qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/numa.h"
  31#include "hw/hw.h"
  32#include "qemu/log.h"
  33#include "hw/fw-path-provider.h"
  34#include "elf.h"
  35#include "net/net.h"
  36#include "sysemu/device_tree.h"
  37#include "sysemu/block-backend.h"
  38#include "sysemu/cpus.h"
  39#include "sysemu/hw_accel.h"
  40#include "kvm_ppc.h"
  41#include "migration/misc.h"
  42#include "migration/global_state.h"
  43#include "migration/register.h"
  44#include "mmu-hash64.h"
  45#include "mmu-book3s-v3.h"
  46#include "qom/cpu.h"
  47
  48#include "hw/boards.h"
  49#include "hw/ppc/ppc.h"
  50#include "hw/loader.h"
  51
  52#include "hw/ppc/fdt.h"
  53#include "hw/ppc/spapr.h"
  54#include "hw/ppc/spapr_vio.h"
  55#include "hw/pci-host/spapr.h"
  56#include "hw/ppc/xics.h"
  57#include "hw/pci/msi.h"
  58
  59#include "hw/pci/pci.h"
  60#include "hw/scsi/scsi.h"
  61#include "hw/virtio/virtio-scsi.h"
  62#include "hw/virtio/vhost-scsi-common.h"
  63
  64#include "exec/address-spaces.h"
  65#include "hw/usb.h"
  66#include "qemu/config-file.h"
  67#include "qemu/error-report.h"
  68#include "trace.h"
  69#include "hw/nmi.h"
  70#include "hw/intc/intc.h"
  71
  72#include "hw/compat.h"
  73#include "qemu/cutils.h"
  74#include "hw/ppc/spapr_cpu_core.h"
  75#include "qmp-commands.h"
  76
  77#include <libfdt.h>
  78
  79/* SLOF memory layout:
  80 *
  81 * SLOF raw image loaded at 0, copies its romfs right below the flat
  82 * device-tree, then position SLOF itself 31M below that
  83 *
  84 * So we set FW_OVERHEAD to 40MB which should account for all of that
  85 * and more
  86 *
  87 * We load our kernel at 4M, leaving space for SLOF initial image
  88 */
  89#define FDT_MAX_SIZE            0x100000
  90#define RTAS_MAX_SIZE           0x10000
  91#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  92#define FW_MAX_SIZE             0x400000
  93#define FW_FILE_NAME            "slof.bin"
  94#define FW_OVERHEAD             0x2800000
  95#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  96
  97#define MIN_RMA_SLOF            128UL
  98
  99#define PHANDLE_XICP            0x00001111
 100
 101static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
 102                                  const char *type_ics,
 103                                  int nr_irqs, Error **errp)
 104{
 105    Error *local_err = NULL;
 106    Object *obj;
 107
 108    obj = object_new(type_ics);
 109    object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
 110    object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
 111                                   &error_abort);
 112    object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
 113    if (local_err) {
 114        goto error;
 115    }
 116    object_property_set_bool(obj, true, "realized", &local_err);
 117    if (local_err) {
 118        goto error;
 119    }
 120
 121    return ICS_SIMPLE(obj);
 122
 123error:
 124    error_propagate(errp, local_err);
 125    return NULL;
 126}
 127
 128static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 129{
 130    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 131     * and newer QEMUs don't even have them. In both cases, we don't want
 132     * to send anything on the wire.
 133     */
 134    return false;
 135}
 136
 137static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 138    .name = "icp/server",
 139    .version_id = 1,
 140    .minimum_version_id = 1,
 141    .needed = pre_2_10_vmstate_dummy_icp_needed,
 142    .fields = (VMStateField[]) {
 143        VMSTATE_UNUSED(4), /* uint32_t xirr */
 144        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 145        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 146        VMSTATE_END_OF_LIST()
 147    },
 148};
 149
 150static void pre_2_10_vmstate_register_dummy_icp(int i)
 151{
 152    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 153                     (void *)(uintptr_t) i);
 154}
 155
 156static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 157{
 158    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 159                       (void *)(uintptr_t) i);
 160}
 161
 162static inline int xics_max_server_number(void)
 163{
 164    return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
 165}
 166
 167static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
 168{
 169    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 170    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 171
 172    if (kvm_enabled()) {
 173        if (machine_kernel_irqchip_allowed(machine) &&
 174            !xics_kvm_init(spapr, errp)) {
 175            spapr->icp_type = TYPE_KVM_ICP;
 176            spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
 177        }
 178        if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
 179            error_prepend(errp, "kernel_irqchip requested but unavailable: ");
 180            return;
 181        }
 182    }
 183
 184    if (!spapr->ics) {
 185        xics_spapr_init(spapr);
 186        spapr->icp_type = TYPE_ICP;
 187        spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
 188        if (!spapr->ics) {
 189            return;
 190        }
 191    }
 192
 193    if (smc->pre_2_10_has_unused_icps) {
 194        int i;
 195
 196        for (i = 0; i < xics_max_server_number(); i++) {
 197            /* Dummy entries get deregistered when real ICPState objects
 198             * are registered during CPU core hotplug.
 199             */
 200            pre_2_10_vmstate_register_dummy_icp(i);
 201        }
 202    }
 203}
 204
 205static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 206                                  int smt_threads)
 207{
 208    int i, ret = 0;
 209    uint32_t servers_prop[smt_threads];
 210    uint32_t gservers_prop[smt_threads * 2];
 211    int index = ppc_get_vcpu_dt_id(cpu);
 212
 213    if (cpu->compat_pvr) {
 214        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 215        if (ret < 0) {
 216            return ret;
 217        }
 218    }
 219
 220    /* Build interrupt servers and gservers properties */
 221    for (i = 0; i < smt_threads; i++) {
 222        servers_prop[i] = cpu_to_be32(index + i);
 223        /* Hack, direct the group queues back to cpu 0 */
 224        gservers_prop[i*2] = cpu_to_be32(index + i);
 225        gservers_prop[i*2 + 1] = 0;
 226    }
 227    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 228                      servers_prop, sizeof(servers_prop));
 229    if (ret < 0) {
 230        return ret;
 231    }
 232    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 233                      gservers_prop, sizeof(gservers_prop));
 234
 235    return ret;
 236}
 237
 238static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 239{
 240    int index = ppc_get_vcpu_dt_id(cpu);
 241    uint32_t associativity[] = {cpu_to_be32(0x5),
 242                                cpu_to_be32(0x0),
 243                                cpu_to_be32(0x0),
 244                                cpu_to_be32(0x0),
 245                                cpu_to_be32(cpu->node_id),
 246                                cpu_to_be32(index)};
 247
 248    /* Advertise NUMA via ibm,associativity */
 249    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 250                          sizeof(associativity));
 251}
 252
 253/* Populate the "ibm,pa-features" property */
 254static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
 255                                      bool legacy_guest)
 256{
 257    uint8_t pa_features_206[] = { 6, 0,
 258        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 259    uint8_t pa_features_207[] = { 24, 0,
 260        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 261        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 262        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 263        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 264    uint8_t pa_features_300[] = { 66, 0,
 265        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 266        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 267        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 268        /* 6: DS207 */
 269        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 270        /* 16: Vector */
 271        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 272        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 273        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 274        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 275        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 276        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 277        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 278        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 279        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 280        /* 42: PM, 44: PC RA, 46: SC vec'd */
 281        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 282        /* 48: SIMD, 50: QP BFP, 52: String */
 283        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 284        /* 54: DecFP, 56: DecI, 58: SHA */
 285        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 286        /* 60: NM atomic, 62: RNG */
 287        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 288    };
 289    uint8_t *pa_features;
 290    size_t pa_size;
 291
 292    switch (POWERPC_MMU_VER(env->mmu_model)) {
 293    case POWERPC_MMU_VER_2_06:
 294        pa_features = pa_features_206;
 295        pa_size = sizeof(pa_features_206);
 296        break;
 297    case POWERPC_MMU_VER_2_07:
 298        pa_features = pa_features_207;
 299        pa_size = sizeof(pa_features_207);
 300        break;
 301    case POWERPC_MMU_VER_3_00:
 302        pa_features = pa_features_300;
 303        pa_size = sizeof(pa_features_300);
 304        break;
 305    default:
 306        return;
 307    }
 308
 309    if (env->ci_large_pages) {
 310        /*
 311         * Note: we keep CI large pages off by default because a 64K capable
 312         * guest provisioned with large pages might otherwise try to map a qemu
 313         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 314         * even if that qemu runs on a 4k host.
 315         * We dd this bit back here if we are confident this is not an issue
 316         */
 317        pa_features[3] |= 0x20;
 318    }
 319    if (kvmppc_has_cap_htm() && pa_size > 24) {
 320        pa_features[24] |= 0x80;    /* Transactional memory support */
 321    }
 322    if (legacy_guest && pa_size > 40) {
 323        /* Workaround for broken kernels that attempt (guest) radix
 324         * mode when they can't handle it, if they see the radix bit set
 325         * in pa-features. So hide it from them. */
 326        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 327    }
 328
 329    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 330}
 331
 332static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 333{
 334    int ret = 0, offset, cpus_offset;
 335    CPUState *cs;
 336    char cpu_model[32];
 337    int smt = kvmppc_smt_threads();
 338    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 339
 340    CPU_FOREACH(cs) {
 341        PowerPCCPU *cpu = POWERPC_CPU(cs);
 342        CPUPPCState *env = &cpu->env;
 343        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 344        int index = ppc_get_vcpu_dt_id(cpu);
 345        int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 346
 347        if ((index % smt) != 0) {
 348            continue;
 349        }
 350
 351        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 352
 353        cpus_offset = fdt_path_offset(fdt, "/cpus");
 354        if (cpus_offset < 0) {
 355            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
 356                                          "cpus");
 357            if (cpus_offset < 0) {
 358                return cpus_offset;
 359            }
 360        }
 361        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 362        if (offset < 0) {
 363            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 364            if (offset < 0) {
 365                return offset;
 366            }
 367        }
 368
 369        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 370                          pft_size_prop, sizeof(pft_size_prop));
 371        if (ret < 0) {
 372            return ret;
 373        }
 374
 375        if (nb_numa_nodes > 1) {
 376            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 377            if (ret < 0) {
 378                return ret;
 379            }
 380        }
 381
 382        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 383        if (ret < 0) {
 384            return ret;
 385        }
 386
 387        spapr_populate_pa_features(env, fdt, offset,
 388                                         spapr->cas_legacy_guest_workaround);
 389    }
 390    return ret;
 391}
 392
 393static hwaddr spapr_node0_size(void)
 394{
 395    MachineState *machine = MACHINE(qdev_get_machine());
 396
 397    if (nb_numa_nodes) {
 398        int i;
 399        for (i = 0; i < nb_numa_nodes; ++i) {
 400            if (numa_info[i].node_mem) {
 401                return MIN(pow2floor(numa_info[i].node_mem),
 402                           machine->ram_size);
 403            }
 404        }
 405    }
 406    return machine->ram_size;
 407}
 408
 409static void add_str(GString *s, const gchar *s1)
 410{
 411    g_string_append_len(s, s1, strlen(s1) + 1);
 412}
 413
 414static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 415                                       hwaddr size)
 416{
 417    uint32_t associativity[] = {
 418        cpu_to_be32(0x4), /* length */
 419        cpu_to_be32(0x0), cpu_to_be32(0x0),
 420        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 421    };
 422    char mem_name[32];
 423    uint64_t mem_reg_property[2];
 424    int off;
 425
 426    mem_reg_property[0] = cpu_to_be64(start);
 427    mem_reg_property[1] = cpu_to_be64(size);
 428
 429    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 430    off = fdt_add_subnode(fdt, 0, mem_name);
 431    _FDT(off);
 432    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 433    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 434                      sizeof(mem_reg_property))));
 435    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 436                      sizeof(associativity))));
 437    return off;
 438}
 439
 440static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 441{
 442    MachineState *machine = MACHINE(spapr);
 443    hwaddr mem_start, node_size;
 444    int i, nb_nodes = nb_numa_nodes;
 445    NodeInfo *nodes = numa_info;
 446    NodeInfo ramnode;
 447
 448    /* No NUMA nodes, assume there is just one node with whole RAM */
 449    if (!nb_numa_nodes) {
 450        nb_nodes = 1;
 451        ramnode.node_mem = machine->ram_size;
 452        nodes = &ramnode;
 453    }
 454
 455    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 456        if (!nodes[i].node_mem) {
 457            continue;
 458        }
 459        if (mem_start >= machine->ram_size) {
 460            node_size = 0;
 461        } else {
 462            node_size = nodes[i].node_mem;
 463            if (node_size > machine->ram_size - mem_start) {
 464                node_size = machine->ram_size - mem_start;
 465            }
 466        }
 467        if (!mem_start) {
 468            /* ppc_spapr_init() checks for rma_size <= node0_size already */
 469            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 470            mem_start += spapr->rma_size;
 471            node_size -= spapr->rma_size;
 472        }
 473        for ( ; node_size; ) {
 474            hwaddr sizetmp = pow2floor(node_size);
 475
 476            /* mem_start != 0 here */
 477            if (ctzl(mem_start) < ctzl(sizetmp)) {
 478                sizetmp = 1ULL << ctzl(mem_start);
 479            }
 480
 481            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 482            node_size -= sizetmp;
 483            mem_start += sizetmp;
 484        }
 485    }
 486
 487    return 0;
 488}
 489
 490static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 491                                  sPAPRMachineState *spapr)
 492{
 493    PowerPCCPU *cpu = POWERPC_CPU(cs);
 494    CPUPPCState *env = &cpu->env;
 495    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 496    int index = ppc_get_vcpu_dt_id(cpu);
 497    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 498                       0xffffffff, 0xffffffff};
 499    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 500        : SPAPR_TIMEBASE_FREQ;
 501    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 502    uint32_t page_sizes_prop[64];
 503    size_t page_sizes_prop_size;
 504    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 505    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 506    int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
 507    sPAPRDRConnector *drc;
 508    int drc_index;
 509    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 510    int i;
 511
 512    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 513    if (drc) {
 514        drc_index = spapr_drc_index(drc);
 515        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 516    }
 517
 518    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 519    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 520
 521    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 522    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 523                           env->dcache_line_size)));
 524    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 525                           env->dcache_line_size)));
 526    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 527                           env->icache_line_size)));
 528    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 529                           env->icache_line_size)));
 530
 531    if (pcc->l1_dcache_size) {
 532        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 533                               pcc->l1_dcache_size)));
 534    } else {
 535        warn_report("Unknown L1 dcache size for cpu");
 536    }
 537    if (pcc->l1_icache_size) {
 538        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 539                               pcc->l1_icache_size)));
 540    } else {
 541        warn_report("Unknown L1 icache size for cpu");
 542    }
 543
 544    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 545    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 546    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 547    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 548    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 549    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 550
 551    if (env->spr_cb[SPR_PURR].oea_read) {
 552        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 553    }
 554
 555    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 556        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 557                          segs, sizeof(segs))));
 558    }
 559
 560    /* Advertise VMX/VSX (vector extensions) if available
 561     *   0 / no property == no vector extensions
 562     *   1               == VMX / Altivec available
 563     *   2               == VSX available */
 564    if (env->insns_flags & PPC_ALTIVEC) {
 565        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 566
 567        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 568    }
 569
 570    /* Advertise DFP (Decimal Floating Point) if available
 571     *   0 / no property == no DFP
 572     *   1               == DFP available */
 573    if (env->insns_flags2 & PPC2_DFP) {
 574        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 575    }
 576
 577    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 578                                                  sizeof(page_sizes_prop));
 579    if (page_sizes_prop_size) {
 580        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 581                          page_sizes_prop, page_sizes_prop_size)));
 582    }
 583
 584    spapr_populate_pa_features(env, fdt, offset, false);
 585
 586    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 587                           cs->cpu_index / vcpus_per_socket)));
 588
 589    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 590                      pft_size_prop, sizeof(pft_size_prop))));
 591
 592    if (nb_numa_nodes > 1) {
 593        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 594    }
 595
 596    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 597
 598    if (pcc->radix_page_info) {
 599        for (i = 0; i < pcc->radix_page_info->count; i++) {
 600            radix_AP_encodings[i] =
 601                cpu_to_be32(pcc->radix_page_info->entries[i]);
 602        }
 603        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 604                          radix_AP_encodings,
 605                          pcc->radix_page_info->count *
 606                          sizeof(radix_AP_encodings[0]))));
 607    }
 608}
 609
 610static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 611{
 612    CPUState *cs;
 613    int cpus_offset;
 614    char *nodename;
 615    int smt = kvmppc_smt_threads();
 616
 617    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 618    _FDT(cpus_offset);
 619    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 620    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 621
 622    /*
 623     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 624     * created by fdt_add_subnode() end up in the right order in FDT
 625     * for the guest kernel the enumerate the CPUs correctly.
