qemu/hw/ppc/spapr_drc.c
<<
>>
Prefs
   1/*
   2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
   3 *
   4 * Copyright IBM Corp. 2014
   5 *
   6 * Authors:
   7 *  Michael Roth      <mdroth@linux.vnet.ibm.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qapi/error.h"
  15#include "cpu.h"
  16#include "qemu/cutils.h"
  17#include "hw/ppc/spapr_drc.h"
  18#include "qom/object.h"
  19#include "hw/qdev.h"
  20#include "qapi/visitor.h"
  21#include "qemu/error-report.h"
  22#include "hw/ppc/spapr.h" /* for RTAS return codes */
  23#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
  24#include "trace.h"
  25
  26#define DRC_CONTAINER_PATH "/dr-connector"
  27#define DRC_INDEX_TYPE_SHIFT 28
  28#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
  29
  30sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
  31{
  32    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  33
  34    return 1 << drck->typeshift;
  35}
  36
  37uint32_t spapr_drc_index(sPAPRDRConnector *drc)
  38{
  39    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
  40
  41    /* no set format for a drc index: it only needs to be globally
  42     * unique. this is how we encode the DRC type on bare-metal
  43     * however, so might as well do that here
  44     */
  45    return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
  46        | (drc->id & DRC_INDEX_ID_MASK);
  47}
  48
  49static uint32_t drc_isolate_physical(sPAPRDRConnector *drc)
  50{
  51    switch (drc->state) {
  52    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  53        return RTAS_OUT_SUCCESS; /* Nothing to do */
  54    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  55        break; /* see below */
  56    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  57        return RTAS_OUT_PARAM_ERROR; /* not allowed */
  58    default:
  59        g_assert_not_reached();
  60    }
  61
  62    drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
  63
  64    if (drc->unplug_requested) {
  65        uint32_t drc_index = spapr_drc_index(drc);
  66        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
  67        spapr_drc_detach(drc);
  68    }
  69
  70    return RTAS_OUT_SUCCESS;
  71}
  72
  73static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc)
  74{
  75    switch (drc->state) {
  76    case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
  77    case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
  78        return RTAS_OUT_SUCCESS; /* Nothing to do */
  79    case SPAPR_DRC_STATE_PHYSICAL_POWERON:
  80        break; /* see below */
  81    default:
  82        g_assert_not_reached();
  83    }
  84
  85    /* cannot unisolate a non-existent resource, and, or resources
  86     * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
  87     * 13.5.3.5)
  88     */
  89    if (!drc->dev) {
  90        return RTAS_OUT_NO_SUCH_INDICATOR;
  91    }
  92
  93    drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
  94    drc->ccs_offset = drc->fdt_start_offset;
  95    drc->ccs_depth = 0;
  96
  97    return RTAS_OUT_SUCCESS;
  98}
  99
 100static uint32_t drc_isolate_logical(sPAPRDRConnector *drc)
 101{
 102    switch (drc->state) {
 103    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 104    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 105        return RTAS_OUT_SUCCESS; /* Nothing to do */
 106    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 107        break; /* see below */
 108    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 109        return RTAS_OUT_PARAM_ERROR; /* not allowed */
 110    default:
 111        g_assert_not_reached();
 112    }
 113
 114    /*
 115     * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
 116     * belong to a DIMM device that is marked for removal.
 117     *
 118     * Currently the guest userspace tool drmgr that drives the memory
 119     * hotplug/unplug will just try to remove a set of 'removable' LMBs
 120     * in response to a hot unplug request that is based on drc-count.
 121     * If the LMB being removed doesn't belong to a DIMM device that is
 122     * actually being unplugged, fail the isolation request here.
