qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qapi/error.h"
   3#include "sysemu/hw_accel.h"
   4#include "sysemu/sysemu.h"
   5#include "qemu/log.h"
   6#include "qemu/error-report.h"
   7#include "cpu.h"
   8#include "exec/exec-all.h"
   9#include "helper_regs.h"
  10#include "hw/ppc/spapr.h"
  11#include "mmu-hash64.h"
  12#include "cpu-models.h"
  13#include "trace.h"
  14#include "kvm_ppc.h"
  15#include "hw/ppc/spapr_ovec.h"
  16#include "qemu/error-report.h"
  17#include "mmu-book3s-v3.h"
  18
  19struct SPRSyncState {
  20    int spr;
  21    target_ulong value;
  22    target_ulong mask;
  23};
  24
  25static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
  26{
  27    struct SPRSyncState *s = arg.host_ptr;
  28    PowerPCCPU *cpu = POWERPC_CPU(cs);
  29    CPUPPCState *env = &cpu->env;
  30
  31    cpu_synchronize_state(cs);
  32    env->spr[s->spr] &= ~s->mask;
  33    env->spr[s->spr] |= s->value;
  34}
  35
  36static void set_spr(CPUState *cs, int spr, target_ulong value,
  37                    target_ulong mask)
  38{
  39    struct SPRSyncState s = {
  40        .spr = spr,
  41        .value = value,
  42        .mask = mask
  43    };
  44    run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
  45}
  46
  47static bool has_spr(PowerPCCPU *cpu, int spr)
  48{
  49    /* We can test whether the SPR is defined by checking for a valid name */
  50    return cpu->env.spr_cb[spr].name != NULL;
  51}
  52
  53static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
  54{
  55    /*
  56     * hash value/pteg group index is normalized by HPT mask
  57     */
  58    if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
  59        return false;
  60    }
  61    return true;
  62}
  63
  64static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
  65{
  66    MachineState *machine = MACHINE(spapr);
  67    MemoryHotplugState *hpms = &spapr->hotplug_memory;
  68
  69    if (addr < machine->ram_size) {
  70        return true;
  71    }
  72    if ((addr >= hpms->base)
  73        && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
  74        return true;
  75    }
  76
  77    return false;
  78}
  79
  80static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
  81                            target_ulong opcode, target_ulong *args)
  82{
  83    target_ulong flags = args[0];
  84    target_ulong ptex = args[1];
  85    target_ulong pteh = args[2];
  86    target_ulong ptel = args[3];
  87    unsigned apshift;
  88    target_ulong raddr;
  89    target_ulong slot;
  90    const ppc_hash_pte64_t *hptes;
  91
  92    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
  93    if (!apshift) {
  94        /* Bad page size encoding */
  95        return H_PARAMETER;
  96    }
  97
  98    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
  99
 100    if (is_ram_address(spapr, raddr)) {
 101        /* Regular RAM - should have WIMG=0010 */
 102        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
 103            return H_PARAMETER;
 104        }
 105    } else {
 106        target_ulong wimg_flags;
 107        /* Looks like an IO address */
 108        /* FIXME: What WIMG combinations could be sensible for IO?
 109         * For now we allow WIMG=010x, but are there others? */
 110        /* FIXME: Should we check against registered IO addresses? */
 111        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
 112
 113        if (wimg_flags != HPTE64_R_I &&
 114            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
 115            return H_PARAMETER;
 116        }
 117    }
 118
 119    pteh &= ~0x60ULL;
 120
 121    if (!valid_ptex(cpu, ptex)) {
 122        return H_PARAMETER;
 123    }
 124
 125    slot = ptex & 7ULL;
 126    ptex = ptex & ~7ULL;
 127
 128    if (likely((flags & H_EXACT) == 0)) {
 129        hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 130        for (slot = 0; slot < 8; slot++) {
 131            if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
 132                break;
 133            }
 134        }
 135        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 136        if (slot == 8) {
 137            return H_PTEG_FULL;
 138        }
 139    } else {
 140        hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
 141        if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
 142            ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
 143            return H_PTEG_FULL;
 144        }
 145        ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 146    }
 147
 148    ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
 149
 150    args[0] = ptex + slot;
 151    return H_SUCCESS;
 152}
 153
 154typedef enum {
 155    REMOVE_SUCCESS = 0,
 156    REMOVE_NOT_FOUND = 1,
 157    REMOVE_PARM = 2,
 158    REMOVE_HW = 3,
 159} RemoveResult;
 160
 161static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
 162                                target_ulong avpn,
 163                                target_ulong flags,
 164                                target_ulong *vp, target_ulong *rp)
 165{
 166    const ppc_hash_pte64_t *hptes;
 167    target_ulong v, r;
 168
 169    if (!valid_ptex(cpu, ptex)) {
 170        return REMOVE_PARM;
 171    }
 172
 173    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 174    v = ppc_hash64_hpte0(cpu, hptes, 0);
 175    r = ppc_hash64_hpte1(cpu, hptes, 0);
 176    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 177
 178    if ((v & HPTE64_V_VALID) == 0 ||
 179        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 180        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 181        return REMOVE_NOT_FOUND;
 182    }
 183    *vp = v;
 184    *rp = r;
 185    ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 186    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 187    return REMOVE_SUCCESS;
 188}
 189
 190static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 191                             target_ulong opcode, target_ulong *args)
 192{
 193    CPUPPCState *env = &cpu->env;
 194    target_ulong flags = args[0];
 195    target_ulong ptex = args[1];
 196    target_ulong avpn = args[2];
 197    RemoveResult ret;
 198
 199    ret = remove_hpte(cpu, ptex, avpn, flags,
 200                      &args[0], &args[1]);
 201
 202    switch (ret) {
 203    case REMOVE_SUCCESS:
 204        check_tlb_flush(env, true);
 205        return H_SUCCESS;
 206
 207    case REMOVE_NOT_FOUND:
 208        return H_NOT_FOUND;
 209
 210    case REMOVE_PARM:
 211        return H_PARAMETER;
 212
 213    case REMOVE_HW:
 214        return H_HARDWARE;
 215    }
 216
 217    g_assert_not_reached();
 218}
 219