 626     */
 627    CPU_FOREACH_REVERSE(cs) {
 628        PowerPCCPU *cpu = POWERPC_CPU(cs);
 629        int index = ppc_get_vcpu_dt_id(cpu);
 630        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 631        int offset;
 632
 633        if ((index % smt) != 0) {
 634            continue;
 635        }
 636
 637        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 638        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 639        g_free(nodename);
 640        _FDT(offset);
 641        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 642    }
 643
 644}
 645
 646/*
 647 * Adds ibm,dynamic-reconfiguration-memory node.
 648 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 649 * of this device tree node.
 650 */
 651static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 652{
 653    MachineState *machine = MACHINE(spapr);
 654    int ret, i, offset;
 655    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 656    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 657    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 658    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 659                       memory_region_size(&spapr->hotplug_memory.mr)) /
 660                       lmb_size;
 661    uint32_t *int_buf, *cur_index, buf_len;
 662    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 663
 664    /*
 665     * Don't create the node if there is no hotpluggable memory
 666     */
 667    if (machine->ram_size == machine->maxram_size) {
 668        return 0;
 669    }
 670
 671    /*
 672     * Allocate enough buffer size to fit in ibm,dynamic-memory
 673     * or ibm,associativity-lookup-arrays
 674     */
 675    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 676              * sizeof(uint32_t);
 677    cur_index = int_buf = g_malloc0(buf_len);
 678
 679    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 680
 681    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 682                    sizeof(prop_lmb_size));
 683    if (ret < 0) {
 684        goto out;
 685    }
 686
 687    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 688    if (ret < 0) {
 689        goto out;
 690    }
 691
 692    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 693    if (ret < 0) {
 694        goto out;
 695    }
 696
 697    /* ibm,dynamic-memory */
 698    int_buf[0] = cpu_to_be32(nr_lmbs);
 699    cur_index++;
 700    for (i = 0; i < nr_lmbs; i++) {
 701        uint64_t addr = i * lmb_size;
 702        uint32_t *dynamic_memory = cur_index;
 703
 704        if (i >= hotplug_lmb_start) {
 705            sPAPRDRConnector *drc;
 706
 707            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 708            g_assert(drc);
 709
 710            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 711            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 712            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 713            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 714            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 715            if (memory_region_present(get_system_memory(), addr)) {
 716                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 717            } else {
 718                dynamic_memory[5] = cpu_to_be32(0);
 719            }
 720        } else {
 721            /*
 722             * LMB information for RMA, boot time RAM and gap b/n RAM and
 723             * hotplug memory region -- all these are marked as reserved
 724             * and as having no valid DRC.
 725             */
 726            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 727            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 728            dynamic_memory[2] = cpu_to_be32(0);
 729            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 730            dynamic_memory[4] = cpu_to_be32(-1);
 731            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 732                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 733        }
 734
 735        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 736    }
 737    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 738    if (ret < 0) {
 739        goto out;
 740    }
 741
 742    /* ibm,associativity-lookup-arrays */
 743    cur_index = int_buf;
 744    int_buf[0] = cpu_to_be32(nr_nodes);
 745    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 746    cur_index += 2;
 747    for (i = 0; i < nr_nodes; i++) {
 748        uint32_t associativity[] = {
 749            cpu_to_be32(0x0),
 750            cpu_to_be32(0x0),
 751            cpu_to_be32(0x0),
 752            cpu_to_be32(i)
 753        };
 754        memcpy(cur_index, associativity, sizeof(associativity));
 755        cur_index += 4;
 756    }
 757    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 758            (cur_index - int_buf) * sizeof(uint32_t));
 759out:
 760    g_free(int_buf);
 761    return ret;
 762}
 763
 764static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 765                                sPAPROptionVector *ov5_updates)
 766{
 767    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 768    int ret = 0, offset;
 769
 770    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 771    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 772        g_assert(smc->dr_lmb_enabled);
 773        ret = spapr_populate_drconf_memory(spapr, fdt);
 774        if (ret) {
 775            goto out;
 776        }
 777    }
 778
 779    offset = fdt_path_offset(fdt, "/chosen");
 780    if (offset < 0) {
 781        offset = fdt_add_subnode(fdt, 0, "chosen");
 782        if (offset < 0) {
 783            return offset;
 784        }
 785    }
 786    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 787                                 "ibm,architecture-vec-5");
 788
 789out:
 790    return ret;
 791}
 792
 793int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 794                                 target_ulong addr, target_ulong size,
 795                                 sPAPROptionVector *ov5_updates)
 796{
 797    void *fdt, *fdt_skel;
 798    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 799
 800    size -= sizeof(hdr);
 801
 802    /* Create sceleton */
 803    fdt_skel = g_malloc0(size);
 804    _FDT((fdt_create(fdt_skel, size)));
 805    _FDT((fdt_begin_node(fdt_skel, "")));
 806    _FDT((fdt_end_node(fdt_skel)));
 807    _FDT((fdt_finish(fdt_skel)));
 808    fdt = g_malloc0(size);
 809    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 810    g_free(fdt_skel);
 811
 812    /* Fixup cpu nodes */
 813    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 814
 815    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 816        return -1;
 817    }
 818
 819    /* Pack resulting tree */
 820    _FDT((fdt_pack(fdt)));
 821
 822    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 823        trace_spapr_cas_failed(size);
 824        return -1;
 825    }
 826
 827    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 828    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 829    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 830    g_free(fdt);
 831
 832    return 0;
 833}
 834
 835static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
 836{
 837    int rtas;
 838    GString *hypertas = g_string_sized_new(256);
 839    GString *qemu_hypertas = g_string_sized_new(256);
 840    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 841    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
 842        memory_region_size(&spapr->hotplug_memory.mr);
 843    uint32_t lrdr_capacity[] = {
 844        cpu_to_be32(max_hotplug_addr >> 32),
 845        cpu_to_be32(max_hotplug_addr & 0xffffffff),
 846        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 847        cpu_to_be32(max_cpus / smp_threads),
 848    };
 849
 850    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 851
 852    /* hypertas */
 853    add_str(hypertas, "hcall-pft");
 854    add_str(hypertas, "hcall-term");
 855    add_str(hypertas, "hcall-dabr");
 856    add_str(hypertas, "hcall-interrupt");
 857    add_str(hypertas, "hcall-tce");
 858    add_str(hypertas, "hcall-vio");
 859    add_str(hypertas, "hcall-splpar");
 860    add_str(hypertas, "hcall-bulk");
 861    add_str(hypertas, "hcall-set-mode");
 862    add_str(hypertas, "hcall-sprg0");
 863    add_str(hypertas, "hcall-copy");
 864    add_str(hypertas, "hcall-debug");
 865    add_str(qemu_hypertas, "hcall-memop1");
 866
 867    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 868        add_str(hypertas, "hcall-multi-tce");
 869    }
 870
 871    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
 872        add_str(hypertas, "hcall-hpt-resize");
 873    }
 874
 875    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 876                     hypertas->str, hypertas->len));
 877    g_string_free(hypertas, TRUE);
 878    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 879                     qemu_hypertas->str, qemu_hypertas->len));
 880    g_string_free(qemu_hypertas, TRUE);
 881
 882    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 883                     refpoints, sizeof(refpoints)));
 884
 885    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 886                          RTAS_ERROR_LOG_MAX));
 887    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 888                          RTAS_EVENT_SCAN_RATE));
 889
 890    if (msi_nonbroken) {
 891        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 892    }
 893
 894    /*
 895     * According to PAPR, rtas ibm,os-term does not guarantee a return
 896     * back to the guest cpu.
 897     *
 898     * While an additional ibm,extended-os-term property indicates
 899     * that rtas call return will always occur. Set this property.
 900     */
 901    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 902
 903    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 904                     lrdr_capacity, sizeof(lrdr_capacity)));
 905
 906    spapr_dt_rtas_tokens(fdt, rtas);
 907}
 908
 909/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
 910 * that the guest may request and thus the valid values for bytes 24..26 of
 911 * option vector 5: */
 912static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
 913{
 914    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
 915
 916    char val[2 * 4] = {
 917        23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
 918        24, 0x00, /* Hash/Radix, filled in below. */
 919        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
 920        26, 0x40, /* Radix options: GTSE == yes. */
 921    };
 922
 923    if (kvm_enabled()) {
 924        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
 925            val[3] = 0x80; /* OV5_MMU_BOTH */
 926        } else if (kvmppc_has_cap_mmu_radix()) {
 927            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
 928        } else {
 929            val[3] = 0x00; /* Hash */
 930        }
 931    } else {
 932        if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
 933            /* V3 MMU supports both hash and radix (with dynamic switching) */
 934            val[3] = 0xC0;
 935        } else {
 936            /* Otherwise we can only do hash */
 937            val[3] = 0x00;
 938        }
 939    }
 940    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
 941                     val, sizeof(val)));
 942}
 943
 944static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
 945{
 946    MachineState *machine = MACHINE(spapr);
 947    int chosen;
 948    const char *boot_device = machine->boot_order;
 949    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
 950    size_t cb = 0;
 951    char *bootlist = get_boot_devices_list(&cb, true);
 952
 953    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
 954
 955    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
 956    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
 957                          spapr->initrd_base));
 958    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
 959                          spapr->initrd_base + spapr->initrd_size));
 960
 961    if (spapr->kernel_size) {
 962        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 963                              cpu_to_be64(spapr->kernel_size) };
 964
 965        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
 966                         &kprop, sizeof(kprop)));
 967        if (spapr->kernel_le) {
 968            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
 969        }
 970    }
 971    if (boot_menu) {
 972        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
 973    }
 974    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
 975    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
 976    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
 977
 978    if (cb && bootlist) {
 979        int i;
 980
 981        for (i = 0; i < cb; i++) {
 982            if (bootlist[i] == '\n') {
 983                bootlist[i] = ' ';
 984            }
 985        }
 986        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
 987    }
 988
 989    if (boot_device && strlen(boot_device)) {
 990        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
 991    }
 992
 993    if (!spapr->has_graphics && stdout_path) {
 994        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
 995    }
 996
 997    spapr_dt_ov5_platform_support(fdt, chosen);
 998
 999    g_free(stdout_path);
1000    g_free(bootlist);
1001}
1002
1003static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1004{
1005    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1006     * KVM to work under pHyp with some guest co-operation */
1007    int hypervisor;
1008    uint8_t hypercall[16];
1009
1010    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1011    /* indicate KVM hypercall interface */
1012    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1013    if (kvmppc_has_cap_fixup_hcalls()) {
1014        /*
1015         * Older KVM versions with older guest kernels were broken
1016         * with the magic page, don't allow the guest to map it.