 123     */
 124    if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
 125        && !drc->unplug_requested) {
 126        return RTAS_OUT_HW_ERROR;
 127    }
 128
 129    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 130
 131    /* if we're awaiting release, but still in an unconfigured state,
 132     * it's likely the guest is still in the process of configuring
 133     * the device and is transitioning the devices to an ISOLATED
 134     * state as a part of that process. so we only complete the
 135     * removal when this transition happens for a device in a
 136     * configured state, as suggested by the state diagram from PAPR+
 137     * 2.7, 13.4
 138     */
 139    if (drc->unplug_requested) {
 140        uint32_t drc_index = spapr_drc_index(drc);
 141        trace_spapr_drc_set_isolation_state_finalizing(drc_index);
 142        spapr_drc_detach(drc);
 143    }
 144    return RTAS_OUT_SUCCESS;
 145}
 146
 147static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc)
 148{
 149    switch (drc->state) {
 150    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 151    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 152        return RTAS_OUT_SUCCESS; /* Nothing to do */
 153    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 154        break; /* see below */
 155    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 156        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 157    default:
 158        g_assert_not_reached();
 159    }
 160
 161    /* Move to AVAILABLE state should have ensured device was present */
 162    g_assert(drc->dev);
 163
 164    drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
 165    drc->ccs_offset = drc->fdt_start_offset;
 166    drc->ccs_depth = 0;
 167
 168    return RTAS_OUT_SUCCESS;
 169}
 170
 171static uint32_t drc_set_usable(sPAPRDRConnector *drc)
 172{
 173    switch (drc->state) {
 174    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 175    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 176    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 177        return RTAS_OUT_SUCCESS; /* Nothing to do */
 178    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 179        break; /* see below */
 180    default:
 181        g_assert_not_reached();
 182    }
 183
 184    /* if there's no resource/device associated with the DRC, there's
 185     * no way for us to put it in an allocation state consistent with
 186     * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
 187     * result in an RTAS return code of -3 / "no such indicator"
 188     */
 189    if (!drc->dev) {
 190        return RTAS_OUT_NO_SUCH_INDICATOR;
 191    }
 192    if (drc->unplug_requested) {
 193        /* Don't allow the guest to move a device away from UNUSABLE
 194         * state when we want to unplug it */
 195        return RTAS_OUT_NO_SUCH_INDICATOR;
 196    }
 197
 198    drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
 199
 200    return RTAS_OUT_SUCCESS;
 201}
 202
 203static uint32_t drc_set_unusable(sPAPRDRConnector *drc)
 204{
 205    switch (drc->state) {
 206    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 207        return RTAS_OUT_SUCCESS; /* Nothing to do */
 208    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 209        break; /* see below */
 210    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 211    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 212        return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
 213    default:
 214        g_assert_not_reached();
 215    }
 216
 217    drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 218    if (drc->unplug_requested) {
 219        uint32_t drc_index = spapr_drc_index(drc);
 220        trace_spapr_drc_set_allocation_state_finalizing(drc_index);
 221        spapr_drc_detach(drc);
 222    }
 223
 224    return RTAS_OUT_SUCCESS;
 225}
 226
 227static const char *spapr_drc_name(sPAPRDRConnector *drc)
 228{
 229    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 230
 231    /* human-readable name for a DRC to encode into the DT
 232     * description. this is mainly only used within a guest in place
 233     * of the unique DRC index.
 234     *
 235     * in the case of VIO/PCI devices, it corresponds to a "location
 236     * code" that maps a logical device/function (DRC index) to a
 237     * physical (or virtual in the case of VIO) location in the system
 238     * by chaining together the "location label" for each
 239     * encapsulating component.
 240     *
 241     * since this is more to do with diagnosing physical hardware
 242     * issues than guest compatibility, we choose location codes/DRC
 243     * names that adhere to the documented format, but avoid encoding
 244     * the entire topology information into the label/code, instead
 245     * just using the location codes based on the labels for the
 246     * endpoints (VIO/PCI adaptor connectors), which is basically just
 247     * "C" followed by an integer ID.
 248     *
 249     * DRC names as documented by PAPR+ v2.7, 13.5.2.4
 250     * location codes as documented by PAPR+ v2.7, 12.3.1.5
 251     */
 252    return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
 253}
 254
 255/*
 256 * dr-entity-sense sensor value
 257 * returned via get-sensor-state RTAS calls
 258 * as expected by state diagram in PAPR+ 2.7, 13.4
 259 * based on the current allocation/indicator/power states
 260 * for the DR connector.
 261 */
 262static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
 263{
 264    /* this assumes all PCI devices are assigned to a 'live insertion'
 265     * power domain, where QEMU manages power state automatically as
 266     * opposed to the guest. present, non-PCI resources are unaffected
 267     * by power state.