 220#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 221#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 222#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 223#define   H_BULK_REMOVE_END            0xc000000000000000ULL
 224#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 225#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 226#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 227#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 228#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 229#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 230#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 231#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 232#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 233#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 234#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 235
 236#define H_BULK_REMOVE_MAX_BATCH        4
 237
 238static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 239                                  target_ulong opcode, target_ulong *args)
 240{
 241    CPUPPCState *env = &cpu->env;
 242    int i;
 243    target_ulong rc = H_SUCCESS;
 244
 245    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 246        target_ulong *tsh = &args[i*2];
 247        target_ulong tsl = args[i*2 + 1];
 248        target_ulong v, r, ret;
 249
 250        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 251            break;
 252        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 253            return H_PARAMETER;
 254        }
 255
 256        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 257        *tsh |= H_BULK_REMOVE_RESPONSE;
 258
 259        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 260            *tsh |= H_BULK_REMOVE_PARM;
 261            return H_PARAMETER;
 262        }
 263
 264        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 265                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 266                          &v, &r);
 267
 268        *tsh |= ret << 60;
 269
 270        switch (ret) {
 271        case REMOVE_SUCCESS:
 272            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 273            break;
 274
 275        case REMOVE_PARM:
 276            rc = H_PARAMETER;
 277            goto exit;
 278
 279        case REMOVE_HW:
 280            rc = H_HARDWARE;
 281            goto exit;
 282        }
 283    }
 284 exit:
 285    check_tlb_flush(env, true);
 286
 287    return rc;
 288}
 289
 290static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 291                              target_ulong opcode, target_ulong *args)
 292{
 293    CPUPPCState *env = &cpu->env;
 294    target_ulong flags = args[0];
 295    target_ulong ptex = args[1];
 296    target_ulong avpn = args[2];
 297    const ppc_hash_pte64_t *hptes;
 298    target_ulong v, r;
 299
 300    if (!valid_ptex(cpu, ptex)) {
 301        return H_PARAMETER;
 302    }
 303
 304    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 305    v = ppc_hash64_hpte0(cpu, hptes, 0);
 306    r = ppc_hash64_hpte1(cpu, hptes, 0);
 307    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 308
 309    if ((v & HPTE64_V_VALID) == 0 ||
 310        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 311        return H_NOT_FOUND;
 312    }
 313
 314    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 315           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 316    r |= (flags << 55) & HPTE64_R_PP0;
 317    r |= (flags << 48) & HPTE64_R_KEY_HI;
 318    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 319    ppc_hash64_store_hpte(cpu, ptex,
 320                          (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 321    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 322    /* Flush the tlb */
 323    check_tlb_flush(env, true);
 324    /* Don't need a memory barrier, due to qemu's global lock */
 325    ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
 326    return H_SUCCESS;
 327}
 328
 329static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 330                           target_ulong opcode, target_ulong *args)
 331{
 332    target_ulong flags = args[0];
 333    target_ulong ptex = args[1];
 334    uint8_t *hpte;
 335    int i, ridx, n_entries = 1;
 336
 337    if (!valid_ptex(cpu, ptex)) {
 338        return H_PARAMETER;
 339    }
 340
 341    if (flags & H_READ_4) {
 342        /* Clear the two low order bits */
 343        ptex &= ~(3ULL);
 344        n_entries = 4;
 345    }
 346
 347    hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
 348
 349    for (i = 0, ridx = 0; i < n_entries; i++) {
 350        args[ridx++] = ldq_p(hpte);
 351        args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
 352        hpte += HASH_PTE_SIZE_64;
 353    }
 354
 355    return H_SUCCESS;
 356}
 357
 358struct sPAPRPendingHPT {
 359    /* These fields are read-only after initialization */
 360    int shift;
 361    QemuThread thread;
 362
 363    /* These fields are protected by the BQL */
 364    bool complete;
 365
 366    /* These fields are private to the preparation thread if
 367     * !complete, otherwise protected by the BQL */
 368    int ret;
 369    void *hpt;
 370};
 371
 372static void free_pending_hpt(sPAPRPendingHPT *pending)
 373{
 374    if (pending->hpt) {
 375        qemu_vfree(pending->hpt);
 376    }
 377
 378    g_free(pending);
 379}
 380
 381static void *hpt_prepare_thread(void *opaque)
 382{
 383    sPAPRPendingHPT *pending = opaque;
 384    size_t size = 1ULL << pending->shift;
 385
 386    pending->hpt = qemu_memalign(size, size);
 387    if (pending->hpt) {
 388        memset(pending->hpt, 0, size);
 389        pending->ret = H_SUCCESS;
 390    } else {
 391        pending->ret = H_NO_MEM;
 392    }
 393
 394    qemu_mutex_lock_iothread();
 395
 396    if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
 397        /* Ready to go */
 398        pending->complete = true;
 399    } else {
 400        /* We've been cancelled, clean ourselves up */
 401        free_pending_hpt(pending);
 402    }
 403
 404    qemu_mutex_unlock_iothread();
 405    return NULL;
 406}
 407
 408/* Must be called with BQL held */
 409static void cancel_hpt_prepare(sPAPRMachineState *spapr)
 410{
 411    sPAPRPendingHPT *pending = spapr->pending_hpt;
 412
 413    /* Let the thread know it's cancelled */
 414    spapr->pending_hpt = NULL;
 415
 416    if (!pending) {
 417        /* Nothing to do */
 418        return;
 419    }
 420
 421    if (!pending->complete) {
 422        /* thread will clean itself up */
 423        return;
 424    }
 425
 426    free_pending_hpt(pending);
 427}
 428
 429/* Convert a return code from the KVM ioctl()s implementing resize HPT
 430 * into a PAPR hypercall return code */
 431static target_ulong resize_hpt_convert_rc(int ret)
 432{
 433    if (ret >= 100000) {
