram_size);
3927    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3928                         OMAP_IMIF_BASE, s->sram_size);
3929
3930    s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3931                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3932                    omap_findclk(s, "mputim_ck"));
3933    s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3934                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3935                    omap_findclk(s, "mputim_ck"));
3936    s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3937                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3938                    omap_findclk(s, "mputim_ck"));
3939
3940    s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3941                    qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3942                    omap_findclk(s, "armwdt_ck"));
3943
3944    s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3945                    qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3946                    omap_findclk(s, "clk32-kHz"));
3947
3948    s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3949                            qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3950                            omap_dma_get_lcdch(s->dma),
3951                            omap_findclk(s, "lcd_ck"));
3952
3953    omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3954    omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3955    omap_id_init(system_memory, s);
3956
3957    omap_mpui_init(system_memory, 0xfffec900, s);
3958
3959    s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3960                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3961                    omap_findclk(s, "tipb_ck"));
3962    s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3963                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3964                    omap_findclk(s, "tipb_ck"));
3965
3966    omap_tcmi_init(system_memory, 0xfffecc00, s);
3967
3968    s->uart[0] = omap_uart_init(0xfffb0000,
3969                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3970                    omap_findclk(s, "uart1_ck"),
3971                    omap_findclk(s, "uart1_ck"),
3972                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3973                    "uart1",
3974                    serial_hds[0]);
3975    s->uart[1] = omap_uart_init(0xfffb0800,
3976                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3977                    omap_findclk(s, "uart2_ck"),
3978                    omap_findclk(s, "uart2_ck"),
3979                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3980                    "uart2",
3981                    serial_hds[0] ? serial_hds[1] : NULL);
3982    s->uart[2] = omap_uart_init(0xfffb9800,
3983                                qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3984                    omap_findclk(s, "uart3_ck"),
3985                    omap_findclk(s, "uart3_ck"),
3986                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3987                    "uart3",
3988                    serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3989
3990    s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3991                                omap_findclk(s, "dpll1"));
3992    s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3993                                omap_findclk(s, "dpll2"));
3994    s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3995                                omap_findclk(s, "dpll3"));
3996
3997    dinfo = drive_get(IF_SD, 0, 0);
3998    if (!dinfo) {
3999        fprintf(stderr, "qemu: missing SecureDigital device\n");
4000        exit(1);
4001    }
4002    s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4003                           blk_by_legacy_dinfo(dinfo),
4004                           qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4005                           &s->drq[OMAP_DMA_MMC_TX],
4006                    omap_findclk(s, "mmc_ck"));
4007
4008    s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4009                               qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4010                               qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4011                               s->wakeup, omap_findclk(s, "clk32-kHz"));
4012
4013    s->gpio = qdev_create(NULL, "omap-gpio");
4014    qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4015    qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4016    qdev_init_nofail(s->gpio);
4017    sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4018                       qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4019    sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4020
4021    s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4022                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4023                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4024                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4025
4026    s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4027                           omap_findclk(s, "armxor_ck"));
4028    s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4029                           omap_findclk(s, "armxor_ck"));
4030
4031    s->i2c[0] = qdev_create(NULL, "omap_i2c");
4032    qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4033    qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4034    qdev_init_nofail(s->i2c[0]);
4035    busdev = SYS_BUS_DEVICE(s->i2c[0]);
4036    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4037    sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4038    sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4039    sysbus_mmio_map(busdev, 0, 0xfffb3800);
4040
4041    s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4042                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4043                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4044                    omap_findclk(s, "clk32-kHz"));
4045
4046    s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4047                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4048                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4049                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4050    s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4051                                qdev_get_gpio_in(s->ih[0],
4052                                                 OMAP_INT_310_McBSP2_TX),
4053                                qdev_get_gpio_in(s->ih[0],
4054                                                 OMAP_INT_310_McBSP2_RX),
4055                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4056    s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4057                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4058                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4059                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4060
4061    s->led[0] = omap_lpg_init(system_memory,
4062                              0xfffbd000, omap_findclk(s, "clk32-kHz"));
4063    s->led[1] = omap_lpg_init(system_memory,
4064                              0xfffbd800, omap_findclk(s, "clk32-kHz"));
4065
4066    /* Register mappings not currenlty implemented:
4067     * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
4068     * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
4069     * USB W2FC         fffb4000 - fffb47ff
4070     * Camera Interface fffb6800 - fffb6fff
4071     * USB Host         fffba000 - fffba7ff
4072     * FAC              fffba800 - fffbafff
4073     * HDQ/1-Wire       fffbc000 - fffbc7ff
4074     * TIPB switches    fffbc800 - fffbcfff
4075     * Mailbox          fffcf000 - fffcf7ff
4076     * Local bus IF     fffec100 - fffec1ff
4077     * Local bus MMU    fffec200 - fffec2ff
4078     * DSP MMU          fffed200 - fffed2ff
4079     */
4080
4081    omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4082    omap_setup_mpui_io(system_memory, s);
4083
4084    qemu_register_reset(omap1_mpu_reset, s);
4085
4086    return s;
4087}
4088