1017         */
1018        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1019                                  sizeof(hypercall))) {
1020            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1021                             hypercall, sizeof(hypercall)));
1022        }
1023    }
1024}
1025
1026static void *spapr_build_fdt(sPAPRMachineState *spapr,
1027                             hwaddr rtas_addr,
1028                             hwaddr rtas_size)
1029{
1030    MachineState *machine = MACHINE(qdev_get_machine());
1031    MachineClass *mc = MACHINE_GET_CLASS(machine);
1032    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1033    int ret;
1034    void *fdt;
1035    sPAPRPHBState *phb;
1036    char *buf;
1037
1038    fdt = g_malloc0(FDT_MAX_SIZE);
1039    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1040
1041    /* Root node */
1042    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1043    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1044    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1045
1046    /*
1047     * Add info to guest to indentify which host is it being run on
1048     * and what is the uuid of the guest
1049     */
1050    if (kvmppc_get_host_model(&buf)) {
1051        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1052        g_free(buf);
1053    }
1054    if (kvmppc_get_host_serial(&buf)) {
1055        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1056        g_free(buf);
1057    }
1058
1059    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1060
1061    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1062    if (qemu_uuid_set) {
1063        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1064    }
1065    g_free(buf);
1066
1067    if (qemu_get_vm_name()) {
1068        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1069                                qemu_get_vm_name()));
1070    }
1071
1072    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1073    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1074
1075    /* /interrupt controller */
1076    spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1077
1078    ret = spapr_populate_memory(spapr, fdt);
1079    if (ret < 0) {
1080        error_report("couldn't setup memory nodes in fdt");
1081        exit(1);
1082    }
1083
1084    /* /vdevice */
1085    spapr_dt_vdevice(spapr->vio_bus, fdt);
1086
1087    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1088        ret = spapr_rng_populate_dt(fdt);
1089        if (ret < 0) {
1090            error_report("could not set up rng device in the fdt");
1091            exit(1);
1092        }
1093    }
1094
1095    QLIST_FOREACH(phb, &spapr->phbs, list) {
1096        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1097        if (ret < 0) {
1098            error_report("couldn't setup PCI devices in fdt");
1099            exit(1);
1100        }
1101    }
1102
1103    /* cpus */
1104    spapr_populate_cpus_dt_node(fdt, spapr);
1105
1106    if (smc->dr_lmb_enabled) {
1107        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1108    }
1109
1110    if (mc->has_hotpluggable_cpus) {
1111        int offset = fdt_path_offset(fdt, "/cpus");
1112        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1113                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1114        if (ret < 0) {
1115            error_report("Couldn't set up CPU DR device tree properties");
1116            exit(1);
1117        }
1118    }
1119
1120    /* /event-sources */
1121    spapr_dt_events(spapr, fdt);
1122
1123    /* /rtas */
1124    spapr_dt_rtas(spapr, fdt);
1125
1126    /* /chosen */
1127    spapr_dt_chosen(spapr, fdt);
1128
1129    /* /hypervisor */
1130    if (kvm_enabled()) {
1131        spapr_dt_hypervisor(spapr, fdt);
1132    }
1133
1134    /* Build memory reserve map */
1135    if (spapr->kernel_size) {
1136        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1137    }
1138    if (spapr->initrd_size) {
1139        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1140    }
1141
1142    /* ibm,client-architecture-support updates */
1143    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1144    if (ret < 0) {
1145        error_report("couldn't setup CAS properties fdt");
1146        exit(1);
1147    }
1148
1149    return fdt;
1150}
1151
1152static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1153{
1154    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1155}
1156
1157static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1158                                    PowerPCCPU *cpu)
1159{
1160    CPUPPCState *env = &cpu->env;
1161
1162    /* The TCG path should also be holding the BQL at this point */
1163    g_assert(qemu_mutex_iothread_locked());
1164
1165    if (msr_pr) {
1166        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1167        env->gpr[3] = H_PRIVILEGE;
1168    } else {
1169        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1170    }
1171}
1172
1173static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1174{
1175    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1176
1177    return spapr->patb_entry;
1178}
1179
1180#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1181#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1182#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1183#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1184#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1185
1186/*
1187 * Get the fd to access the kernel htab, re-opening it if necessary
1188 */
1189static int get_htab_fd(sPAPRMachineState *spapr)
1190{
1191    if (spapr->htab_fd >= 0) {
1192        return spapr->htab_fd;
1193    }
1194
1195    spapr->htab_fd = kvmppc_get_htab_fd(false);
1196    if (spapr->htab_fd < 0) {
1197        error_report("Unable to open fd for reading hash table from KVM: %s",
1198                     strerror(errno));
1199    }
1200
1201    return spapr->htab_fd;
1202}
1203
1204void close_htab_fd(sPAPRMachineState *spapr)
1205{
1206    if (spapr->htab_fd >= 0) {
1207        close(spapr->htab_fd);
1208    }
1209    spapr->htab_fd = -1;
1210}
1211
1212static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1213{
1214    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1215
1216    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1217}
1218
1219static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1220                                                hwaddr ptex, int n)
1221{
1222    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1223    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1224
1225    if (!spapr->htab) {
1226        /*
1227         * HTAB is controlled by KVM. Fetch into temporary buffer
1228         */
1229        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1230        kvmppc_read_hptes(hptes, ptex, n);
1231        return hptes;
1232    }
1233
1234    /*
1235     * HTAB is controlled by QEMU. Just point to the internally
1236     * accessible PTEG.
1237     */
1238    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1239}
1240
1241static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1242                              const ppc_hash_pte64_t *hptes,
1243                              hwaddr ptex, int n)
1244{
1245    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1246
1247    if (!spapr->htab) {
1248        g_free((void *)hptes);
1249    }
1250
1251    /* Nothing to do for qemu managed HPT */
1252}
1253
1254static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1255                             uint64_t pte0, uint64_t pte1)
1256{
1257    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1258    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1259
1260    if (!spapr->htab) {
1261        kvmppc_write_hpte(ptex, pte0, pte1);
1262    } else {
1263        stq_p(spapr->htab + offset, pte0);
1264        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1265    }
1266}
1267
1268int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1269{
1270    int shift;
1271
1272    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1273     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1274     * that's much more than is needed for Linux guests */
1275    shift = ctz64(pow2ceil(ramsize)) - 7;
1276    shift = MAX(shift, 18); /* Minimum architected size */
1277    shift = MIN(shift, 46); /* Maximum architected size */
1278    return shift;
1279}
1280
1281void spapr_free_hpt(sPAPRMachineState *spapr)
1282{
1283    g_free(spapr->htab);
1284    spapr->htab = NULL;
1285    spapr->htab_shift = 0;
1286    close_htab_fd(spapr);
1287}
1288
1289void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1290                          Error **errp)
1291{
1292    long rc;
1293
1294    /* Clean up any HPT info from a previous boot */
1295    spapr_free_hpt(spapr);
1296
1297    rc = kvmppc_reset_htab(shift);
1298    if (rc < 0) {
1299        /* kernel-side HPT needed, but couldn't allocate one */
1300        error_setg_errno(errp, errno,
1301                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1302                         shift);
1303        /* This is almost certainly fatal, but if the caller really
1304         * wants to carry on with shift == 0, it's welcome to try */
1305    } else if (rc > 0) {
1306        /* kernel-side HPT allocated */
1307        if (rc != shift) {
1308            error_setg(errp,
1309                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1310                       shift, rc);
1311        }
1312
1313        spapr->htab_shift = shift;
1314        spapr->htab = NULL;
1315    } else {
1316        /* kernel-side HPT not needed, allocate in userspace instead */
1317        size_t size = 1ULL << shift;
1318        int i;
1319
1320        spapr->htab = qemu_memalign(size, size);
1321        if (!spapr->htab) {
1322            error_setg_errno(errp, errno,
1323                             "Could not allocate HPT of order %d", shift);
1324            return;
1325        }
1326
1327        memset(spapr->htab, 0, size);
1328        spapr->htab_shift = shift;
1329
1330        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1331            DIRTY_HPTE(HPTE(spapr->htab, i));
1332        }
1333    }
1334}
1335
1336void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1337{
1338    int hpt_shift;
1339
1340    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1341        || (spapr->cas_reboot
1342            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1343        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1344    } else {
1345        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1346    }
1347    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1348
1349    if (spapr->vrma_adjust) {
1350        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1351                                          spapr->htab_shift);
1352    }
1353    /* We're setting up a hash table, so that means we're not radix */
1354    spapr->patb_entry = 0;
1355}
1356
1357static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1358{
1359    bool matched = false;
1360
1361    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1362        matched = true;
1363    }
1364
1365    if (!matched) {
1366        error_report("Device %s is not supported by this machine yet.",
1367                     qdev_fw_name(DEVICE(sbdev)));
1368        exit(1);
1369    }
1370}
1371
1372static void ppc_spapr_reset(void)
1373{
1374    MachineState *machine = MACHINE(qdev_get_machine());
1375    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1376    PowerPCCPU *first_ppc_cpu;
1377    uint32_t rtas_limit;
1378    hwaddr rtas_addr, fdt_addr;
1379    void *fdt;
1380    int rc;
1381
1382    /* Check for unknown sysbus devices */
1383    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1384
1385    if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1386        /* If using KVM with radix mode available, VCPUs can be started
1387         * without a HPT because KVM will start them in radix mode.
1388         * Set the GR bit in PATB so that we know there is no HPT. */
1389        spapr->patb_entry = PATBE1_GR;
1390    } else {
1391        spapr_setup_hpt_and_vrma(spapr);
1392    }
1393
1394    qemu_devices_reset();
1395
1396    /*
1397     * We place the device tree and RTAS just below either the top of the RMA,
1398     * or just below 2GB, whichever is lowere, so that it can be
1399     * processed with 32-bit real mode code if necessary
1400     */
1401    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1402    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1403    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1404
1405    /* if this reset wasn't generated by CAS, we should reset our
1406     * negotiated options and start from scratch */
1407    if (!spapr->cas_reboot) {
1408        spapr_ovec_cleanup(spapr->ov5_cas);
1409        spapr->ov5_cas = spapr_ovec_new();
1410
1411        ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1412    }
1413
1414    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1415
1416    spapr_load_rtas(spapr, fdt, rtas_addr);
1417
1418    rc = fdt_pack(fdt);
1419
1420    /* Should only fail if we've built a corrupted tree */
1421    assert(rc == 0);
1422
1423    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1424        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1425                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1426        exit(1);
1427    }
1428
1429    /* Load the fdt */
1430    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1431    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1432    g_free(fdt);
1433
1434    /* Set up the entry state */
1435    first_ppc_cpu = POWERPC_CPU(first_cpu);
1436    first_ppc_cpu->env.gpr[3] = fdt_addr;
1437    first_ppc_cpu->env.gpr[5] = 0;
1438    first_cpu->halted = 0;
1439    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1440
1441    spapr->cas_reboot = false;
1442}
1443
1444static void spapr_create_nvram(sPAPRMachineState *spapr)
1445{
1446    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1447    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1448
1449    if (dinfo) {
1450        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1451                            &error_fatal);
1452    }
1453
1454    qdev_init_nofail(dev);
1455
1456    spapr->nvram = (struct sPAPRNVRAM *)dev;
1457}
1458
1459static void spapr_rtc_create(sPAPRMachineState *spapr)
1460{
1461    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1462    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1463                              &error_fatal);
1464    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1465                              &error_fatal);
1466    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1467                              "date", &error_fatal);
1468}
1469
1470/* Returns whether we want to use VGA or not */
1471static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1472{
1473    switch (vga_interface_type) {
1474    case VGA_NONE:
1475        return false;
1476    case VGA_DEVICE:
1477        return true;
1478    case VGA_STD:
1479    case VGA_VIRTIO:
1480        return pci_vga_init(pci_bus) != NULL;
1481    default:
1482        error_setg(errp,
1483                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1484        return false;
1485    }
1486}
1487
1488static int spapr_post_load(void *opaque, int version_id)
1489{
1490    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1491    int err = 0;
1492
1493    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1494        CPUState *cs;
1495        CPU_FOREACH(cs) {
1496            PowerPCCPU *cpu = POWERPC_CPU(cs);
1497            icp_resend(ICP(cpu->intc));
1498        }
1499    }
1500
1501    /* In earlier versions, there was no separate qdev for the PAPR
1502     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1503     * So when migrating from those versions, poke the incoming offset
1504     * value into the RTC device */
1505    if (version_id < 3) {
1506        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1507    }
1508
1509    if (spapr->patb_entry) {
1510        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1511        bool radix = !!(spapr->patb_entry & PATBE1_GR);
1512        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1513
1514        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1515        if (err) {
1516            error_report("Process table config unsupported by the host");
1517            return -EINVAL;
1518        }
1519    }
1520
1521    return err;
1522}
1523
1524static bool version_before_3(void *opaque, int version_id)
1525{
1526    return version_id < 3;
1527}
1528
1529static bool spapr_pending_events_needed(void *opaque)
1530{
1531    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1532    return !QTAILQ_EMPTY(&spapr->pending_events);
1533}
1534
1535static const VMStateDescription vmstate_spapr_event_entry = {
1536    .name = "spapr_event_log_entry",
1537    .version_id = 1,
1538    .minimum_version_id = 1,
1539    .fields = (VMStateField[]) {
1540        VMSTATE_UINT32(summary, sPAPREventLogEntry),
1541        VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1542        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1543                                     NULL, extended_length),
1544        VMSTATE_END_OF_LIST()
1545    },
1546};
1547
1548static const VMStateDescription vmstate_spapr_pending_events = {
1549    .name = "spapr_pending_events",
1550    .version_id = 1,
1551    .minimum_version_id = 1,
1552    .needed = spapr_pending_events_needed,
1553    .fields = (VMStateField[]) {
1554        VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1555                         vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1556        VMSTATE_END_OF_LIST()
1557    },
1558};
1559
1560static bool spapr_ov5_cas_needed(void *opaque)
1561{
1562    sPAPRMachineState *spapr = opaque;
1563    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1564    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1565    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1566    bool cas_needed;
1567
1568    /* Prior to the introduction of sPAPROptionVector, we had two option
1569     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1570     * Both of these options encode machine topology into the device-tree
1571     * in such a way that the now-booted OS should still be able to interact
1572     * appropriately with QEMU regardless of what options were actually
1573     * negotiatied on the source side.