 434        return H_LONG_BUSY_ORDER_100_SEC;
 435    } else if (ret >= 10000) {
 436        return H_LONG_BUSY_ORDER_10_SEC;
 437    } else if (ret >= 1000) {
 438        return H_LONG_BUSY_ORDER_1_SEC;
 439    } else if (ret >= 100) {
 440        return H_LONG_BUSY_ORDER_100_MSEC;
 441    } else if (ret >= 10) {
 442        return H_LONG_BUSY_ORDER_10_MSEC;
 443    } else if (ret > 0) {
 444        return H_LONG_BUSY_ORDER_1_MSEC;
 445    }
 446
 447    switch (ret) {
 448    case 0:
 449        return H_SUCCESS;
 450    case -EPERM:
 451        return H_AUTHORITY;
 452    case -EINVAL:
 453        return H_PARAMETER;
 454    case -ENXIO:
 455        return H_CLOSED;
 456    case -ENOSPC:
 457        return H_PTEG_FULL;
 458    case -EBUSY:
 459        return H_BUSY;
 460    case -ENOMEM:
 461        return H_NO_MEM;
 462    default:
 463        return H_HARDWARE;
 464    }
 465}
 466
 467static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
 468                                         sPAPRMachineState *spapr,
 469                                         target_ulong opcode,
 470                                         target_ulong *args)
 471{
 472    target_ulong flags = args[0];
 473    int shift = args[1];
 474    sPAPRPendingHPT *pending = spapr->pending_hpt;
 475    uint64_t current_ram_size = MACHINE(spapr)->ram_size;
 476    int rc;
 477
 478    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 479        return H_AUTHORITY;
 480    }
 481
 482    if (!spapr->htab_shift) {
 483        /* Radix guest, no HPT */
 484        return H_NOT_AVAILABLE;
 485    }
 486
 487    trace_spapr_h_resize_hpt_prepare(flags, shift);
 488
 489    if (flags != 0) {
 490        return H_PARAMETER;
 491    }
 492
 493    if (shift && ((shift < 18) || (shift > 46))) {
 494        return H_PARAMETER;
 495    }
 496
 497    current_ram_size = pc_existing_dimms_capacity(&error_fatal);
 498
 499    /* We only allow the guest to allocate an HPT one order above what
 500     * we'd normally give them (to stop a small guest claiming a huge
 501     * chunk of resources in the HPT */
 502    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 503        return H_RESOURCE;
 504    }
 505
 506    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 507    if (rc != -ENOSYS) {
 508        return resize_hpt_convert_rc(rc);
 509    }
 510
 511    if (pending) {
 512        /* something already in progress */
 513        if (pending->shift == shift) {
 514            /* and it's suitable */
 515            if (pending->complete) {
 516                return pending->ret;
 517            } else {
 518                return H_LONG_BUSY_ORDER_100_MSEC;
 519            }
 520        }
 521
 522        /* not suitable, cancel and replace */
 523        cancel_hpt_prepare(spapr);
 524    }
 525
 526    if (!shift) {
 527        /* nothing to do */
 528        return H_SUCCESS;
 529    }
 530
 531    /* start new prepare */
 532
 533    pending = g_new0(sPAPRPendingHPT, 1);
 534    pending->shift = shift;
 535    pending->ret = H_HARDWARE;
 536
 537    qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
 538                       hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
 539
 540    spapr->pending_hpt = pending;
 541
 542    /* In theory we could estimate the time more accurately based on
 543     * the new size, but there's not much point */
 544    return H_LONG_BUSY_ORDER_100_MSEC;
 545}
 546
 547static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
 548{
 549    uint8_t *addr = htab;
 550
 551    addr += pteg * HASH_PTEG_SIZE_64;
 552    addr += slot * HASH_PTE_SIZE_64;
 553    return  ldq_p(addr);
 554}
 555
 556static void new_hpte_store(void *htab, uint64_t pteg, int slot,
 557                           uint64_t pte0, uint64_t pte1)
 558{
 559    uint8_t *addr = htab;
 560
 561    addr += pteg * HASH_PTEG_SIZE_64;
 562    addr += slot * HASH_PTE_SIZE_64;
 563
 564    stq_p(addr, pte0);
 565    stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
 566}
 567
 568static int rehash_hpte(PowerPCCPU *cpu,
 569                       const ppc_hash_pte64_t *hptes,
 570                       void *old_hpt, uint64_t oldsize,
 571                       void *new_hpt, uint64_t newsize,
 572                       uint64_t pteg, int slot)
 573{
 574    uint64_t old_hash_mask = (oldsize >> 7) - 1;
 575    uint64_t new_hash_mask = (newsize >> 7) - 1;
 576    target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
 577    target_ulong pte1;
 578    uint64_t avpn;
 579    unsigned base_pg_shift;
 580    uint64_t hash, new_pteg, replace_pte0;
 581
 582    if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
 583        return H_SUCCESS;
 584    }
 585
 586    pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
 587
 588    base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
 589    assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
 590    avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
 591
 592    if (pte0 & HPTE64_V_SECONDARY) {
 593        pteg = ~pteg;
 594    }
 595
 596    if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
 597        uint64_t offset, vsid;
 598
 599        /* We only have 28 - 23 bits of offset in avpn */
 600        offset = (avpn & 0x1f) << 23;
 601        vsid = avpn >> 5;
 602        /* We can find more bits from the pteg value */
 603        if (base_pg_shift < 23) {
 604            offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
 605        }
 606
 607        hash = vsid ^ (offset >> base_pg_shift);
 608    } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
 609        uint64_t offset, vsid;
 610
 611        /* We only have 40 - 23 bits of seg_off in avpn */
 612        offset = (avpn & 0x1ffff) << 23;
 613        vsid = avpn >> 17;
 614        if (base_pg_shift < 23) {
 615            offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
 616                << base_pg_shift;
 617        }
 618
 619        hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
 620    } else {
 621        error_report("rehash_pte: Bad segment size in HPTE");
 622        return H_HARDWARE;
 623    }
 624
 625    new_pteg = hash & new_hash_mask;
 626    if (pte0 & HPTE64_V_SECONDARY) {
 627        assert(~pteg == (hash & old_hash_mask));
 628        new_pteg = ~new_pteg;
 629    } else {
 630        assert(pteg == (hash & old_hash_mask));
 631    }
 632    assert((oldsize != newsize) || (pteg == new_pteg));
 633    replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
 634    /*
 635     * Strictly speaking, we don't need all these tests, since we only
 636     * ever rehash bolted HPTEs.  We might in future handle non-bolted
 637     * HPTEs, though so make the logic correct for those cases as
 638     * well.