 268     */
 269    return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
 270        : SPAPR_DR_ENTITY_SENSE_EMPTY;
 271}
 272
 273static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
 274{
 275    switch (drc->state) {
 276    case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
 277        return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
 278    case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
 279    case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
 280    case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
 281        g_assert(drc->dev);
 282        return SPAPR_DR_ENTITY_SENSE_PRESENT;
 283    default:
 284        g_assert_not_reached();
 285    }
 286}
 287
 288static void prop_get_index(Object *obj, Visitor *v, const char *name,
 289                           void *opaque, Error **errp)
 290{
 291    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
 292    uint32_t value = spapr_drc_index(drc);
 293    visit_type_uint32(v, name, &value, errp);
 294}
 295
 296static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
 297                         void *opaque, Error **errp)
 298{
 299    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
 300    QNull *null = NULL;
 301    Error *err = NULL;
 302    int fdt_offset_next, fdt_offset, fdt_depth;
 303    void *fdt;
 304
 305    if (!drc->fdt) {
 306        visit_type_null(v, NULL, &null, errp);
 307        QDECREF(null);
 308        return;
 309    }
 310
 311    fdt = drc->fdt;
 312    fdt_offset = drc->fdt_start_offset;
 313    fdt_depth = 0;
 314
 315    do {
 316        const char *name = NULL;
 317        const struct fdt_property *prop = NULL;
 318        int prop_len = 0, name_len = 0;
 319        uint32_t tag;
 320
 321        tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
 322        switch (tag) {
 323        case FDT_BEGIN_NODE:
 324            fdt_depth++;
 325            name = fdt_get_name(fdt, fdt_offset, &name_len);
 326            visit_start_struct(v, name, NULL, 0, &err);
 327            if (err) {
 328                error_propagate(errp, err);
 329                return;
 330            }
 331            break;
 332        case FDT_END_NODE:
 333            /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
 334            g_assert(fdt_depth > 0);
 335            visit_check_struct(v, &err);
 336            visit_end_struct(v, NULL);
 337            if (err) {
 338                error_propagate(errp, err);
 339                return;
 340            }
 341            fdt_depth--;
 342            break;
 343        case FDT_PROP: {
 344            int i;
 345            prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
 346            name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
 347            visit_start_list(v, name, NULL, 0, &err);
 348            if (err) {
 349                error_propagate(errp, err);
 350                return;
 351            }
 352            for (i = 0; i < prop_len; i++) {
 353                visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
 354                if (err) {
 355                    error_propagate(errp, err);
 356                    return;
 357                }
 358            }
 359            visit_check_list(v, &err);
 360            visit_end_list(v, NULL);
 361            if (err) {
 362                error_propagate(errp, err);
 363                return;
 364            }
 365            break;
 366        }
 367        default:
 368            error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
 369        }
 370        fdt_offset = fdt_offset_next;
 371    } while (fdt_depth != 0);
 372}
 373
 374void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
 375                      int fdt_start_offset, Error **errp)
 376{
 377    trace_spapr_drc_attach(spapr_drc_index(drc));
 378
 379    if (drc->dev) {
 380        error_setg(errp, "an attached device is still awaiting release");
 381        return;
 382    }
 383    g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
 384             || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
 385    g_assert(fdt);
 386
 387    drc->dev = d;
 388    drc->fdt = fdt;
 389    drc->fdt_start_offset = fdt_start_offset;
 390
 391    object_property_add_link(OBJECT(drc), "device",
 392                             object_get_typename(OBJECT(drc->dev)),
 393                             (Object **)(&drc->dev),
 394                             NULL, 0, NULL);
 395}
 396
 397static void spapr_drc_release(sPAPRDRConnector *drc)
 398{
 399    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 400
 401    drck->release(drc->dev);
 402
 403    drc->unplug_requested = false;
 404    g_free(drc->fdt);
 405    drc->fdt = NULL;
 406    drc->fdt_start_offset = 0;
 407    object_property_del(OBJECT(drc), "device", &error_abort);
 408    drc->dev = NULL;
 409}
 410
 411void spapr_drc_detach(sPAPRDRConnector *drc)
 412{
 413    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 414
 415    trace_spapr_drc_detach(spapr_drc_index(drc));
 416
 417    g_assert(drc->dev);
 418
 419    drc->unplug_requested = true;
 420
 421    if (drc->state != drck->empty_state) {
 422        trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
 423        return;
 424    }
 425
 426    spapr_drc_release(drc);
 427}
 428
 429void spapr_drc_reset(sPAPRDRConnector *drc)
 430{
 431    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 432
 433    trace_spapr_drc_reset(spapr_drc_index(drc));
 434
 435    /* immediately upon reset we can safely assume DRCs whose devices
 436     * are pending removal can be safely removed.
 437     */
 438    if (drc->unplug_requested) {
 439        spapr_drc_release(drc);
 440    }
 441
 442    if (drc->dev) {
 443        /* A device present at reset is ready to go, same as coldplugged */
 444        drc->state = drck->ready_state;
 445        /*
 446         * Ensure that we are able to send the FDT fragment again
 447         * via configure-connector call if the guest requests.