1574     *
1575     * As such, we can avoid migrating the CAS-negotiated options if these
1576     * are the only options available on the current machine/platform.
1577     * Since these are the only options available for pseries-2.7 and
1578     * earlier, this allows us to maintain old->new/new->old migration
1579     * compatibility.
1580     *
1581     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1582     * via default pseries-2.8 machines and explicit command-line parameters.
1583     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1584     * of the actual CAS-negotiated values to continue working properly. For
1585     * example, availability of memory unplug depends on knowing whether
1586     * OV5_HP_EVT was negotiated via CAS.
1587     *
1588     * Thus, for any cases where the set of available CAS-negotiatable
1589     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1590     * include the CAS-negotiated options in the migration stream.
1591     */
1592    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1593    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1594
1595    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1596     * the mask itself since in the future it's possible "legacy" bits may be
1597     * removed via machine options, which could generate a false positive
1598     * that breaks migration.
1599     */
1600    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1601    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1602
1603    spapr_ovec_cleanup(ov5_mask);
1604    spapr_ovec_cleanup(ov5_legacy);
1605    spapr_ovec_cleanup(ov5_removed);
1606
1607    return cas_needed;
1608}
1609
1610static const VMStateDescription vmstate_spapr_ov5_cas = {
1611    .name = "spapr_option_vector_ov5_cas",
1612    .version_id = 1,
1613    .minimum_version_id = 1,
1614    .needed = spapr_ov5_cas_needed,
1615    .fields = (VMStateField[]) {
1616        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1617                                 vmstate_spapr_ovec, sPAPROptionVector),
1618        VMSTATE_END_OF_LIST()
1619    },
1620};
1621
1622static bool spapr_patb_entry_needed(void *opaque)
1623{
1624    sPAPRMachineState *spapr = opaque;
1625
1626    return !!spapr->patb_entry;
1627}
1628
1629static const VMStateDescription vmstate_spapr_patb_entry = {
1630    .name = "spapr_patb_entry",
1631    .version_id = 1,
1632    .minimum_version_id = 1,
1633    .needed = spapr_patb_entry_needed,
1634    .fields = (VMStateField[]) {
1635        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1636        VMSTATE_END_OF_LIST()
1637    },
1638};
1639
1640static const VMStateDescription vmstate_spapr = {
1641    .name = "spapr",
1642    .version_id = 3,
1643    .minimum_version_id = 1,
1644    .post_load = spapr_post_load,
1645    .fields = (VMStateField[]) {
1646        /* used to be @next_irq */
1647        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1648
1649        /* RTC offset */
1650        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1651
1652        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1653        VMSTATE_END_OF_LIST()
1654    },
1655    .subsections = (const VMStateDescription*[]) {
1656        &vmstate_spapr_ov5_cas,
1657        &vmstate_spapr_patb_entry,
1658        &vmstate_spapr_pending_events,
1659        NULL
1660    }
1661};
1662
1663static int htab_save_setup(QEMUFile *f, void *opaque)
1664{
1665    sPAPRMachineState *spapr = opaque;
1666
1667    /* "Iteration" header */
1668    if (!spapr->htab_shift) {
1669        qemu_put_be32(f, -1);
1670    } else {
1671        qemu_put_be32(f, spapr->htab_shift);
1672    }
1673
1674    if (spapr->htab) {
1675        spapr->htab_save_index = 0;
1676        spapr->htab_first_pass = true;
1677    } else {
1678        if (spapr->htab_shift) {
1679            assert(kvm_enabled());
1680        }
1681    }
1682
1683
1684    return 0;
1685}
1686
1687static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1688                                 int64_t max_ns)
1689{
1690    bool has_timeout = max_ns != -1;
1691    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1692    int index = spapr->htab_save_index;
1693    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1694
1695    assert(spapr->htab_first_pass);
1696
1697    do {
1698        int chunkstart;
1699
1700        /* Consume invalid HPTEs */
1701        while ((index < htabslots)
1702               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1703            CLEAN_HPTE(HPTE(spapr->htab, index));
1704            index++;
1705        }
1706
1707        /* Consume valid HPTEs */
1708        chunkstart = index;
1709        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1710               && HPTE_VALID(HPTE(spapr->htab, index))) {
1711            CLEAN_HPTE(HPTE(spapr->htab, index));
1712            index++;
1713        }
1714
1715        if (index > chunkstart) {
1716            int n_valid = index - chunkstart;
1717
1718            qemu_put_be32(f, chunkstart);
1719            qemu_put_be16(f, n_valid);
1720            qemu_put_be16(f, 0);
1721            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1722                            HASH_PTE_SIZE_64 * n_valid);
1723
1724            if (has_timeout &&
1725                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1726                break;
1727            }
1728        }
1729    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1730
1731    if (index >= htabslots) {
1732        assert(index == htabslots);
1733        index = 0;
1734        spapr->htab_first_pass = false;
1735    }
1736    spapr->htab_save_index = index;
1737}
1738
1739static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1740                                int64_t max_ns)
1741{
1742    bool final = max_ns < 0;
1743    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1744    int examined = 0, sent = 0;
1745    int index = spapr->htab_save_index;
1746    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1747
1748    assert(!spapr->htab_first_pass);
1749
1750    do {
1751        int chunkstart, invalidstart;
1752
1753        /* Consume non-dirty HPTEs */
1754        while ((index < htabslots)
1755               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1756            index++;
1757            examined++;
1758        }
1759
1760        chunkstart = index;
1761        /* Consume valid dirty HPTEs */
1762        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1763               && HPTE_DIRTY(HPTE(spapr->htab, index))
1764               && HPTE_VALID(HPTE(spapr->htab, index))) {
1765            CLEAN_HPTE(HPTE(spapr->htab, index));
1766            index++;
1767            examined++;
1768        }
1769
1770        invalidstart = index;
1771        /* Consume invalid dirty HPTEs */
1772        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1773               && HPTE_DIRTY(HPTE(spapr->htab, index))
1774               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1775            CLEAN_HPTE(HPTE(spapr->htab, index));
1776            index++;
1777            examined++;
1778        }
1779
1780        if (index > chunkstart) {
1781            int n_valid = invalidstart - chunkstart;
1782            int n_invalid = index - invalidstart;
1783
1784            qemu_put_be32(f, chunkstart);
1785            qemu_put_be16(f, n_valid);
1786            qemu_put_be16(f, n_invalid);
1787            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1788                            HASH_PTE_SIZE_64 * n_valid);
1789            sent += index - chunkstart;
1790
1791            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1792                break;
1793            }
1794        }
1795
1796        if (examined >= htabslots) {
1797            break;
1798        }
1799
1800        if (index >= htabslots) {
1801            assert(index == htabslots);
1802            index = 0;
1803        }
1804    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1805
1806    if (index >= htabslots) {
1807        assert(index == htabslots);
1808        index = 0;
1809    }
1810
1811    spapr->htab_save_index = index;
1812
1813    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1814}
1815
1816#define MAX_ITERATION_NS    5000000 /* 5 ms */
1817#define MAX_KVM_BUF_SIZE    2048
1818
1819static int htab_save_iterate(QEMUFile *f, void *opaque)
1820{
1821    sPAPRMachineState *spapr = opaque;
1822    int fd;
1823    int rc = 0;
1824
1825    /* Iteration header */
1826    if (!spapr->htab_shift) {
1827        qemu_put_be32(f, -1);
1828        return 1;
1829    } else {
1830        qemu_put_be32(f, 0);
1831    }
1832
1833    if (!spapr->htab) {
1834        assert(kvm_enabled());
1835
1836        fd = get_htab_fd(spapr);
1837        if (fd < 0) {
1838            return fd;
1839        }
1840
1841        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1842        if (rc < 0) {
1843            return rc;
1844        }
1845    } else  if (spapr->htab_first_pass) {
1846        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1847    } else {
1848        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1849    }
1850
1851    /* End marker */
1852    qemu_put_be32(f, 0);
1853    qemu_put_be16(f, 0);
1854    qemu_put_be16(f, 0);
1855
1856    return rc;
1857}
1858
1859static int htab_save_complete(QEMUFile *f, void *opaque)
1860{
1861    sPAPRMachineState *spapr = opaque;
1862    int fd;
1863
1864    /* Iteration header */
1865    if (!spapr->htab_shift) {
1866        qemu_put_be32(f, -1);
1867        return 0;
1868    } else {
1869        qemu_put_be32(f, 0);
1870    }
1871
1872    if (!spapr->htab) {
1873        int rc;
1874
1875        assert(kvm_enabled());
1876
1877        fd = get_htab_fd(spapr);
1878        if (fd < 0) {
1879            return fd;
1880        }
1881
1882        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1883        if (rc < 0) {
1884            return rc;
1885        }
1886    } else {
1887        if (spapr->htab_first_pass) {
1888            htab_save_first_pass(f, spapr, -1);
1889        }
1890        htab_save_later_pass(f, spapr, -1);
1891    }
1892
1893    /* End marker */
1894    qemu_put_be32(f, 0);
1895    qemu_put_be16(f, 0);
1896    qemu_put_be16(f, 0);
1897
1898    return 0;
1899}
1900
1901static int htab_load(QEMUFile *f, void *opaque, int version_id)
1902{
1903    sPAPRMachineState *spapr = opaque;
1904    uint32_t section_hdr;
1905    int fd = -1;
1906
1907    if (version_id < 1 || version_id > 1) {
1908        error_report("htab_load() bad version");
1909        return -EINVAL;
1910    }
1911
1912    section_hdr = qemu_get_be32(f);
1913
1914    if (section_hdr == -1) {
1915        spapr_free_hpt(spapr);
1916        return 0;
1917    }
1918
1919    if (section_hdr) {
1920        Error *local_err = NULL;
1921
1922        /* First section gives the htab size */
1923        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1924        if (local_err) {
1925            error_report_err(local_err);
1926            return -EINVAL;
1927        }
1928        return 0;
1929    }
1930
1931    if (!spapr->htab) {
1932        assert(kvm_enabled());
1933
1934        fd = kvmppc_get_htab_fd(true);
1935        if (fd < 0) {
1936            error_report("Unable to open fd to restore KVM hash table: %s",
1937                         strerror(errno));
1938        }
1939    }
1940
1941    while (true) {
1942        uint32_t index;
1943        uint16_t n_valid, n_invalid;
1944
1945        index = qemu_get_be32(f);
1946        n_valid = qemu_get_be16(f);
1947        n_invalid = qemu_get_be16(f);
1948
1949        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1950            /* End of Stream */
1951            break;
1952        }
1953
1954        if ((index + n_valid + n_invalid) >
1955            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1956            /* Bad index in stream */
1957            error_report(
1958                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1959                index, n_valid, n_invalid, spapr->htab_shift);
1960            return -EINVAL;
1961        }
1962
1963        if (spapr->htab) {
1964            if (n_valid) {
1965                qemu_get_buffer(f, HPTE(spapr->htab, index),
1966                                HASH_PTE_SIZE_64 * n_valid);
1967            }
1968            if (n_invalid) {
1969                memset(HPTE(spapr->htab, index + n_valid), 0,
1970                       HASH_PTE_SIZE_64 * n_invalid);
1971            }
1972        } else {
1973            int rc;
1974
1975            assert(fd >= 0);
1976
1977            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1978            if (rc < 0) {
1979                return rc;
1980            }
1981        }
1982    }
1983
1984    if (!spapr->htab) {
1985        assert(fd >= 0);
1986        close(fd);
1987    }
1988
1989    return 0;
1990}
1991
1992static void htab_save_cleanup(void *opaque)
1993{
1994    sPAPRMachineState *spapr = opaque;
1995
1996    close_htab_fd(spapr);
1997}
1998
1999static SaveVMHandlers savevm_htab_handlers = {
2000    .save_setup = htab_save_setup,
2001    .save_live_iterate = htab_save_iterate,
2002    .save_live_complete_precopy = htab_save_complete,
2003    .save_cleanup = htab_save_cleanup,
2004    .load_state = htab_load,
2005};
2006
2007static void spapr_boot_set(void *opaque, const char *boot_device,
2008                           Error **errp)
2009{
2010    MachineState *machine = MACHINE(qdev_get_machine());
2011    machine->boot_order = g_strdup(boot_device);
2012}
2013
2014static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2015{
2016    MachineState *machine = MACHINE(spapr);
2017    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2018    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2019    int i;
2020
2021    for (i = 0; i < nr_lmbs; i++) {
2022        uint64_t addr;
2023
2024        addr = i * lmb_size + spapr->hotplug_memory.base;
2025        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2026                               addr / lmb_size);
2027    }
2028}
2029
2030/*
2031 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2032 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2033 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2034 */
2035static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2036{
2037    int i;
2038
2039    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2040        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2041                   " is not aligned to %llu MiB",
2042                   machine->ram_size,
2043                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2044        return;
2045    }
2046
2047    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2048        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2049                   " is not aligned to %llu MiB",
2050                   machine->ram_size,
2051                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2052        return;
2053    }
2054
2055    for (i = 0; i < nb_numa_nodes; i++) {
2056        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2057            error_setg(errp,
2058                       "Node %d memory size 0x%" PRIx64
2059                       " is not aligned to %llu MiB",
2060                       i, numa_info[i].node_mem,
2061                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2062            return;
2063        }
2064    }
2065}
2066
2067/* find cpu slot in machine->possible_cpus by core_id */
2068static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2069{
2070    int index = id / smp_threads;
2071
2072    if (index >= ms->possible_cpus->len) {
2073        return NULL;
2074    }
2075    if (idx) {
2076        *idx = index;
2077    }
2078    return &ms->possible_cpus->cpus[index];
2079}
2080
2081static void spapr_init_cpus(sPAPRMachineState *spapr)
2082{
2083    MachineState *machine = MACHINE(spapr);
2084    MachineClass *mc = MACHINE_GET_CLASS(machine);