 639     */
 640    if (replace_pte0 & HPTE64_V_VALID) {
 641        assert(newsize < oldsize);
 642        if (replace_pte0 & HPTE64_V_BOLTED) {
 643            if (pte0 & HPTE64_V_BOLTED) {
 644                /* Bolted collision, nothing we can do */
 645                return H_PTEG_FULL;
 646            } else {
 647                /* Discard this hpte */
 648                return H_SUCCESS;
 649            }
 650        }
 651    }
 652
 653    new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
 654    return H_SUCCESS;
 655}
 656
 657static int rehash_hpt(PowerPCCPU *cpu,
 658                      void *old_hpt, uint64_t oldsize,
 659                      void *new_hpt, uint64_t newsize)
 660{
 661    uint64_t n_ptegs = oldsize >> 7;
 662    uint64_t pteg;
 663    int slot;
 664    int rc;
 665
 666    for (pteg = 0; pteg < n_ptegs; pteg++) {
 667        hwaddr ptex = pteg * HPTES_PER_GROUP;
 668        const ppc_hash_pte64_t *hptes
 669            = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 670
 671        if (!hptes) {
 672            return H_HARDWARE;
 673        }
 674
 675        for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
 676            rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
 677                             pteg, slot);
 678            if (rc != H_SUCCESS) {
 679                ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 680                return rc;
 681            }
 682        }
 683        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 684    }
 685
 686    return H_SUCCESS;
 687}
 688
 689static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 690                                        sPAPRMachineState *spapr,
 691                                        target_ulong opcode,
 692                                        target_ulong *args)
 693{
 694    target_ulong flags = args[0];
 695    target_ulong shift = args[1];
 696    sPAPRPendingHPT *pending = spapr->pending_hpt;
 697    int rc;
 698    size_t newsize;
 699
 700    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 701        return H_AUTHORITY;
 702    }
 703
 704    trace_spapr_h_resize_hpt_commit(flags, shift);
 705
 706    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 707    if (rc != -ENOSYS) {
 708        return resize_hpt_convert_rc(rc);
 709    }
 710
 711    if (flags != 0) {
 712        return H_PARAMETER;
 713    }
 714
 715    if (!pending || (pending->shift != shift)) {
 716        /* no matching prepare */
 717        return H_CLOSED;
 718    }
 719
 720    if (!pending->complete) {
 721        /* prepare has not completed */
 722        return H_BUSY;
 723    }
 724
 725    /* Shouldn't have got past PREPARE without an HPT */
 726    g_assert(spapr->htab_shift);
 727
 728    newsize = 1ULL << pending->shift;
 729    rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
 730                    pending->hpt, newsize);
 731    if (rc == H_SUCCESS) {
 732        qemu_vfree(spapr->htab);
 733        spapr->htab = pending->hpt;
 734        spapr->htab_shift = pending->shift;
 735
 736        if (kvm_enabled()) {
 737            /* For KVM PR, update the HPT pointer */
 738            target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab
 739                | (spapr->htab_shift - 18);
 740            kvmppc_update_sdr1(sdr1);
 741        }
 742
 743        pending->hpt = NULL; /* so it's not free()d */
 744    }
 745
 746    /* Clean up */
 747    spapr->pending_hpt = NULL;
 748    free_pending_hpt(pending);
 749
 750    return rc;
 751}
 752
 753static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 754                                target_ulong opcode, target_ulong *args)
 755{
 756    cpu_synchronize_state(CPU(cpu));
 757    cpu->env.spr[SPR_SPRG0] = args[0];
 758
 759    return H_SUCCESS;
 760}
 761
 762static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 763                               target_ulong opcode, target_ulong *args)
 764{
 765    if (!has_spr(cpu, SPR_DABR)) {
 766        return H_HARDWARE;              /* DABR register not available */
 767    }
 768    cpu_synchronize_state(CPU(cpu));
 769
 770    if (has_spr(cpu, SPR_DABRX)) {
 771        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 772    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 773        return H_RESERVED_DABR;
 774    }
 775
 776    cpu->env.spr[SPR_DABR] = args[0];
 777    return H_SUCCESS;
 778}
 779
 780static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 781                                target_ulong opcode, target_ulong *args)
 782{
 783    target_ulong dabrx = args[1];
 784
 785    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 786        return H_HARDWARE;
 787    }
 788
 789    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 790        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 791        return H_PARAMETER;
 792    }
 793
 794    cpu_synchronize_state(CPU(cpu));
 795    cpu->env.spr[SPR_DABRX] = dabrx;
 796    cpu->env.spr[SPR_DABR] = args[0];
 797
 798    return H_SUCCESS;
 799}
 800
 801static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 802                                target_ulong opcode, target_ulong *args)
 803{
 804    target_ulong flags = args[0];
 805    hwaddr dst = args[1];
 806    hwaddr src = args[2];
 807    hwaddr len = TARGET_PAGE_SIZE;
 808    uint8_t *pdst, *psrc;
 809    target_long ret = H_SUCCESS;
 810
 811    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 812                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 813        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 814                      flags);
 815        return H_PARAMETER;
 816    }
 817
 818    /* Map-in destination */
 819    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 820        return H_PARAMETER;
 821    }
 822    pdst = cpu_physical_memory_map(dst, &len, 1);
 823    if (!pdst || len != TARGET_PAGE_SIZE) {
 824        return H_PARAMETER;
 825    }
 826
 827    if (flags & H_COPY_PAGE) {
 828        /* Map-in source, copy to destination, and unmap source again */
 829        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 830            ret = H_PARAMETER;
 831            goto unmap_out;
 832        }
 833        psrc = cpu_physical_memory_map(src, &len, 0);
 834        if (!psrc || len != TARGET_PAGE_SIZE) {
 835            ret = H_PARAMETER;
 836            goto unmap_out;
 837        }
 838        memcpy(pdst, psrc, len);
 839        cpu_physical_memory_unmap(psrc, len, 0, len);
 840    } else if (flags & H_ZERO_PAGE) {
 841        memset(pdst, 0, len);          /* Just clear the destination page */
 842    }
 843
 844    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 845        kvmppc_dcbst_range(cpu, pdst, len);
 846    }
 847    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 848        if (kvm_enabled()) {
 849            kvmppc_icbi_range(cpu, pdst, len);
 850        } else {
 851            tb_flush(CPU(cpu));
 852        }
 853    }
 854
 855unmap_out:
 856    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 857    return ret;
 858}
 859
 860#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 861#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 862#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 863#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 864#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 865#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 866