 448         */
 449        drc->ccs_offset = drc->fdt_start_offset;
 450        drc->ccs_depth = 0;
 451    } else {
 452        drc->state = drck->empty_state;
 453        drc->ccs_offset = -1;
 454        drc->ccs_depth = -1;
 455    }
 456}
 457
 458static void drc_reset(void *opaque)
 459{
 460    spapr_drc_reset(SPAPR_DR_CONNECTOR(opaque));
 461}
 462
 463static bool spapr_drc_needed(void *opaque)
 464{
 465    sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
 466    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 467    sPAPRDREntitySense value = drck->dr_entity_sense(drc);
 468
 469    /* If no dev is plugged in there is no need to migrate the DRC state */
 470    if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
 471        return false;
 472    }
 473
 474    /*
 475     * We need to migrate the state if it's not equal to the expected
 476     * long-term state, which is the same as the coldplugged initial
 477     * state */
 478    return (drc->state != drck->ready_state);
 479}
 480
 481static const VMStateDescription vmstate_spapr_drc = {
 482    .name = "spapr_drc",
 483    .version_id = 1,
 484    .minimum_version_id = 1,
 485    .needed = spapr_drc_needed,
 486    .fields  = (VMStateField []) {
 487        VMSTATE_UINT32(state, sPAPRDRConnector),
 488        VMSTATE_END_OF_LIST()
 489    }
 490};
 491
 492static void realize(DeviceState *d, Error **errp)
 493{
 494    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
 495    Object *root_container;
 496    char link_name[256];
 497    gchar *child_name;
 498    Error *err = NULL;
 499
 500    trace_spapr_drc_realize(spapr_drc_index(drc));
 501    /* NOTE: we do this as part of realize/unrealize due to the fact
 502     * that the guest will communicate with the DRC via RTAS calls
 503     * referencing the global DRC index. By unlinking the DRC
 504     * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
 505     * inaccessible by the guest, since lookups rely on this path
 506     * existing in the composition tree
 507     */
 508    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 509    snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
 510    child_name = object_get_canonical_path_component(OBJECT(drc));
 511    trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
 512    object_property_add_alias(root_container, link_name,
 513                              drc->owner, child_name, &err);
 514    g_free(child_name);
 515    if (err) {
 516        error_propagate(errp, err);
 517        return;
 518    }
 519    vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
 520                     drc);
 521    qemu_register_reset(drc_reset, drc);
 522    trace_spapr_drc_realize_complete(spapr_drc_index(drc));
 523}
 524
 525static void unrealize(DeviceState *d, Error **errp)
 526{
 527    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
 528    Object *root_container;
 529    char name[256];
 530
 531    trace_spapr_drc_unrealize(spapr_drc_index(drc));
 532    qemu_unregister_reset(drc_reset, drc);
 533    vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
 534    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 535    snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
 536    object_property_del(root_container, name, errp);
 537}
 538
 539sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
 540                                         uint32_t id)
 541{
 542    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
 543    char *prop_name;
 544
 545    drc->id = id;
 546    drc->owner = owner;
 547    prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
 548                                spapr_drc_index(drc));
 549    object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
 550    object_property_set_bool(OBJECT(drc), true, "realized", NULL);
 551    g_free(prop_name);
 552
 553    return drc;
 554}
 555
 556static void spapr_dr_connector_instance_init(Object *obj)
 557{
 558    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
 559    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 560
 561    object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
 562    object_property_add(obj, "index", "uint32", prop_get_index,
 563                        NULL, NULL, NULL, NULL);
 564    object_property_add(obj, "fdt", "struct", prop_get_fdt,
 565                        NULL, NULL, NULL, NULL);
 566    drc->state = drck->empty_state;
 567}
 568
 569static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
 570{
 571    DeviceClass *dk = DEVICE_CLASS(k);
 572
 573    dk->realize = realize;
 574    dk->unrealize = unrealize;
 575    /*
 576     * Reason: it crashes FIXME find and document the real reason
 577     */
 578    dk->user_creatable = false;
 579}
 580
 581static bool drc_physical_needed(void *opaque)
 582{
 583    sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque;
 584    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp);
 585
 586    if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
 587        || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
 588        return false;
 589    }
 590    return true;
 591}
 592
 593static const VMStateDescription vmstate_spapr_drc_physical = {
 594    .name = "spapr_drc/physical",
 595    .version_id = 1,
 596    .minimum_version_id = 1,
 597    .needed = drc_physical_needed,
 598    .fields  = (VMStateField []) {
 599        VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical),
 600        VMSTATE_END_OF_LIST()
 601    }
 602};
 603
 604static void drc_physical_reset(void *opaque)
 605{
 606    sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque);
 607    sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
 608
 609    if (drc->dev) {
 610        drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
 611    } else {
 612        drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