2085    char *type = spapr_get_cpu_core_type(machine->cpu_model);
2086    int smt = kvmppc_smt_threads();
2087    const CPUArchIdList *possible_cpus;
2088    int boot_cores_nr = smp_cpus / smp_threads;
2089    int i;
2090
2091    if (!type) {
2092        error_report("Unable to find sPAPR CPU Core definition");
2093        exit(1);
2094    }
2095
2096    possible_cpus = mc->possible_cpu_arch_ids(machine);
2097    if (mc->has_hotpluggable_cpus) {
2098        if (smp_cpus % smp_threads) {
2099            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2100                         smp_cpus, smp_threads);
2101            exit(1);
2102        }
2103        if (max_cpus % smp_threads) {
2104            error_report("max_cpus (%u) must be multiple of threads (%u)",
2105                         max_cpus, smp_threads);
2106            exit(1);
2107        }
2108    } else {
2109        if (max_cpus != smp_cpus) {
2110            error_report("This machine version does not support CPU hotplug");
2111            exit(1);
2112        }
2113        boot_cores_nr = possible_cpus->len;
2114    }
2115
2116    for (i = 0; i < possible_cpus->len; i++) {
2117        int core_id = i * smp_threads;
2118
2119        if (mc->has_hotpluggable_cpus) {
2120            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2121                                   (core_id / smp_threads) * smt);
2122        }
2123
2124        if (i < boot_cores_nr) {
2125            Object *core  = object_new(type);
2126            int nr_threads = smp_threads;
2127
2128            /* Handle the partially filled core for older machine types */
2129            if ((i + 1) * smp_threads >= smp_cpus) {
2130                nr_threads = smp_cpus - i * smp_threads;
2131            }
2132
2133            object_property_set_int(core, nr_threads, "nr-threads",
2134                                    &error_fatal);
2135            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2136                                    &error_fatal);
2137            object_property_set_bool(core, true, "realized", &error_fatal);
2138        }
2139    }
2140    g_free(type);
2141}
2142
2143/* pSeries LPAR / sPAPR hardware init */
2144static void ppc_spapr_init(MachineState *machine)
2145{
2146    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2147    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2148    const char *kernel_filename = machine->kernel_filename;
2149    const char *initrd_filename = machine->initrd_filename;
2150    PCIHostState *phb;
2151    int i;
2152    MemoryRegion *sysmem = get_system_memory();
2153    MemoryRegion *ram = g_new(MemoryRegion, 1);
2154    MemoryRegion *rma_region;
2155    void *rma = NULL;
2156    hwaddr rma_alloc_size;
2157    hwaddr node0_size = spapr_node0_size();
2158    long load_limit, fw_size;
2159    char *filename;
2160    Error *resize_hpt_err = NULL;
2161
2162    msi_nonbroken = true;
2163
2164    QLIST_INIT(&spapr->phbs);
2165    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2166
2167    /* Check HPT resizing availability */
2168    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2169    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2170        /*
2171         * If the user explicitly requested a mode we should either
2172         * supply it, or fail completely (which we do below).  But if
2173         * it's not set explicitly, we reset our mode to something
2174         * that works
2175         */
2176        if (resize_hpt_err) {
2177            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2178            error_free(resize_hpt_err);
2179            resize_hpt_err = NULL;
2180        } else {
2181            spapr->resize_hpt = smc->resize_hpt_default;
2182        }
2183    }
2184
2185    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2186
2187    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2188        /*
2189         * User requested HPT resize, but this host can't supply it.  Bail out
2190         */
2191        error_report_err(resize_hpt_err);
2192        exit(1);
2193    }
2194
2195    /* Allocate RMA if necessary */
2196    rma_alloc_size = kvmppc_alloc_rma(&rma);
2197
2198    if (rma_alloc_size == -1) {
2199        error_report("Unable to create RMA");
2200        exit(1);
2201    }
2202
2203    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2204        spapr->rma_size = rma_alloc_size;
2205    } else {
2206        spapr->rma_size = node0_size;
2207
2208        /* With KVM, we don't actually know whether KVM supports an
2209         * unbounded RMA (PR KVM) or is limited by the hash table size
2210         * (HV KVM using VRMA), so we always assume the latter
2211         *
2212         * In that case, we also limit the initial allocations for RTAS
2213         * etc... to 256M since we have no way to know what the VRMA size
2214         * is going to be as it depends on the size of the hash table
2215         * isn't determined yet.
2216         */
2217        if (kvm_enabled()) {
2218            spapr->vrma_adjust = 1;
2219            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2220        }
2221
2222        /* Actually we don't support unbounded RMA anymore since we
2223         * added proper emulation of HV mode. The max we can get is
2224         * 16G which also happens to be what we configure for PAPR
2225         * mode so make sure we don't do anything bigger than that
2226         */
2227        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2228    }
2229
2230    if (spapr->rma_size > node0_size) {
2231        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2232                     spapr->rma_size);
2233        exit(1);
2234    }
2235
2236    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2237    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2238
2239    /* Set up Interrupt Controller before we create the VCPUs */
2240    xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2241
2242    /* Set up containers for ibm,client-set-architecture negotiated options */
2243    spapr->ov5 = spapr_ovec_new();
2244    spapr->ov5_cas = spapr_ovec_new();
2245
2246    if (smc->dr_lmb_enabled) {
2247        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2248        spapr_validate_node_memory(machine, &error_fatal);
2249    }
2250
2251    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2252    if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2253        /* KVM and TCG always allow GTSE with radix... */
2254        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2255    }
2256    /* ... but not with hash (currently). */
2257
2258    /* advertise support for dedicated HP event source to guests */
2259    if (spapr->use_hotplug_event_source) {
2260        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2261    }
2262
2263    /* advertise support for HPT resizing */
2264    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2265        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2266    }
2267
2268    /* init CPUs */
2269    if (machine->cpu_model == NULL) {
2270        machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2271    }
2272
2273    spapr_cpu_parse_features(spapr);
2274
2275    spapr_init_cpus(spapr);
2276
2277    if (kvm_enabled()) {
2278        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2279        kvmppc_enable_logical_ci_hcalls();
2280        kvmppc_enable_set_mode_hcall();
2281
2282        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2283        kvmppc_enable_clear_ref_mod_hcalls();
2284    }
2285
2286    /* allocate RAM */
2287    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2288                                         machine->ram_size);
2289    memory_region_add_subregion(sysmem, 0, ram);
2290
2291    if (rma_alloc_size && rma) {
2292        rma_region = g_new(MemoryRegion, 1);
2293        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2294                                   rma_alloc_size, rma);
2295        vmstate_register_ram_global(rma_region);
2296        memory_region_add_subregion(sysmem, 0, rma_region);
2297    }
2298
2299    /* initialize hotplug memory address space */
2300    if (machine->ram_size < machine->maxram_size) {
2301        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2302        /*
2303         * Limit the number of hotpluggable memory slots to half the number
2304         * slots that KVM supports, leaving the other half for PCI and other
2305         * devices. However ensure that number of slots doesn't drop below 32.
2306         */
2307        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2308                           SPAPR_MAX_RAM_SLOTS;
2309
2310        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2311            max_memslots = SPAPR_MAX_RAM_SLOTS;
2312        }
2313        if (machine->ram_slots > max_memslots) {
2314            error_report("Specified number of memory slots %"
2315                         PRIu64" exceeds max supported %d",
2316                         machine->ram_slots, max_memslots);
2317            exit(1);
2318        }
2319
2320        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2321                                              SPAPR_HOTPLUG_MEM_ALIGN);
2322        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2323                           "hotplug-memory", hotplug_mem_size);
2324        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2325                                    &spapr->hotplug_memory.mr);
2326    }
2327
2328    if (smc->dr_lmb_enabled) {
2329        spapr_create_lmb_dr_connectors(spapr);
2330    }
2331
2332    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2333    if (!filename) {
2334        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2335        exit(1);
2336    }
2337    spapr->rtas_size = get_image_size(filename);
2338    if (spapr->rtas_size < 0) {
2339        error_report("Could not get size of LPAR rtas '%s'", filename);
2340        exit(1);
2341    }
2342    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2343    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2344        error_report("Could not load LPAR rtas '%s'", filename);
2345        exit(1);
2346    }
2347    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2348        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2349                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2350        exit(1);
2351    }
2352    g_free(filename);
2353
2354    /* Set up RTAS event infrastructure */
2355    spapr_events_init(spapr);
2356
2357    /* Set up the RTC RTAS interfaces */
2358    spapr_rtc_create(spapr);
2359
2360    /* Set up VIO bus */
2361    spapr->vio_bus = spapr_vio_bus_init();
2362
2363    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2364        if (serial_hds[i]) {
2365            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2366        }
2367    }
2368
2369    /* We always have at least the nvram device on VIO */
2370    spapr_create_nvram(spapr);
2371
2372    /* Set up PCI */
2373    spapr_pci_rtas_init();
2374
2375    phb = spapr_create_phb(spapr, 0);
2376
2377    for (i = 0; i < nb_nics; i++) {
2378        NICInfo *nd = &nd_table[i];
2379
2380        if (!nd->model) {
2381            nd->model = g_strdup("ibmveth");
2382        }
2383
2384        if (strcmp(nd->model, "ibmveth") == 0) {
2385            spapr_vlan_create(spapr->vio_bus, nd);
2386        } else {
2387            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2388        }
2389    }
2390
2391    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2392        spapr_vscsi_create(spapr->vio_bus);
2393    }
2394
2395    /* Graphics */
2396    if (spapr_vga_init(phb->bus, &error_fatal)) {
2397        spapr->has_graphics = true;
2398        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2399    }
2400
2401    if (machine->usb) {
2402        if (smc->use_ohci_by_default) {
2403            pci_create_simple(phb->bus, -1, "pci-ohci");
2404        } else {
2405            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2406        }
2407
2408        if (spapr->has_graphics) {
2409            USBBus *usb_bus = usb_bus_find(-1);
2410
2411            usb_create_simple(usb_bus, "usb-kbd");
2412            usb_create_simple(usb_bus, "usb-mouse");
2413        }
2414    }
2415
2416    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2417        error_report(
2418            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2419            MIN_RMA_SLOF);
2420        exit(1);
2421    }
2422
2423    if (kernel_filename) {
2424        uint64_t lowaddr = 0;
2425
2426        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2427                                      NULL, NULL, &lowaddr, NULL, 1,
2428                                      PPC_ELF_MACHINE, 0, 0);
2429        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2430            spapr->kernel_size = load_elf(kernel_filename,
2431                                          translate_kernel_address, NULL, NULL,
2432                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2433                                          0, 0);
2434            spapr->kernel_le = spapr->kernel_size > 0;
2435        }
2436        if (spapr->kernel_size < 0) {
2437            error_report("error loading %s: %s", kernel_filename,
2438                         load_elf_strerror(spapr->kernel_size));
2439            exit(1);
2440        }
2441
2442        /* load initrd */
2443        if (initrd_filename) {
2444            /* Try to locate the initrd in the gap between the kernel
2445             * and the firmware. Add a bit of space just in case
2446             */
2447            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2448                                  + 0x1ffff) & ~0xffff;
2449            spapr->initrd_size = load_image_targphys(initrd_filename,
2450                                                     spapr->initrd_base,
2451                                                     load_limit
2452                                                     - spapr->initrd_base);
2453            if (spapr->initrd_size < 0) {
2454                error_report("could not load initial ram disk '%s'",
2455                             initrd_filename);
2456                exit(1);
2457            }
2458        }
2459    }
2460
2461    if (bios_name == NULL) {
2462        bios_name = FW_FILE_NAME;
2463    }
2464    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2465    if (!filename) {
2466        error_report("Could not find LPAR firmware '%s'", bios_name);
2467        exit(1);
2468    }
2469    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2470    if (fw_size <= 0) {
2471        error_report("Could not load LPAR firmware '%s'", filename);
2472        exit(1);
2473    }
2474    g_free(filename);
2475
2476    /* FIXME: Should register things through the MachineState's qdev
2477     * interface, this is a legacy from the sPAPREnvironment structure
2478     * which predated MachineState but had a similar function */
2479    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2480    register_savevm_live(NULL, "spapr/htab", -1, 1,
2481                         &savevm_htab_handlers, spapr);
2482
2483    qemu_register_boot_set(spapr_boot_set, spapr);
2484
2485    if (kvm_enabled()) {
2486        /* to stop and start vmclock */
2487        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2488                                         &spapr->tb);
2489
2490        kvmppc_spapr_enable_inkernel_multitce();
2491    }
2492}
2493
2494static int spapr_kvm_type(const char *vm_type)
2495{
2496    if (!vm_type) {
2497        return 0;
2498    }
2499
2500    if (!strcmp(vm_type, "HV")) {
2501        return 1;
2502    }
2503
2504    if (!strcmp(vm_type, "PR")) {
2505        return 2;
2506    }
2507
2508    error_report("Unknown kvm-type specified '%s'", vm_type);
2509    exit(1);
2510}
2511
2512/*
2513 * Implementation of an interface to adjust firmware path
2514 * for the bootindex property handling.