 867#define VPA_MIN_SIZE           640
 868#define VPA_SIZE_OFFSET        0x4
 869#define VPA_SHARED_PROC_OFFSET 0x9
 870#define VPA_SHARED_PROC_VAL    0x2
 871
 872static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
 873{
 874    CPUState *cs = CPU(ppc_env_get_cpu(env));
 875    uint16_t size;
 876    uint8_t tmp;
 877
 878    if (vpa == 0) {
 879        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 880        return H_HARDWARE;
 881    }
 882
 883    if (vpa % env->dcache_line_size) {
 884        return H_PARAMETER;
 885    }
 886    /* FIXME: bounds check the address */
 887
 888    size = lduw_be_phys(cs->as, vpa + 0x4);
 889
 890    if (size < VPA_MIN_SIZE) {
 891        return H_PARAMETER;
 892    }
 893
 894    /* VPA is not allowed to cross a page boundary */
 895    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 896        return H_PARAMETER;
 897    }
 898
 899    env->vpa_addr = vpa;
 900
 901    tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
 902    tmp |= VPA_SHARED_PROC_VAL;
 903    stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 904
 905    return H_SUCCESS;
 906}
 907
 908static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
 909{
 910    if (env->slb_shadow_addr) {
 911        return H_RESOURCE;
 912    }
 913
 914    if (env->dtl_addr) {
 915        return H_RESOURCE;
 916    }
 917
 918    env->vpa_addr = 0;
 919    return H_SUCCESS;
 920}
 921
 922static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
 923{
 924    CPUState *cs = CPU(ppc_env_get_cpu(env));
 925    uint32_t size;
 926
 927    if (addr == 0) {
 928        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 929        return H_HARDWARE;
 930    }
 931
 932    size = ldl_be_phys(cs->as, addr + 0x4);
 933    if (size < 0x8) {
 934        return H_PARAMETER;
 935    }
 936
 937    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 938        return H_PARAMETER;
 939    }
 940
 941    if (!env->vpa_addr) {
 942        return H_RESOURCE;
 943    }
 944
 945    env->slb_shadow_addr = addr;
 946    env->slb_shadow_size = size;
 947
 948    return H_SUCCESS;
 949}
 950
 951static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
 952{
 953    env->slb_shadow_addr = 0;
 954    env->slb_shadow_size = 0;
 955    return H_SUCCESS;
 956}
 957
 958static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
 959{
 960    CPUState *cs = CPU(ppc_env_get_cpu(env));
 961    uint32_t size;
 962
 963    if (addr == 0) {
 964        hcall_dprintf("Can't cope with DTL at logical 0\n");
 965        return H_HARDWARE;
 966    }
 967
 968    size = ldl_be_phys(cs->as, addr + 0x4);
 969
 970    if (size < 48) {
 971        return H_PARAMETER;
 972    }
 973
 974    if (!env->vpa_addr) {
 975        return H_RESOURCE;
 976    }
 977
 978    env->dtl_addr = addr;
 979    env->dtl_size = size;
 980
 981    return H_SUCCESS;
 982}
 983
 984static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
 985{
 986    env->dtl_addr = 0;
 987    env->dtl_size = 0;
 988
 989    return H_SUCCESS;
 990}
 991
 992static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 993                                   target_ulong opcode, target_ulong *args)
 994{
 995    target_ulong flags = args[0];
 996    target_ulong procno = args[1];
 997    target_ulong vpa = args[2];
 998    target_ulong ret = H_PARAMETER;
 999    CPUPPCState *tenv;
1000    PowerPCCPU *tcpu;
1001
1002    tcpu = ppc_get_vcpu_by_dt_id(procno);
1003    if (!tcpu) {
1004        return H_PARAMETER;
1005    }
1006    tenv = &tcpu->env;
1007
1008    switch (flags) {
1009    case FLAGS_REGISTER_VPA:
1010        ret = register_vpa(tenv, vpa);
1011        break;
1012
1013    case FLAGS_DEREGISTER_VPA:
1014        ret = deregister_vpa(tenv, vpa);
1015        break;
1016
1017    case FLAGS_REGISTER_SLBSHADOW:
1018        ret = register_slb_shadow(tenv, vpa);
1019        break;
1020
1021    case FLAGS_DEREGISTER_SLBSHADOW:
1022        ret = deregister_slb_shadow(tenv, vpa);
1023        break;
1024
1025    case FLAGS_REGISTER_DTL:
1026        ret = register_dtl(tenv, vpa);
1027        break;
1028
1029    case FLAGS_DEREGISTER_DTL:
1030        ret = deregister_dtl(tenv, vpa);
1031        break;
1032    }
1033
1034    return ret;
1035}
1036
1037static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1038                           target_ulong opcode, target_ulong *args)
1039{
1040    CPUPPCState *env = &cpu->env;
1041    CPUState *cs = CPU(cpu);
1042
1043    env->msr |= (1ULL << MSR_EE);
1044    hreg_compute_hflags(env);
1045    if (!cpu_has_work(cs)) {
1046        cs->halted = 1;
1047        cs->exception_index = EXCP_HLT;
1048        cs->exit_request = 1;
1049    }
1050    return H_SUCCESS;
1051}
1052
1053static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1054                           target_ulong opcode, target_ulong *args)
1055{
1056    target_ulong rtas_r3 = args[0];
1057    uint32_t token = rtas_ld(rtas_r3, 0);
1058    uint32_t nargs = rtas_ld(rtas_r3, 1);
1059    uint32_t nret = rtas_ld(rtas_r3, 2);
1060
1061    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1062                           nret, rtas_r3 + 12 + 4*nargs);
1063}
1064
1065static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1066                                   target_ulong opcode, target_ulong *args)
1067{
1068    CPUState *cs = CPU(cpu);
1069    target_ulong size = args[0];
1070    target_ulong addr = args[1];
1071
1072    switch (size) {
1073    case 1:
1074        args[0] = ldub_phys(cs->as, addr);
1075        return H_SUCCESS;
1076    case 2:
1077        args[0] = lduw_phys(cs->as, addr);
1078        return H_SUCCESS;
1079    case 4:
1080        args[0] = ldl_phys(cs->as, addr);
1081        return H_SUCCESS;
1082    case 8:
1083        args[0] = ldq_phys(cs->as, addr);
1084        return H_SUCCESS;
1085    }
1086    return H_PARAMETER;
1087}
1088
1089static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1090                                    target_ulong opcode, target_ulong *args)
1091{
1092    CPUState *cs = CPU(cpu);
1093
1094    target_ulong size = args[0];
1095    target_ulong addr = args[1];
1096    target_ulong val  = args[2];
1097
1098    switch (size) {
1099    case 1:
1100        stb_phys(cs->as, addr, val);
1101        return H_SUCCESS;
1102    case 2:
1103        stw_phys(cs->as, addr, val);
1104        return H_SUCCESS;
1105    case 4:
1106        stl_phys(cs->as, addr, val);
1107        return H_SUCCESS;
1108    case 8:
1109        stq_phys(cs->as, addr, val);
1110        return H_SUCCESS;
1111    }
1112    return H_PARAMETER;
1113}
1114
1115static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1116                                    target_ulong opcode, target_ulong *args)
1117{
1118    CPUState *cs = CPU(cpu);
1119
1120    target_ulong dst   = args[0]; /* Destination address */
1121    target_ulong src   = args[1]; /* Source address */
1122    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1123    target_ulong count = args[3]; /* Element count */
1124    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1125    uint64_t tmp;
1126    unsigned int mask = (1 << esize) - 1;
1127    int step = 1 << esize;
1128
1129    if (count > 0x80000000) {