 613    }
 614}
 615
 616static void realize_physical(DeviceState *d, Error **errp)
 617{
 618    sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
 619    Error *local_err = NULL;
 620
 621    realize(d, &local_err);
 622    if (local_err) {
 623        error_propagate(errp, local_err);
 624        return;
 625    }
 626
 627    vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
 628                     &vmstate_spapr_drc_physical, drcp);
 629    qemu_register_reset(drc_physical_reset, drcp);
 630}
 631
 632static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
 633{
 634    DeviceClass *dk = DEVICE_CLASS(k);
 635    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 636
 637    dk->realize = realize_physical;
 638    drck->dr_entity_sense = physical_entity_sense;
 639    drck->isolate = drc_isolate_physical;
 640    drck->unisolate = drc_unisolate_physical;
 641    drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
 642    drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
 643}
 644
 645static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
 646{
 647    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 648
 649    drck->dr_entity_sense = logical_entity_sense;
 650    drck->isolate = drc_isolate_logical;
 651    drck->unisolate = drc_unisolate_logical;
 652    drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
 653    drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
 654}
 655
 656static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
 657{
 658    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 659
 660    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
 661    drck->typename = "CPU";
 662    drck->drc_name_prefix = "CPU ";
 663    drck->release = spapr_core_release;
 664}
 665
 666static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
 667{
 668    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 669
 670    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
 671    drck->typename = "28";
 672    drck->drc_name_prefix = "C";
 673    drck->release = spapr_phb_remove_pci_device_cb;
 674}
 675
 676static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
 677{
 678    sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
 679
 680    drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
 681    drck->typename = "MEM";
 682    drck->drc_name_prefix = "LMB ";
 683    drck->release = spapr_lmb_release;
 684}
 685
 686static const TypeInfo spapr_dr_connector_info = {
 687    .name          = TYPE_SPAPR_DR_CONNECTOR,
 688    .parent        = TYPE_DEVICE,
 689    .instance_size = sizeof(sPAPRDRConnector),
 690    .instance_init = spapr_dr_connector_instance_init,
 691    .class_size    = sizeof(sPAPRDRConnectorClass),
 692    .class_init    = spapr_dr_connector_class_init,
 693    .abstract      = true,
 694};
 695
 696static const TypeInfo spapr_drc_physical_info = {
 697    .name          = TYPE_SPAPR_DRC_PHYSICAL,
 698    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 699    .instance_size = sizeof(sPAPRDRCPhysical),
 700    .class_init    = spapr_drc_physical_class_init,
 701    .abstract      = true,
 702};
 703
 704static const TypeInfo spapr_drc_logical_info = {
 705    .name          = TYPE_SPAPR_DRC_LOGICAL,
 706    .parent        = TYPE_SPAPR_DR_CONNECTOR,
 707    .class_init    = spapr_drc_logical_class_init,
 708    .abstract      = true,
 709};
 710
 711static const TypeInfo spapr_drc_cpu_info = {
 712    .name          = TYPE_SPAPR_DRC_CPU,
 713    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 714    .class_init    = spapr_drc_cpu_class_init,
 715};
 716
 717static const TypeInfo spapr_drc_pci_info = {
 718    .name          = TYPE_SPAPR_DRC_PCI,
 719    .parent        = TYPE_SPAPR_DRC_PHYSICAL,
 720    .class_init    = spapr_drc_pci_class_init,
 721};
 722
 723static const TypeInfo spapr_drc_lmb_info = {
 724    .name          = TYPE_SPAPR_DRC_LMB,
 725    .parent        = TYPE_SPAPR_DRC_LOGICAL,
 726    .class_init    = spapr_drc_lmb_class_init,
 727};
 728
 729/* helper functions for external users */
 730
 731sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
 732{
 733    Object *obj;
 734    char name[256];
 735
 736    snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
 737    obj = object_resolve_path(name, NULL);
 738
 739    return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
 740}
 741
 742sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
 743{
 744    sPAPRDRConnectorClass *drck
 745        = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
 746
 747    return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
 748                              | (id & DRC_INDEX_ID_MASK));
 749}
 750
 751/**
 752 * spapr_drc_populate_dt
 753 *
 754 * @fdt: libfdt device tree
 755 * @path: path in the DT to generate properties
 756 * @owner: parent Object/DeviceState for which to generate DRC
 757 *         descriptions for
 758 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
 759 *   to the types of DRCs to generate entries for
 760 *
 761 * generate OF properties to describe DRC topology/indices to guests
 762 *
 763 * as documented in PAPR+ v2.1, 13.5.2
 764 */
 765int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
 766                          uint32_t drc_type_mask)
 767{
 768    Object *root_container;
 769    ObjectProperty *prop;
 770    ObjectPropertyIterator iter;
 771    uint32_t drc_count = 0;
 772    GArray *drc_indexes, *drc_power_domains;
 773    GString *drc_names, *drc_types;
 774    int ret;
 775
 776    /* the first entry of each properties is a 32-bit integer encoding
 777     * the number of elements in the array. we won't know this until
 778     * we complete the iteration through all the matching DRCs, but
 779     * reserve the space now and set the offsets accordingly so we
 780     * can fill them in later.