2515 */
2516static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2517                                   DeviceState *dev)
2518{
2519#define CAST(type, obj, name) \
2520    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2521    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2522    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2523    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2524
2525    if (d) {
2526        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2527        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2528        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2529
2530        if (spapr) {
2531            /*
2532             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2533             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2534             * in the top 16 bits of the 64-bit LUN
2535             */
2536            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2537            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2538                                   (uint64_t)id << 48);
2539        } else if (virtio) {
2540            /*
2541             * We use SRP luns of the form 01000000 | (target << 8) | lun
2542             * in the top 32 bits of the 64-bit LUN
2543             * Note: the quote above is from SLOF and it is wrong,
2544             * the actual binding is:
2545             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2546             */
2547            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2548            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2549                                   (uint64_t)id << 32);
2550        } else if (usb) {
2551            /*
2552             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2553             * in the top 32 bits of the 64-bit LUN
2554             */
2555            unsigned usb_port = atoi(usb->port->path);
2556            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2557            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2558                                   (uint64_t)id << 32);
2559        }
2560    }
2561
2562    /*
2563     * SLOF probes the USB devices, and if it recognizes that the device is a
2564     * storage device, it changes its name to "storage" instead of "usb-host",
2565     * and additionally adds a child node for the SCSI LUN, so the correct
2566     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2567     */
2568    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2569        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2570        if (usb_host_dev_is_scsi_storage(usbdev)) {
2571            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2572        }
2573    }
2574
2575    if (phb) {
2576        /* Replace "pci" with "pci@800000020000000" */
2577        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2578    }
2579
2580    if (vsc) {
2581        /* Same logic as virtio above */
2582        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2583        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2584    }
2585
2586    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2587        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2588        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2589        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2590    }
2591
2592    return NULL;
2593}
2594
2595static char *spapr_get_kvm_type(Object *obj, Error **errp)
2596{
2597    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2598
2599    return g_strdup(spapr->kvm_type);
2600}
2601
2602static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2603{
2604    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2605
2606    g_free(spapr->kvm_type);
2607    spapr->kvm_type = g_strdup(value);
2608}
2609
2610static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2611{
2612    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2613
2614    return spapr->use_hotplug_event_source;
2615}
2616
2617static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2618                                            Error **errp)
2619{
2620    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2621
2622    spapr->use_hotplug_event_source = value;
2623}
2624
2625static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2626{
2627    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2628
2629    switch (spapr->resize_hpt) {
2630    case SPAPR_RESIZE_HPT_DEFAULT:
2631        return g_strdup("default");
2632    case SPAPR_RESIZE_HPT_DISABLED:
2633        return g_strdup("disabled");
2634    case SPAPR_RESIZE_HPT_ENABLED:
2635        return g_strdup("enabled");
2636    case SPAPR_RESIZE_HPT_REQUIRED:
2637        return g_strdup("required");
2638    }
2639    g_assert_not_reached();
2640}
2641
2642static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2643{
2644    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2645
2646    if (strcmp(value, "default") == 0) {
2647        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2648    } else if (strcmp(value, "disabled") == 0) {
2649        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2650    } else if (strcmp(value, "enabled") == 0) {
2651        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2652    } else if (strcmp(value, "required") == 0) {
2653        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2654    } else {
2655        error_setg(errp, "Bad value for \"resize-hpt\" property");
2656    }
2657}
2658
2659static void spapr_machine_initfn(Object *obj)
2660{
2661    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2662
2663    spapr->htab_fd = -1;
2664    spapr->use_hotplug_event_source = true;
2665    object_property_add_str(obj, "kvm-type",
2666                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2667    object_property_set_description(obj, "kvm-type",
2668                                    "Specifies the KVM virtualization mode (HV, PR)",
2669                                    NULL);
2670    object_property_add_bool(obj, "modern-hotplug-events",
2671                            spapr_get_modern_hotplug_events,
2672                            spapr_set_modern_hotplug_events,
2673                            NULL);
2674    object_property_set_description(obj, "modern-hotplug-events",
2675                                    "Use dedicated hotplug event mechanism in"
2676                                    " place of standard EPOW events when possible"
2677                                    " (required for memory hot-unplug support)",
2678                                    NULL);
2679
2680    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2681                            "Maximum permitted CPU compatibility mode",
2682                            &error_fatal);
2683
2684    object_property_add_str(obj, "resize-hpt",
2685                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2686    object_property_set_description(obj, "resize-hpt",
2687                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
2688                                    NULL);
2689}
2690
2691static void spapr_machine_finalizefn(Object *obj)
2692{
2693    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2694
2695    g_free(spapr->kvm_type);
2696}
2697
2698void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2699{
2700    cpu_synchronize_state(cs);
2701    ppc_cpu_do_system_reset(cs);
2702}
2703
2704static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2705{
2706    CPUState *cs;
2707
2708    CPU_FOREACH(cs) {
2709        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2710    }
2711}
2712
2713static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2714                           uint32_t node, bool dedicated_hp_event_source,
2715                           Error **errp)
2716{
2717    sPAPRDRConnector *drc;
2718    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2719    int i, fdt_offset, fdt_size;
2720    void *fdt;
2721    uint64_t addr = addr_start;
2722    bool hotplugged = spapr_drc_hotplugged(dev);
2723    Error *local_err = NULL;
2724
2725    for (i = 0; i < nr_lmbs; i++) {
2726        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2727                              addr / SPAPR_MEMORY_BLOCK_SIZE);
2728        g_assert(drc);
2729
2730        fdt = create_device_tree(&fdt_size);
2731        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2732                                                SPAPR_MEMORY_BLOCK_SIZE);
2733
2734        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2735        if (local_err) {
2736            while (addr > addr_start) {
2737                addr -= SPAPR_MEMORY_BLOCK_SIZE;
2738                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2739                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
2740                spapr_drc_detach(drc);
2741            }
2742            g_free(fdt);
2743            error_propagate(errp, local_err);
2744            return;
2745        }
2746        if (!hotplugged) {
2747            spapr_drc_reset(drc);
2748        }
2749        addr += SPAPR_MEMORY_BLOCK_SIZE;
2750    }
2751    /* send hotplug notification to the
2752     * guest only in case of hotplugged memory
2753     */
2754    if (hotplugged) {
2755        if (dedicated_hp_event_source) {
2756            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2757                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2758            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2759                                                   nr_lmbs,
2760                                                   spapr_drc_index(drc));
2761        } else {
2762            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2763                                           nr_lmbs);
2764        }
2765    }
2766}
2767
2768static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2769                              uint32_t node, Error **errp)
2770{
2771    Error *local_err = NULL;
2772    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2773    PCDIMMDevice *dimm = PC_DIMM(dev);
2774    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2775    MemoryRegion *mr;
2776    uint64_t align, size, addr;
2777
2778    mr = ddc->get_memory_region(dimm, &local_err);
2779    if (local_err) {
2780        goto out;
2781    }
2782    align = memory_region_get_alignment(mr);
2783    size = memory_region_size(mr);
2784
2785    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2786    if (local_err) {
2787        goto out;
2788    }
2789
2790    addr = object_property_get_uint(OBJECT(dimm),
2791                                    PC_DIMM_ADDR_PROP, &local_err);
2792    if (local_err) {
2793        goto out_unplug;
2794    }
2795
2796    spapr_add_lmbs(dev, addr, size, node,
2797                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2798                   &local_err);
2799    if (local_err) {
2800        goto out_unplug;
2801    }
2802
2803    return;
2804
2805out_unplug:
2806    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2807out:
2808    error_propagate(errp, local_err);
2809}
2810
2811static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2812                                  Error **errp)
2813{
2814    PCDIMMDevice *dimm = PC_DIMM(dev);
2815    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2816    MemoryRegion *mr;
2817    uint64_t size;
2818    char *mem_dev;
2819
2820    mr = ddc->get_memory_region(dimm, errp);
2821    if (!mr) {
2822        return;
2823    }
2824    size = memory_region_size(mr);
2825
2826    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2827        error_setg(errp, "Hotplugged memory size must be a multiple of "
2828                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2829        return;
2830    }
2831
2832    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2833    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2834        error_setg(errp, "Memory backend has bad page size. "
2835                   "Use 'memory-backend-file' with correct mem-path.");
2836        goto out;
2837    }
2838
2839out:
2840    g_free(mem_dev);
2841}
2842
2843struct sPAPRDIMMState {
2844    PCDIMMDevice *dimm;
2845    uint32_t nr_lmbs;
2846    QTAILQ_ENTRY(sPAPRDIMMState) next;
2847};
2848
2849static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2850                                                       PCDIMMDevice *dimm)
2851{
2852    sPAPRDIMMState *dimm_state = NULL;
2853
2854    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2855        if (dimm_state->dimm == dimm) {
2856            break;
2857        }
2858    }
2859    return dimm_state;
2860}
2861
2862static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2863                                                      uint32_t nr_lmbs,
2864                                                      PCDIMMDevice *dimm)
2865{
2866    sPAPRDIMMState *ds = NULL;
2867
2868    /*
2869     * If this request is for a DIMM whose removal had failed earlier
2870     * (due to guest's refusal to remove the LMBs), we would have this
2871     * dimm already in the pending_dimm_unplugs list. In that
2872     * case don't add again.
2873     */
2874    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2875    if (!ds) {
2876        ds = g_malloc0(sizeof(sPAPRDIMMState));
2877        ds->nr_lmbs = nr_lmbs;
2878        ds->dimm = dimm;
2879        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2880    }
2881    return ds;
2882}
2883
2884static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2885                                              sPAPRDIMMState *dimm_state)
2886{
2887    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2888    g_free(dimm_state);
2889}
2890
2891static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2892                                                        PCDIMMDevice *dimm)
2893{
2894    sPAPRDRConnector *drc;
2895    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2896    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
2897    uint64_t size = memory_region_size(mr);
2898    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2899    uint32_t avail_lmbs = 0;
2900    uint64_t addr_start, addr;
2901    int i;
2902
2903    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2904                                         &error_abort);
2905
2906    addr = addr_start;
2907    for (i = 0; i < nr_lmbs; i++) {
2908        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2909                              addr / SPAPR_MEMORY_BLOCK_SIZE);
2910        g_assert(drc);
2911        if (drc->dev) {
2912            avail_lmbs++;
2913        }
2914        addr += SPAPR_MEMORY_BLOCK_SIZE;
2915    }
2916
2917    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
2918}
2919
2920/* Callback to be called during DRC release. */
2921void spapr_lmb_release(DeviceState *dev)
2922{
2923    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
2924    PCDIMMDevice *dimm = PC_DIMM(dev);
2925    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2926    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
2927    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2928
2929    /* This information will get lost if a migration occurs
2930     * during the unplug process. In this case recover it. */
2931    if (ds == NULL) {
2932        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2933        g_assert(ds);
2934        /* The DRC being examined by the caller at least must be counted */
2935        g_assert(ds->nr_lmbs);
2936    }
2937
2938    if (--ds->nr_lmbs) {
2939        return;
2940    }
2941
2942    spapr_pending_dimm_unplugs_remove(spapr, ds);
2943
2944    /*
2945     * Now that all the LMBs have been removed by the guest, call the
2946     * pc-dimm unplug handler to cleanup up the pc-dimm device.