1130        return H_PARAMETER;
1131    }
1132
1133    if ((dst & mask) || (src & mask) || (op > 1)) {
1134        return H_PARAMETER;
1135    }
1136
1137    if (dst >= src && dst < (src + (count << esize))) {
1138            dst = dst + ((count - 1) << esize);
1139            src = src + ((count - 1) << esize);
1140            step = -step;
1141    }
1142
1143    while (count--) {
1144        switch (esize) {
1145        case 0:
1146            tmp = ldub_phys(cs->as, src);
1147            break;
1148        case 1:
1149            tmp = lduw_phys(cs->as, src);
1150            break;
1151        case 2:
1152            tmp = ldl_phys(cs->as, src);
1153            break;
1154        case 3:
1155            tmp = ldq_phys(cs->as, src);
1156            break;
1157        default:
1158            return H_PARAMETER;
1159        }
1160        if (op == 1) {
1161            tmp = ~tmp;
1162        }
1163        switch (esize) {
1164        case 0:
1165            stb_phys(cs->as, dst, tmp);
1166            break;
1167        case 1:
1168            stw_phys(cs->as, dst, tmp);
1169            break;
1170        case 2:
1171            stl_phys(cs->as, dst, tmp);
1172            break;
1173        case 3:
1174            stq_phys(cs->as, dst, tmp);
1175            break;
1176        }
1177        dst = dst + step;
1178        src = src + step;
1179    }
1180
1181    return H_SUCCESS;
1182}
1183
1184static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1185                                   target_ulong opcode, target_ulong *args)
1186{
1187    /* Nothing to do on emulation, KVM will trap this in the kernel */
1188    return H_SUCCESS;
1189}
1190
1191static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1192                                   target_ulong opcode, target_ulong *args)
1193{
1194    /* Nothing to do on emulation, KVM will trap this in the kernel */
1195    return H_SUCCESS;
1196}
1197
1198static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1199                                           target_ulong mflags,
1200                                           target_ulong value1,
1201                                           target_ulong value2)
1202{
1203    CPUState *cs;
1204
1205    if (value1) {
1206        return H_P3;
1207    }
1208    if (value2) {
1209        return H_P4;
1210    }
1211
1212    switch (mflags) {
1213    case H_SET_MODE_ENDIAN_BIG:
1214        CPU_FOREACH(cs) {
1215            set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1216        }
1217        spapr_pci_switch_vga(true);
1218        return H_SUCCESS;
1219
1220    case H_SET_MODE_ENDIAN_LITTLE:
1221        CPU_FOREACH(cs) {
1222            set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1223        }
1224        spapr_pci_switch_vga(false);
1225        return H_SUCCESS;
1226    }
1227
1228    return H_UNSUPPORTED_FLAG;
1229}
1230
1231static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1232                                                        target_ulong mflags,
1233                                                        target_ulong value1,
1234                                                        target_ulong value2)
1235{
1236    CPUState *cs;
1237    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1238
1239    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1240        return H_P2;
1241    }
1242    if (value1) {
1243        return H_P3;
1244    }
1245    if (value2) {
1246        return H_P4;
1247    }
1248
1249    if (mflags == AIL_RESERVED) {
1250        return H_UNSUPPORTED_FLAG;
1251    }
1252
1253    CPU_FOREACH(cs) {
1254        set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1255    }
1256
1257    return H_SUCCESS;
1258}
1259
1260static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1261                               target_ulong opcode, target_ulong *args)
1262{
1263    target_ulong resource = args[1];
1264    target_ulong ret = H_P2;
1265
1266    switch (resource) {
1267    case H_SET_MODE_RESOURCE_LE:
1268        ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1269        break;
1270    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1271        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1272                                                  args[2], args[3]);
1273        break;
1274    }
1275
1276    return ret;
1277}
1278
1279static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1280                                target_ulong opcode, target_ulong *args)
1281{
1282    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1283                  opcode, " (H_CLEAN_SLB)");
1284    return H_FUNCTION;
1285}
1286
1287static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1288                                     target_ulong opcode, target_ulong *args)
1289{
1290    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1291                  opcode, " (H_INVALIDATE_PID)");
1292    return H_FUNCTION;
1293}
1294
1295static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1296                                       uint64_t patbe_old, uint64_t patbe_new)
1297{
1298    /*
1299     * We have 4 Options:
1300     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1301     * HASH->RADIX                                  : Free HPT
1302     * RADIX->HASH                                  : Allocate HPT
1303     * NOTHING->HASH                                : Allocate HPT
1304     * Note: NOTHING implies the case where we said the guest could choose
1305     *       later and so assumed radix and now it's called H_REG_PROC_TBL
1306     */
1307
1308    if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1309        /* We assume RADIX, so this catches all the "Do Nothing" cases */
1310    } else if (!(patbe_old & PATBE1_GR)) {
1311        /* HASH->RADIX : Free HPT */
1312        spapr_free_hpt(spapr);
1313    } else if (!(patbe_new & PATBE1_GR)) {
1314        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1315        spapr_setup_hpt_and_vrma(spapr);
1316    }
1317    return;
1318}
1319
1320#define FLAGS_MASK              0x01FULL
1321#define FLAG_MODIFY             0x10
1322#define FLAG_REGISTER           0x08
1323#define FLAG_RADIX              0x04
1324#define FLAG_HASH_PROC_TBL      0x02
1325#define FLAG_GTSE               0x01
1326
1327static target_ulong h_register_process_table(PowerPCCPU *cpu,
1328                                             sPAPRMachineState *spapr,
1329                                             target_ulong opcode,
1330                                             target_ulong *args)
1331{
1332    CPUState *cs;
1333    target_ulong flags = args[0];
1334    target_ulong proc_tbl = args[1];
1335    target_ulong page_size = args[2];
1336    target_ulong table_size = args[3];
1337    uint64_t cproc;
1338
1339    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1340        return H_PARAMETER;
1341    }
1342    if (flags & FLAG_MODIFY) {
1343        if (flags & FLAG_REGISTER) {
1344            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1345                if (proc_tbl & 0xfff || proc_tbl >> 60) {
1346                    return H_P2;
1347                } else if (page_size) {
1348                    return H_P3;
1349                } else if (table_size > 24) {
1350                    return H_P4;
1351                }