 781     */
 782    drc_indexes = g_array_new(false, true, sizeof(uint32_t));
 783    drc_indexes = g_array_set_size(drc_indexes, 1);
 784    drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
 785    drc_power_domains = g_array_set_size(drc_power_domains, 1);
 786    drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
 787    drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
 788
 789    /* aliases for all DRConnector objects will be rooted in QOM
 790     * composition tree at DRC_CONTAINER_PATH
 791     */
 792    root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
 793
 794    object_property_iter_init(&iter, root_container);
 795    while ((prop = object_property_iter_next(&iter))) {
 796        Object *obj;
 797        sPAPRDRConnector *drc;
 798        sPAPRDRConnectorClass *drck;
 799        uint32_t drc_index, drc_power_domain;
 800
 801        if (!strstart(prop->type, "link<", NULL)) {
 802            continue;
 803        }
 804
 805        obj = object_property_get_link(root_container, prop->name, NULL);
 806        drc = SPAPR_DR_CONNECTOR(obj);
 807        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 808
 809        if (owner && (drc->owner != owner)) {
 810            continue;
 811        }
 812
 813        if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
 814            continue;
 815        }
 816
 817        drc_count++;
 818
 819        /* ibm,drc-indexes */
 820        drc_index = cpu_to_be32(spapr_drc_index(drc));
 821        g_array_append_val(drc_indexes, drc_index);
 822
 823        /* ibm,drc-power-domains */
 824        drc_power_domain = cpu_to_be32(-1);
 825        g_array_append_val(drc_power_domains, drc_power_domain);
 826
 827        /* ibm,drc-names */
 828        drc_names = g_string_append(drc_names, spapr_drc_name(drc));
 829        drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
 830
 831        /* ibm,drc-types */
 832        drc_types = g_string_append(drc_types, drck->typename);
 833        drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
 834    }
 835
 836    /* now write the drc count into the space we reserved at the
 837     * beginning of the arrays previously
 838     */
 839    *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
 840    *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
 841    *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
 842    *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
 843
 844    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
 845                      drc_indexes->data,
 846                      drc_indexes->len * sizeof(uint32_t));
 847    if (ret) {
 848        error_report("Couldn't create ibm,drc-indexes property");
 849        goto out;
 850    }
 851
 852    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
 853                      drc_power_domains->data,
 854                      drc_power_domains->len * sizeof(uint32_t));
 855    if (ret) {
 856        error_report("Couldn't finalize ibm,drc-power-domains property");
 857        goto out;
 858    }
 859
 860    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
 861                      drc_names->str, drc_names->len);
 862    if (ret) {
 863        error_report("Couldn't finalize ibm,drc-names property");
 864        goto out;
 865    }
 866
 867    ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
 868                      drc_types->str, drc_types->len);
 869    if (ret) {
 870        error_report("Couldn't finalize ibm,drc-types property");
 871        goto out;
 872    }
 873
 874out:
 875    g_array_free(drc_indexes, true);
 876    g_array_free(drc_power_domains, true);
 877    g_string_free(drc_names, true);
 878    g_string_free(drc_types, true);
 879
 880    return ret;
 881}
 882
 883/*
 884 * RTAS calls
 885 */
 886
 887static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
 888{
 889    sPAPRDRConnector *drc = spapr_drc_by_index(idx);
 890    sPAPRDRConnectorClass *drck;
 891
 892    if (!drc) {
 893        return RTAS_OUT_NO_SUCH_INDICATOR;
 894    }
 895
 896    trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
 897
 898    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 899
 900    switch (state) {