2947     */
2948    pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
2949    object_unparent(OBJECT(dev));
2950}
2951
2952static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2953                                        DeviceState *dev, Error **errp)
2954{
2955    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2956    Error *local_err = NULL;
2957    PCDIMMDevice *dimm = PC_DIMM(dev);
2958    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2959    MemoryRegion *mr;
2960    uint32_t nr_lmbs;
2961    uint64_t size, addr_start, addr;
2962    int i;
2963    sPAPRDRConnector *drc;
2964
2965    mr = ddc->get_memory_region(dimm, &local_err);
2966    if (local_err) {
2967        goto out;
2968    }
2969    size = memory_region_size(mr);
2970    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2971
2972    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2973                                         &local_err);
2974    if (local_err) {
2975        goto out;
2976    }
2977
2978    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
2979
2980    addr = addr_start;
2981    for (i = 0; i < nr_lmbs; i++) {
2982        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2983                              addr / SPAPR_MEMORY_BLOCK_SIZE);
2984        g_assert(drc);
2985
2986        spapr_drc_detach(drc);
2987        addr += SPAPR_MEMORY_BLOCK_SIZE;
2988    }
2989
2990    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2991                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2992    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2993                                              nr_lmbs, spapr_drc_index(drc));
2994out:
2995    error_propagate(errp, local_err);
2996}
2997
2998static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2999                                           sPAPRMachineState *spapr)
3000{
3001    PowerPCCPU *cpu = POWERPC_CPU(cs);
3002    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3003    int id = ppc_get_vcpu_dt_id(cpu);
3004    void *fdt;
3005    int offset, fdt_size;
3006    char *nodename;
3007
3008    fdt = create_device_tree(&fdt_size);
3009    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3010    offset = fdt_add_subnode(fdt, 0, nodename);
3011
3012    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3013    g_free(nodename);
3014
3015    *fdt_offset = offset;
3016    return fdt;
3017}
3018
3019/* Callback to be called during DRC release. */
3020void spapr_core_release(DeviceState *dev)
3021{
3022    MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3023    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3024    CPUCore *cc = CPU_CORE(dev);
3025    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3026
3027    if (smc->pre_2_10_has_unused_icps) {
3028        sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3029        sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3030        const char *typename = object_class_get_name(scc->cpu_class);
3031        size_t size = object_type_get_instance_size(typename);
3032        int i;
3033
3034        for (i = 0; i < cc->nr_threads; i++) {
3035            CPUState *cs = CPU(sc->threads + i * size);
3036
3037            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3038        }
3039    }
3040
3041    assert(core_slot);
3042    core_slot->cpu = NULL;
3043    object_unparent(OBJECT(dev));
3044}
3045
3046static
3047void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3048                               Error **errp)
3049{
3050    int index;
3051    sPAPRDRConnector *drc;
3052    CPUCore *cc = CPU_CORE(dev);
3053    int smt = kvmppc_smt_threads();
3054
3055    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3056        error_setg(errp, "Unable to find CPU core with core-id: %d",
3057                   cc->core_id);
3058        return;
3059    }
3060    if (index == 0) {
3061        error_setg(errp, "Boot CPU core may not be unplugged");
3062        return;
3063    }
3064
3065    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3066    g_assert(drc);
3067
3068    spapr_drc_detach(drc);
3069
3070    spapr_hotplug_req_remove_by_index(drc);
3071}
3072
3073static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3074                            Error **errp)
3075{
3076    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3077    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3078    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3079    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3080    CPUCore *cc = CPU_CORE(dev);
3081    CPUState *cs = CPU(core->threads);
3082    sPAPRDRConnector *drc;
3083    Error *local_err = NULL;
3084    int smt = kvmppc_smt_threads();
3085    CPUArchId *core_slot;
3086    int index;
3087    bool hotplugged = spapr_drc_hotplugged(dev);
3088
3089    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3090    if (!core_slot) {
3091        error_setg(errp, "Unable to find CPU core with core-id: %d",
3092                   cc->core_id);
3093        return;
3094    }
3095    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3096
3097    g_assert(drc || !mc->has_hotpluggable_cpus);
3098
3099    if (drc) {
3100        void *fdt;
3101        int fdt_offset;
3102
3103        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3104
3105        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3106        if (local_err) {
3107            g_free(fdt);
3108            error_propagate(errp, local_err);
3109            return;
3110        }
3111
3112        if (hotplugged) {
3113            /*
3114             * Send hotplug notification interrupt to the guest only
3115             * in case of hotplugged CPUs.
3116             */
3117            spapr_hotplug_req_add_by_index(drc);
3118        } else {
3119            spapr_drc_reset(drc);
3120        }
3121    }
3122
3123    core_slot->cpu = OBJECT(dev);
3124
3125    if (smc->pre_2_10_has_unused_icps) {
3126        sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3127        const char *typename = object_class_get_name(scc->cpu_class);
3128        size_t size = object_type_get_instance_size(typename);
3129        int i;
3130
3131        for (i = 0; i < cc->nr_threads; i++) {
3132            sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3133            void *obj = sc->threads + i * size;
3134
3135            cs = CPU(obj);
3136            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3137        }
3138    }
3139}
3140
3141static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3142                                Error **errp)
3143{
3144    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3145    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3146    Error *local_err = NULL;
3147    CPUCore *cc = CPU_CORE(dev);
3148    char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3149    const char *type = object_get_typename(OBJECT(dev));
3150    CPUArchId *core_slot;
3151    int index;
3152
3153    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3154        error_setg(&local_err, "CPU hotplug not supported for this machine");
3155        goto out;
3156    }
3157
3158    if (strcmp(base_core_type, type)) {
3159        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3160        goto out;
3161    }
3162
3163    if (cc->core_id % smp_threads) {
3164        error_setg(&local_err, "invalid core id %d", cc->core_id);
3165        goto out;
3166    }
3167
3168    /*
3169     * In general we should have homogeneous threads-per-core, but old
3170     * (pre hotplug support) machine types allow the last core to have
3171     * reduced threads as a compatibility hack for when we allowed
3172     * total vcpus not a multiple of threads-per-core.
3173     */
3174    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3175        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3176                   cc->nr_threads, smp_threads);
3177        goto out;
3178    }
3179
3180    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3181    if (!core_slot) {
3182        error_setg(&local_err, "core id %d out of range", cc->core_id);
3183        goto out;
3184    }
3185
3186    if (core_slot->cpu) {
3187        error_setg(&local_err, "core %d already populated", cc->core_id);
3188        goto out;
3189    }
3190
3191    numa_cpu_pre_plug(core_slot, dev, &local_err);
3192
3193out:
3194    g_free(base_core_type);
3195    error_propagate(errp, local_err);
3196}
3197
3198static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3199                                      DeviceState *dev, Error **errp)
3200{
3201    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3202
3203    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3204        int node;
3205
3206        if (!smc->dr_lmb_enabled) {
3207            error_setg(errp, "Memory hotplug not supported for this machine");
3208            return;
3209        }
3210        node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3211        if (*errp) {
3212            return;
3213        }
3214        if (node < 0 || node >= MAX_NODES) {
3215            error_setg(errp, "Invaild node %d", node);
3216            return;
3217        }
3218
3219        /*
3220         * Currently PowerPC kernel doesn't allow hot-adding memory to
3221         * memory-less node, but instead will silently add the memory
3222         * to the first node that has some memory. This causes two
3223         * unexpected behaviours for the user.
3224         *
3225         * - Memory gets hotplugged to a different node than what the user
3226         *   specified.
3227         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3228         *   to memory-less node, a reboot will set things accordingly
3229         *   and the previously hotplugged memory now ends in the right node.
3230         *   This appears as if some memory moved from one node to another.
3231         *
3232         * So until kernel starts supporting memory hotplug to memory-less
3233         * nodes, just prevent such attempts upfront in QEMU.
3234         */
3235        if (nb_numa_nodes && !numa_info[node].node_mem) {
3236            error_setg(errp, "Can't hotplug memory to memory-less node %d",
3237                       node);
3238            return;
3239        }
3240
3241        spapr_memory_plug(hotplug_dev, dev, node, errp);
3242    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3243        spapr_core_plug(hotplug_dev, dev, errp);
3244    }
3245}
3246
3247static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3248                                                DeviceState *dev, Error **errp)
3249{
3250    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3251    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3252
3253    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3254        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3255            spapr_memory_unplug_request(hotplug_dev, dev, errp);
3256        } else {
3257            /* NOTE: this means there is a window after guest reset, prior to
3258             * CAS negotiation, where unplug requests will fail due to the
3259             * capability not being detected yet. This is a bit different than
3260             * the case with PCI unplug, where the events will be queued and
3261             * eventually handled by the guest after boot
3262             */
3263            error_setg(errp, "Memory hot unplug not supported for this guest");
3264        }
3265    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3266        if (!mc->has_hotpluggable_cpus) {
3267            error_setg(errp, "CPU hot unplug not supported on this machine");
3268            return;
3269        }
3270        spapr_core_unplug_request(hotplug_dev, dev, errp);
3271    }
3272}
3273
3274static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3275                                          DeviceState *dev, Error **errp)
3276{
3277    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3278        spapr_memory_pre_plug(hotplug_dev, dev, errp);
3279    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3280        spapr_core_pre_plug(hotplug_dev, dev, errp);
3281    }
3282}
3283
3284static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3285                                                 DeviceState *dev)
3286{
3287    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3288        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3289        return HOTPLUG_HANDLER(machine);
3290    }
3291    return NULL;
3292}
3293
3294static CpuInstanceProperties
3295spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3296{
3297    CPUArchId *core_slot;
3298    MachineClass *mc = MACHINE_GET_CLASS(machine);
3299
3300    /* make sure possible_cpu are intialized */
3301    mc->possible_cpu_arch_ids(machine);
3302    /* get CPU core slot containing thread that matches cpu_index */
3303    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3304    assert(core_slot);
3305    return core_slot->props;
3306}
3307
3308static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3309{
3310    int i;
3311    int spapr_max_cores = max_cpus / smp_threads;
3312    MachineClass *mc = MACHINE_GET_CLASS(machine);
3313
3314    if (!mc->has_hotpluggable_cpus) {
3315        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3316    }
3317    if (machine->possible_cpus) {
3318        assert(machine->possible_cpus->len == spapr_max_cores);
3319        return machine->possible_cpus;
3320    }
3321
3322    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3323                             sizeof(CPUArchId) * spapr_max_cores);
3324    machine->possible_cpus->len = spapr_max_cores;
3325    for (i = 0; i < machine->possible_cpus->len; i++) {
3326        int core_id = i * smp_threads;
3327
3328        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3329        machine->possible_cpus->cpus[i].arch_id = core_id;
3330        machine->possible_cpus->cpus[i].props.has_core_id = true;
3331        machine->possible_cpus->cpus[i].props.core_id = core_id;
3332
3333        /* default distribution of CPUs over NUMA nodes */
3334        if (nb_numa_nodes) {
3335            /* preset values but do not enable them i.e. 'has_node_id = false',
3336             * numa init code will enable them later if manual mapping wasn't
3337             * present on CLI */
3338            machine->possible_cpus->cpus[i].props.node_id =
3339                core_id / smp_threads / smp_cores % nb_numa_nodes;
3340        }
3341    }
3342    return machine->possible_cpus;
3343}
3344
3345static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3346                                uint64_t *buid, hwaddr *pio,
3347                                hwaddr *mmio32, hwaddr *mmio64,
3348                                unsigned n_dma, uint32_t *liobns, Error **errp)
3349{
3350    /*
3351     * New-style PHB window placement.
3352     *
3353     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3354     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3355     * windows.
3356     *
3357     * Some guest kernels can't work with MMIO windows above 1<<46
3358     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3359     *
3360     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3361     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3362     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3363     * 1TiB 64-bit MMIO windows for each PHB.