1352                cproc = PATBE1_GR | proc_tbl | table_size;
1353            } else { /* Register new HPT process table */
1354                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1355                    /* TODO - Not Supported */
1356                    /* Technically caused by flag bits => H_PARAMETER */
1357                    return H_PARAMETER;
1358                } else { /* Hash with SLB */
1359                    if (proc_tbl >> 38) {
1360                        return H_P2;
1361                    } else if (page_size & ~0x7) {
1362                        return H_P3;
1363                    } else if (table_size > 24) {
1364                        return H_P4;
1365                    }
1366                }
1367                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1368            }
1369
1370        } else { /* Deregister current process table */
1371            /* Set to benign value: (current GR) | 0. This allows
1372             * deregistration in KVM to succeed even if the radix bit in flags
1373             * doesn't match the radix bit in the old PATB. */
1374            cproc = spapr->patb_entry & PATBE1_GR;
1375        }
1376    } else { /* Maintain current registration */
1377        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1378            /* Technically caused by flag bits => H_PARAMETER */
1379            return H_PARAMETER; /* Existing Process Table Mismatch */
1380        }
1381        cproc = spapr->patb_entry;
1382    }
1383
1384    /* Check if we need to setup OR free the hpt */
1385    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1386
1387    spapr->patb_entry = cproc; /* Save new process table */
1388
1389    /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1390    CPU_FOREACH(cs) {
1391        set_spr(cs, SPR_LPCR,
1392                ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1393                ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1394                LPCR_UPRT | LPCR_GTSE);
1395    }
1396
1397    if (kvm_enabled()) {
1398        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1399                                       flags & FLAG_GTSE, cproc);
1400    }
1401    return H_SUCCESS;
1402}
1403
1404#define H_SIGNAL_SYS_RESET_ALL         -1
1405#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1406
1407static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1408                                       sPAPRMachineState *spapr,
1409                                       target_ulong opcode, target_ulong *args)
1410{
1411    target_long target = args[0];
1412    CPUState *cs;
1413
1414    if (target < 0) {
1415        /* Broadcast */
1416        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1417            return H_PARAMETER;
1418        }
1419
1420        CPU_FOREACH(cs) {
1421            PowerPCCPU *c = POWERPC_CPU(cs);
1422
1423            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1424                if (c == cpu) {
1425                    continue;
1426                }
1427            }
1428            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1429        }
1430        return H_SUCCESS;
1431
1432    } else {
1433        /* Unicast */
1434        cs = CPU(ppc_get_vcpu_by_dt_id(target));
1435        if (cs) {
1436            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1437            return H_SUCCESS;
1438        }
1439        return H_PARAMETER;
1440    }
1441}
1442
1443static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1444                              target_ulong *addr, Error **errp)
1445{
1446    bool explicit_match = false; /* Matched the CPU's real PVR */
1447    uint32_t max_compat = spapr->max_compat_pvr;
1448    uint32_t best_compat = 0;
1449    int i;
1450
1451    /*
1452     * We scan the supplied table of PVRs looking for two things
1453     *   1. Is our real CPU PVR in the list?
1454     *   2. What's the "best" listed logical PVR
1455     */
1456    for (i = 0; i < 512; ++i) {
1457        uint32_t pvr, pvr_mask;
1458
1459        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1460        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1461        *addr += 8;
1462
1463        if (~pvr_mask & pvr) {
1464            break; /* Terminator record */
1465        }
1466
1467        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1468            explicit_match = true;
1469        } else {
1470            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1471                best_compat = pvr;
1472            }
1473        }
1474    }
1475
1476    if ((best_compat == 0) && (!explicit_match || max_compat)) {
1477        /* We couldn't find a suitable compatibility mode, and either
1478         * the guest doesn't support "raw" mode for this CPU, or raw
1479         * mode is disabled because a maximum compat mode is set */
1480        error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1481        return 0;
1482    }
1483
1484    /* Parsing finished */
1485    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1486
1487    return best_compat;
1488}
1489
1490static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1491                                                  sPAPRMachineState *spapr,
1492                                                  target_ulong opcode,
1493                                                  target_ulong *args)
1494{
1495    /* Working address in data buffer */
1496    target_ulong addr = ppc64_phys_to_real(args[0]);
1497    target_ulong ov_table;
1498    uint32_t cas_pvr;
1499    sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1500    bool guest_radix;
1501    Error *local_err = NULL;
1502
1503    cas_pvr = cas_check_pvr(spapr, cpu, &addr, &local_err);
1504    if (local_err) {
1505        error_report_err(local_err);
1506        return H_HARDWARE;
1507    }
1508
1509    /* Update CPUs */
1510    if (cpu->compat_pvr != cas_pvr) {
1511        ppc_set_compat_all(cas_pvr, &local_err);
1512        if (local_err) {
1513            error_report_err(local_err);
1514            return H_HARDWARE;
1515        }
1516    }
1517
1518    /* For the future use: here @ov_table points to the first option vector */
1519    ov_table = addr;
1520
1521    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1522    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1523    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1524        error_report("guest requested hash and radix MMU, which is invalid.");
1525        exit(EXIT_FAILURE);
1526    }
1527    /* The radix/hash bit in byte 24 requires special handling: */
1528    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1529    spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1530
1531    /*
1532     * HPT resizing is a bit of a special case, because when enabled
1533     * we assume an HPT guest will support it until it says it
1534     * doesn't, instead of assuming it won't support it until it says
1535     * it does.  Strictly speaking that approach could break for
1536     * guests which don't make a CAS call, but those are so old we
1537     * don't care about them.  Without that assumption we'd have to
1538     * make at least a temporary allocation of an HPT sized for max
1539     * memory, which could be impossibly difficult under KVM HV if
1540     * maxram is large.