 901    case SPAPR_DR_ISOLATION_STATE_ISOLATED:
 902        return drck->isolate(drc);
 903
 904    case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
 905        return drck->unisolate(drc);
 906
 907    default:
 908        return RTAS_OUT_PARAM_ERROR;
 909    }
 910}
 911
 912static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
 913{
 914    sPAPRDRConnector *drc = spapr_drc_by_index(idx);
 915
 916    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
 917        return RTAS_OUT_NO_SUCH_INDICATOR;
 918    }
 919
 920    trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
 921
 922    switch (state) {
 923    case SPAPR_DR_ALLOCATION_STATE_USABLE:
 924        return drc_set_usable(drc);
 925
 926    case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
 927        return drc_set_unusable(drc);
 928
 929    default:
 930        return RTAS_OUT_PARAM_ERROR;
 931    }
 932}
 933
 934static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
 935{
 936    sPAPRDRConnector *drc = spapr_drc_by_index(idx);
 937
 938    if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
 939        return RTAS_OUT_NO_SUCH_INDICATOR;
 940    }
 941    if ((state != SPAPR_DR_INDICATOR_INACTIVE)
 942        && (state != SPAPR_DR_INDICATOR_ACTIVE)
 943        && (state != SPAPR_DR_INDICATOR_IDENTIFY)
 944        && (state != SPAPR_DR_INDICATOR_ACTION)) {
 945        return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
 946    }
 947
 948    trace_spapr_drc_set_dr_indicator(idx, state);
 949    SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
 950    return RTAS_OUT_SUCCESS;
 951}
 952
 953static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 954                               uint32_t token,
 955                               uint32_t nargs, target_ulong args,
 956                               uint32_t nret, target_ulong rets)
 957{
 958    uint32_t type, idx, state;
 959    uint32_t ret = RTAS_OUT_SUCCESS;
 960
 961    if (nargs != 3 || nret != 1) {
 962        ret = RTAS_OUT_PARAM_ERROR;
 963        goto out;
 964    }
 965
 966    type = rtas_ld(args, 0);
 967    idx = rtas_ld(args, 1);
 968    state = rtas_ld(args, 2);
 969
 970    switch (type) {
 971    case RTAS_SENSOR_TYPE_ISOLATION_STATE:
 972        ret = rtas_set_isolation_state(idx, state);
 973        break;
 974    case RTAS_SENSOR_TYPE_DR:
 975        ret = rtas_set_dr_indicator(idx, state);
 976        break;
 977    case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
 978        ret = rtas_set_allocation_state(idx, state);
 979        break;
 980    default:
 981        ret = RTAS_OUT_NOT_SUPPORTED;
 982    }
 983
 984out:
 985    rtas_st(rets, 0, ret);
 986}
 987
 988static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 989                                  uint32_t token, uint32_t nargs,
 990                                  target_ulong args, uint32_t nret,
 991                                  target_ulong rets)
 992{
 993    uint32_t sensor_type;
 994    uint32_t sensor_index;
 995    uint32_t sensor_state = 0;
 996    sPAPRDRConnector *drc;
 997    sPAPRDRConnectorClass *drck;
 998    uint32_t ret = RTAS_OUT_SUCCESS;
 999
1000    if (nargs != 2 || nret != 2) {
1001        ret = RTAS_OUT_PARAM_ERROR;
1002        goto out;
1003    }
1004
1005    sensor_type = rtas_ld(args, 0);
1006    sensor_index = rtas_ld(args, 1);
1007
1008    if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1009        /* currently only DR-related sensors are implemented */
1010        trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1011                                                        sensor_type);
1012        ret = RTAS_OUT_NOT_SUPPORTED;
1013        goto out;
1014    }
1015
1016    drc = spapr_drc_by_index(sensor_index);
1017    if (!drc) {
1018        trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1019        ret = RTAS_OUT_PARAM_ERROR;
1020        goto out;
1021    }
1022    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1023    sensor_state = drck->dr_entity_sense(drc);
1024
1025out:
1026    rtas_st(rets, 0, ret);
1027    rtas_st(rets, 1, sensor_state);
1028}
1029
1030/* configure-connector work area offsets, int32_t units for field
1031 * indexes, bytes for field offset/len values.