3364     */
3365    const uint64_t base_buid = 0x800000020000000ULL;
3366#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3367                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3368    int i;
3369
3370    /* Sanity check natural alignments */
3371    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3372    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3373    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3374    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3375    /* Sanity check bounds */
3376    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3377                      SPAPR_PCI_MEM32_WIN_SIZE);
3378    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3379                      SPAPR_PCI_MEM64_WIN_SIZE);
3380
3381    if (index >= SPAPR_MAX_PHBS) {
3382        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3383                   SPAPR_MAX_PHBS - 1);
3384        return;
3385    }
3386
3387    *buid = base_buid + index;
3388    for (i = 0; i < n_dma; ++i) {
3389        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3390    }
3391
3392    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3393    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3394    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3395}
3396
3397static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3398{
3399    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3400
3401    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3402}
3403
3404static void spapr_ics_resend(XICSFabric *dev)
3405{
3406    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3407
3408    ics_resend(spapr->ics);
3409}
3410
3411static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3412{
3413    PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3414
3415    return cpu ? ICP(cpu->intc) : NULL;
3416}
3417
3418static void spapr_pic_print_info(InterruptStatsProvider *obj,
3419                                 Monitor *mon)
3420{
3421    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3422    CPUState *cs;
3423
3424    CPU_FOREACH(cs) {
3425        PowerPCCPU *cpu = POWERPC_CPU(cs);
3426
3427        icp_pic_print_info(ICP(cpu->intc), mon);
3428    }
3429
3430    ics_pic_print_info(spapr->ics, mon);
3431}
3432
3433static void spapr_machine_class_init(ObjectClass *oc, void *data)
3434{
3435    MachineClass *mc = MACHINE_CLASS(oc);
3436    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3437    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3438    NMIClass *nc = NMI_CLASS(oc);
3439    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3440    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3441    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3442    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3443
3444    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3445
3446    /*
3447     * We set up the default / latest behaviour here.  The class_init
3448     * functions for the specific versioned machine types can override
3449     * these details for backwards compatibility
3450     */
3451    mc->init = ppc_spapr_init;
3452    mc->reset = ppc_spapr_reset;
3453    mc->block_default_type = IF_SCSI;
3454    mc->max_cpus = 1024;
3455    mc->no_parallel = 1;
3456    mc->default_boot_order = "";
3457    mc->default_ram_size = 512 * M_BYTE;
3458    mc->kvm_type = spapr_kvm_type;
3459    mc->has_dynamic_sysbus = true;
3460    mc->pci_allow_0_address = true;
3461    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3462    hc->pre_plug = spapr_machine_device_pre_plug;
3463    hc->plug = spapr_machine_device_plug;
3464    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3465    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3466    hc->unplug_request = spapr_machine_device_unplug_request;
3467
3468    smc->dr_lmb_enabled = true;
3469    smc->tcg_default_cpu = "POWER8";
3470    mc->has_hotpluggable_cpus = true;
3471    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3472    fwc->get_dev_path = spapr_get_fw_dev_path;
3473    nc->nmi_monitor_handler = spapr_nmi;
3474    smc->phb_placement = spapr_phb_placement;
3475    vhc->hypercall = emulate_spapr_hypercall;
3476    vhc->hpt_mask = spapr_hpt_mask;
3477    vhc->map_hptes = spapr_map_hptes;
3478    vhc->unmap_hptes = spapr_unmap_hptes;
3479    vhc->store_hpte = spapr_store_hpte;
3480    vhc->get_patbe = spapr_get_patbe;
3481    xic->ics_get = spapr_ics_get;
3482    xic->ics_resend = spapr_ics_resend;
3483    xic->icp_get = spapr_icp_get;
3484    ispc->print_info = spapr_pic_print_info;
3485    /* Force NUMA node memory size to be a multiple of
3486     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3487     * in which LMBs are represented and hot-added
3488     */
3489    mc->numa_mem_align_shift = 28;
3490}
3491
3492static const TypeInfo spapr_machine_info = {
3493    .name          = TYPE_SPAPR_MACHINE,
3494    .parent        = TYPE_MACHINE,
3495    .abstract      = true,
3496    .instance_size = sizeof(sPAPRMachineState),
3497    .instance_init = spapr_machine_initfn,
3498    .instance_finalize = spapr_machine_finalizefn,
3499    .class_size    = sizeof(sPAPRMachineClass),
3500    .class_init    = spapr_machine_class_init,
3501    .interfaces = (InterfaceInfo[]) {
3502        { TYPE_FW_PATH_PROVIDER },
3503        { TYPE_NMI },
3504        { TYPE_HOTPLUG_HANDLER },
3505        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3506        { TYPE_XICS_FABRIC },
3507        { TYPE_INTERRUPT_STATS_PROVIDER },
3508        { }
3509    },
3510};
3511
3512#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3513    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3514                                                    void *data)      \
3515    {                                                                \
3516        MachineClass *mc = MACHINE_CLASS(oc);                        \
3517        spapr_machine_##suffix##_class_options(mc);                  \
3518        if (latest) {                                                \
3519            mc->alias = "pseries";                                   \
3520            mc->is_default = 1;                                      \
3521        }                                                            \
3522    }                                                                \
3523    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3524    {                                                                \
3525        MachineState *machine = MACHINE(obj);                        \
3526        spapr_machine_##suffix##_instance_options(machine);          \
3527    }                                                                \
3528    static const TypeInfo spapr_machine_##suffix##_info = {          \
3529        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3530        .parent = TYPE_SPAPR_MACHINE,                                \
3531        .class_init = spapr_machine_##suffix##_class_init,           \
3532        .instance_init = spapr_machine_##suffix##_instance_init,     \
3533    };                                                               \
3534    static void spapr_machine_register_##suffix(void)                \
3535    {                                                                \
3536        type_register(&spapr_machine_##suffix##_info);               \
3537    }                                                                \
3538    type_init(spapr_machine_register_##suffix)
3539
3540/*
3541 * pseries-2.10
3542 */
3543static void spapr_machine_2_10_instance_options(MachineState *machine)
3544{
3545}
3546
3547static void spapr_machine_2_10_class_options(MachineClass *mc)
3548{
3549    /* Defaults for the latest behaviour inherited from the base class */
3550}
3551
3552DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3553
3554/*
3555 * pseries-2.9
3556 */
3557#define SPAPR_COMPAT_2_9                                               \
3558    HW_COMPAT_2_9                                                      \
3559    {                                                                  \
3560        .driver = TYPE_POWERPC_CPU,                                    \
3561        .property = "pre-2.10-migration",                              \
3562        .value    = "on",                                              \
3563    },                                                                 \
3564
3565static void spapr_machine_2_9_instance_options(MachineState *machine)
3566{
3567    spapr_machine_2_10_instance_options(machine);
3568}
3569
3570static void spapr_machine_2_9_class_options(MachineClass *mc)
3571{
3572    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3573
3574    spapr_machine_2_10_class_options(mc);
3575    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3576    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3577    smc->pre_2_10_has_unused_icps = true;
3578    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3579}
3580
3581DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3582
3583/*
3584 * pseries-2.8
3585 */
3586#define SPAPR_COMPAT_2_8                                        \
3587    HW_COMPAT_2_8                                               \
3588    {                                                           \
3589        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3590        .property = "pcie-extended-configuration-space",        \
3591        .value    = "off",                                      \
3592    },
3593
3594static void spapr_machine_2_8_instance_options(MachineState *machine)
3595{
3596    spapr_machine_2_9_instance_options(machine);
3597}
3598
3599static void spapr_machine_2_8_class_options(MachineClass *mc)
3600{
3601    spapr_machine_2_9_class_options(mc);
3602    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3603    mc->numa_mem_align_shift = 23;
3604}
3605
3606DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3607
3608/*
3609 * pseries-2.7
3610 */
3611#define SPAPR_COMPAT_2_7                            \
3612    HW_COMPAT_2_7                                   \
3613    {                                               \
3614        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3615        .property = "mem_win_size",                 \
3616        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3617    },                                              \
3618    {                                               \
3619        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3620        .property = "mem64_win_size",               \
3621        .value    = "0",                            \
3622    },                                              \
3623    {                                               \
3624        .driver = TYPE_POWERPC_CPU,                 \
3625        .property = "pre-2.8-migration",            \
3626        .value    = "on",                           \
3627    },                                              \
3628    {                                               \
3629        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3630        .property = "pre-2.8-migration",            \
3631        .value    = "on",                           \
3632    },
3633
3634static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3635                              uint64_t *buid, hwaddr *pio,
3636                              hwaddr *mmio32, hwaddr *mmio64,
3637                              unsigned n_dma, uint32_t *liobns, Error **errp)
3638{
3639    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3640    const uint64_t base_buid = 0x800000020000000ULL;
3641    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3642    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3643    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3644    const uint32_t max_index = 255;
3645    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3646
3647    uint64_t ram_top = MACHINE(spapr)->ram_size;
3648    hwaddr phb0_base, phb_base;
3649    int i;
3650
3651    /* Do we have hotpluggable memory? */
3652    if (MACHINE(spapr)->maxram_size > ram_top) {
3653        /* Can't just use maxram_size, because there may be an
3654         * alignment gap between normal and hotpluggable memory
3655         * regions */
3656        ram_top = spapr->hotplug_memory.base +
3657            memory_region_size(&spapr->hotplug_memory.mr);
3658    }
3659
3660    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3661
3662    if (index > max_index) {
3663        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3664                   max_index);
3665        return;
3666    }
3667
3668    *buid = base_buid + index;
3669    for (i = 0; i < n_dma; ++i) {
3670        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3671    }
3672
3673    phb_base = phb0_base + index * phb_spacing;
3674    *pio = phb_base + pio_offset;
3675    *mmio32 = phb_base + mmio_offset;
3676    /*
3677     * We don't set the 64-bit MMIO window, relying on the PHB's
3678     * fallback behaviour of automatically splitting a large "32-bit"
3679     * window into contiguous 32-bit and 64-bit windows
3680     */
3681}
3682
3683static void spapr_machine_2_7_instance_options(MachineState *machine)
3684{
3685    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3686
3687    spapr_machine_2_8_instance_options(machine);
3688    spapr->use_hotplug_event_source = false;
3689}
3690
3691static void spapr_machine_2_7_class_options(MachineClass *mc)
3692{
3693    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3694
3695    spapr_machine_2_8_class_options(mc);
3696    smc->tcg_default_cpu = "POWER7";
3697    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3698    smc->phb_placement = phb_placement_2_7;
3699}
3700
3701DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3702
3703/*
3704 * pseries-2.6
3705 */
3706#define SPAPR_COMPAT_2_6 \
3707    HW_COMPAT_2_6 \
3708    { \
3709        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3710        .property = "ddw",\
3711        .value    = stringify(off),\
3712    },
3713
3714static void spapr_machine_2_6_instance_options(MachineState *machine)
3715{
3716    spapr_machine_2_7_instance_options(machine);
3717}
3718
3719static void spapr_machine_2_6_class_options(MachineClass *mc)
3720{
3721    spapr_machine_2_7_class_options(mc);
3722    mc->has_hotpluggable_cpus = false;
3723    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3724}
3725
3726DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3727
3728/*
3729 * pseries-2.5
3730 */
3731#define SPAPR_COMPAT_2_5 \
3732    HW_COMPAT_2_5 \
3733    { \
3734        .driver   = "spapr-vlan", \
3735        .property = "use-rx-buffer-pools", \
3736        .value    = "off", \
3737    },
3738
3739static void spapr_machine_2_5_instance_options(MachineState *machine)
3740{
3741    spapr_machine_2_6_instance_options(machine);
3742}
3743
3744static void spapr_machine_2_5_class_options(MachineClass *mc)
3745{
3746    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3747
3748    spapr_machine_2_6_class_options(mc);
3749    smc->use_ohci_by_default = true;
3750    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3751}
3752
3753DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3754
3755/*
3756 * pseries-2.4
3757 */
3758#define SPAPR_COMPAT_2_4 \
3759        HW_COMPAT_2_4
3760
3761static void spapr_machine_2_4_instance_options(MachineState *machine)
3762{
3763    spapr_machine_2_5_instance_options(machine);
3764}
3765
3766static void spapr_machine_2_4_class_options(MachineClass *mc)
3767{
3768    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3769
3770    spapr_machine_2_5_class_options(mc);
3771    smc->dr_lmb_enabled = false;
3772    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3773}
3774
3775DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3776
3777/*
3778 * pseries-2.3
3779 */
3780#define SPAPR_COMPAT_2_3 \
3781        HW_COMPAT_2_3 \
3782        {\
3783            .driver   = "spapr-pci-host-bridge",\
3784            .property = "dynamic-reconfiguration",\
3785            .value    = "off",\
3786        },
3787
3788static void spapr_machine_2_3_instance_options(MachineState *machine)
3789{
3790    spapr_machine_2_4_instance_options(machine);
3791}
3792
3793static void spapr_machine_2_3_class_options(MachineClass *mc)
3794{
3795    spapr_machine_2_4_class_options(mc);
3796    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3797}
3798DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3799
3800/*
3801 * pseries-2.2
3802 */
3803
3804#define SPAPR_COMPAT_2_2 \
3805        HW_COMPAT_2_2 \
3806        {\
3807            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3808            .property = "mem_win_size",\
3809            .value    = "0x20000000",\
3810        },
3811
3812static void spapr_machine_2_2_instance_options(MachineState *machine)
3813{
3814    spapr_machine_2_3_instance_options(machine);
3815    machine->suppress_vmdesc = true;
3816}
3817
3818static void spapr_machine_2_2_class_options(MachineClass *mc)
3819{
3820    spapr_machine_2_3_class_options(mc);
3821    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3822}
3823DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3824
3825/*
3826 * pseries-2.1
3827 */
3828#define SPAPR_COMPAT_2_1 \
3829        HW_COMPAT_2_1
3830
3831static void spapr_machine_2_1_instance_options(MachineState *machine)
3832{
3833    spapr_machine_2_2_instance_options(machine);
3834}
3835
3836static void spapr_machine_2_1_class_options(MachineClass *mc)
3837{
3838    spapr_machine_2_2_class_options(mc);
3839    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3840}
3841DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3842
3843static void spapr_machine_register_types(void)
3844{
3845    type_register_static(&spapr_machine_info);
3846}
3847
3848type_init(spapr_machine_register_types)
3849