1541     */
1542    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1543        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1544
1545        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1546            error_report(
1547                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1548            exit(1);
1549        }
1550
1551        if (spapr->htab_shift < maxshift) {
1552            CPUState *cs;
1553
1554            /* Guest doesn't know about HPT resizing, so we
1555             * pre-emptively resize for the maximum permitted RAM.  At
1556             * the point this is called, nothing should have been
1557             * entered into the existing HPT */
1558            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1559            CPU_FOREACH(cs) {
1560                if (kvm_enabled()) {
1561                    /* For KVM PR, update the HPT pointer */
1562                    target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab
1563                        | (spapr->htab_shift - 18);
1564                    kvmppc_update_sdr1(sdr1);
1565                }
1566            }
1567        }
1568    }
1569
1570    /* NOTE: there are actually a number of ov5 bits where input from the
1571     * guest is always zero, and the platform/QEMU enables them independently
1572     * of guest input. To model these properly we'd want some sort of mask,
1573     * but since they only currently apply to memory migration as defined
1574     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1575     * to worry about this for now.
1576     */
1577    ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1578    /* full range of negotiated ov5 capabilities */
1579    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1580    spapr_ovec_cleanup(ov5_guest);
1581    /* capabilities that have been added since CAS-generated guest reset.
1582     * if capabilities have since been removed, generate another reset
1583     */
1584    ov5_updates = spapr_ovec_new();
1585    spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1586                                        ov5_cas_old, spapr->ov5_cas);
1587    /* Now that processing is finished, set the radix/hash bit for the
1588     * guest if it requested a valid mode; otherwise terminate the boot. */
1589    if (guest_radix) {
1590        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1591            error_report("Guest requested unavailable MMU mode (radix).");
1592            exit(EXIT_FAILURE);
1593        }
1594        spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1595    } else {
1596        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1597            && !kvmppc_has_cap_mmu_hash_v3()) {
1598            error_report("Guest requested unavailable MMU mode (hash).");
1599            exit(EXIT_FAILURE);
1600        }
1601    }
1602    spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1603                                                          OV1_PPC_3_00);
1604    if (!spapr->cas_reboot) {
1605        spapr->cas_reboot =
1606            (spapr_h_cas_compose_response(spapr, args[1], args[2],
1607                                          ov5_updates) != 0);
1608    }
1609    spapr_ovec_cleanup(ov5_updates);
1610
1611    if (spapr->cas_reboot) {
1612        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1613    } else {
1614        /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1615         * (because the guest isn't going to use radix) then set it up here. */
1616        if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1617            /* legacy hash or new hash: */
1618            spapr_setup_hpt_and_vrma(spapr);
1619        }
1620    }
1621
1622    return H_SUCCESS;
1623}
1624
1625static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1626static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1627
1628void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1629{
1630    spapr_hcall_fn *slot;
1631
1632    if (opcode <= MAX_HCALL_OPCODE) {
1633        assert((opcode & 0x3) == 0);
1634
1635        slot = &papr_hypercall_table[opcode / 4];
1636    } else {
1637        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1638
1639        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1640    }
1641
1642    assert(!(*slot));
1643    *slot = fn;
1644}
1645
1646target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1647                             target_ulong *args)
1648{
1649    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1650
1651    if ((opcode <= MAX_HCALL_OPCODE)
1652        && ((opcode & 0x3) == 0)) {
1653        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1654
1655        if (fn) {
1656            return fn(cpu, spapr, opcode, args);
1657        }
1658    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1659               (opcode <= KVMPPC_HCALL_MAX)) {
1660        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1661
1662        if (fn) {
1663            return fn(cpu, spapr, opcode, args);
1664        }
1665    }
1666
1667    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1668                  opcode);
1669    return H_FUNCTION;
1670}
1671
1672static void hypercall_register_types(void)
1673{
1674    /* hcall-pft */
1675    spapr_register_hypercall(H_ENTER, h_enter);
1676    spapr_register_hypercall(H_REMOVE, h_remove);
1677    spapr_register_hypercall(H_PROTECT, h_protect);
1678    spapr_register_hypercall(H_READ, h_read);
1679
1680    /* hcall-bulk */
1681    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1682
1683    /* hcall-hpt-resize */
1684    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1685    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1686
1687    /* hcall-splpar */
1688    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1689    spapr_register_hypercall(H_CEDE, h_cede);
1690    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1691
1692    /* processor register resource access h-calls */
1693    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1694    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1695    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1696    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1697    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1698
1699    /* In Memory Table MMU h-calls */
1700    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1701    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1702    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1703
1704    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1705     * here between the "CI" and the "CACHE" variants, they will use whatever
1706     * mapping attributes qemu is using. When using KVM, the kernel will
1707     * enforce the attributes more strongly
1708     */
1709    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1710    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1711    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1712    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1713    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1714    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1715    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1716
1717    /* qemu/KVM-PPC specific hcalls */
1718    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1719
1720    /* ibm,client-architecture-support support */
1721    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1722}
1723
1724type_init(hypercall_register_types)
1725