1032 *
1033 * as documented by PAPR+ v2.7, 13.5.3.5
1034 */
1035#define CC_IDX_NODE_NAME_OFFSET 2
1036#define CC_IDX_PROP_NAME_OFFSET 2
1037#define CC_IDX_PROP_LEN 3
1038#define CC_IDX_PROP_DATA_OFFSET 4
1039#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1040#define CC_WA_LEN 4096
1041
1042static void configure_connector_st(target_ulong addr, target_ulong offset,
1043                                   const void *buf, size_t len)
1044{
1045    cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1046                              buf, MIN(len, CC_WA_LEN - offset));
1047}
1048
1049static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1050                                         sPAPRMachineState *spapr,
1051                                         uint32_t token, uint32_t nargs,
1052                                         target_ulong args, uint32_t nret,
1053                                         target_ulong rets)
1054{
1055    uint64_t wa_addr;
1056    uint64_t wa_offset;
1057    uint32_t drc_index;
1058    sPAPRDRConnector *drc;
1059    sPAPRDRConnectorClass *drck;
1060    sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1061    int rc;
1062
1063    if (nargs != 2 || nret != 1) {
1064        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1065        return;
1066    }
1067
1068    wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1069
1070    drc_index = rtas_ld(wa_addr, 0);
1071    drc = spapr_drc_by_index(drc_index);
1072    if (!drc) {
1073        trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1074        rc = RTAS_OUT_PARAM_ERROR;
1075        goto out;
1076    }
1077
1078    if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1079        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1080        && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1081        && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1082        /*
1083         * Need to unisolate the device before configuring
1084         * or it should already be in configured state to
1085         * allow configure-connector be called repeatedly.
1086         */
1087        rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1088        goto out;
1089    }
1090
1091    g_assert(drc->fdt);
1092
1093    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1094
1095    do {
1096        uint32_t tag;
1097        const char *name;
1098        const struct fdt_property *prop;
1099        int fdt_offset_next, prop_len;
1100
1101        tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1102
1103        switch (tag) {
1104        case FDT_BEGIN_NODE:
1105            drc->ccs_depth++;
1106            name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1107
1108            /* provide the name of the next OF node */
1109            wa_offset = CC_VAL_DATA_OFFSET;
1110            rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1111            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1112            resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1113            break;
1114        case FDT_END_NODE:
1115            drc->ccs_depth--;
1116            if (drc->ccs_depth == 0) {
1117                uint32_t drc_index = spapr_drc_index(drc);
1118
1119                /* done sending the device tree, move to configured state */
1120                trace_spapr_drc_set_configured(drc_index);
1121                drc->state = drck->ready_state;
1122                /*
1123                 * Ensure that we are able to send the FDT fragment
1124                 * again via configure-connector call if the guest requests.
1125                 */
1126                drc->ccs_offset = drc->fdt_start_offset;
1127                drc->ccs_depth = 0;
1128                fdt_offset_next = drc->fdt_start_offset;
1129                resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1130            } else {
1131                resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1132            }
1133            break;
1134        case FDT_PROP:
1135            prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1136                                              &prop_len);
1137            name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1138
1139            /* provide the name of the next OF property */
1140            wa_offset = CC_VAL_DATA_OFFSET;
1141            rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1142            configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1143
1144            /* provide the length and value of the OF property. data gets
1145             * placed immediately after NULL terminator of the OF property's
1146             * name string
1147             */
1148            wa_offset += strlen(name) + 1,
1149            rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1150            rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1151            configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1152            resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1153            break;
1154        case FDT_END:
1155            resp = SPAPR_DR_CC_RESPONSE_ERROR;
1156        default:
1157            /* keep seeking for an actionable tag */
1158            break;
1159        }
1160        if (drc->ccs_offset >= 0) {
1161            drc->ccs_offset = fdt_offset_next;
1162        }
1163    } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1164
1165    rc = resp;
1166out:
1167    rtas_st(rets, 0, rc);
1168}
1169
1170static void spapr_drc_register_types(void)
1171{
1172    type_register_static(&spapr_dr_connector_info);
1173    type_register_static(&spapr_drc_physical_info);
1174    type_register_static(&spapr_drc_logical_info);
1175    type_register_static(&spapr_drc_cpu_info);
1176    type_register_static(&spapr_drc_pci_info);
1177    type_register_static(&spapr_drc_lmb_info);
1178
1179    spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1180                        rtas_set_indicator);
1181    spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1182                        rtas_get_sensor_state);
1183    spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1184                        rtas_ibm_configure_connector);
1185}
1186type_init(spapr_drc_register_types)
1187